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1 Nomenclature

Symbol Description

Vt Set of observable variables at time t
V0:T Union of observable variables at time t = 0, . . . , T

Xt Manipulative variables at time t
Yt Target variable at time t
P(Xt) Power set of Xt

Mt Set of MIS sets at time t
Xs,t s-th intervention set at time t
D Observational dataset {Vi

0:T }Ni=1

N Number of observational data points collected from the system
DIs,t Interventional data points collected for the intervention set Xs,t

XI Vector of interventional values
YI
s,t Vector of target values obtained by intervening on Xs,t at XI

H Maximum number of explorative interventions an agent can conduct at every t
I0:t−1 Decision Interventions at time step 0 to t− 1

fs,t Objective function for the set Xs,t

ms,t Prior mean function of GP on fs,t
ks,t Prior kernel function of GP on fs,t

ms,t(· | DIs,t) Posterior mean function for GP on fs,t
ks,t(·, · | DIs,t) Posterior covariance function for GP on fs,t
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2 Characterization of the time structure in a DAG with time dependent
variables

In this section we give the proof for Theorem 1 in the main text. Consider the objective function
E[Yt|do(Xs,t = xs,t) , I0:t−1] and define the following sets:

• Pa(Yt) = Y PT
t ∪ Y PNT

t with Y PT
t = Pa(Yt) ∩ Y0:t−1 denoting the parents of Yt that are target

variables at previous time steps and Y PNT
t = Pa(Yt) \Y PT

t including the parents of Yt that are not
target variables.

• For any set Xs,t ∈ P(Xt), XPY
s,t = Xs,t ∩ Pa(Yt) includes the variables in Xs,t that are parents of

Yt while XNPY
s,t = Xs,t\XPY

s,t so that Xs,t = XPY
s,t ∪XNPY

s,t .

• For any set IV0:t−1 ⊆ X0:t−1, IPY
0:t−1 = IV0:t−1 ∩ Pa(Yt) includes the variables in IV0:t−1 that are

parents of Yt and INPY
0:t−1 = IV0:t−1\IPY

0:t−1 so that IV0:t−1 = IPY
0:t−1 ∪ INPY

0:t−1.

• For any two sets Xs,t ∈ Pa(Yt) and IV0:t−1 ⊆ X0:t−1, W is a set such that Pa(Yt) = Y PT
t ∪XPY

s,t ∪
IPY
0:t−1 ∪W. This means that W includes those variables that are parents of Yt but are nor target at

previous time steps nor intervened variables.

In the following proof the values of IV0:t−1, XPY
s,t , I

PY
0:t−1 and W are denoted by i, xPY, iPY and w

respectively. The values of Y PT
t , XNPY

s,t and INPY
0:t−1 are instead represented by yPT

t , xNPY and iNPY.
Finally, fYY and fNY

Y are the functions in the SCM for Yt (see Assumptions (1) in the main text).

Proof of Theorem 1 Under Assumptions 1 we can write :

E[Yt|do(Xs,t = xs,t) , I0:t−1] =

∫
ytp(yt|do(Xs,t = xs,t) , I0:t−1)dyt

=

∫
· · ·
∫
ytp(yt|do

(
XPY
s,t = xPY) ,do

(
XNPY
s,t = xNPY) , IPY

0:t−1, I
NPY
0:t−1,y

PT
t ,w)

× p(yPT
t ,w|do(Xs,t = xs,t) , I0:t−1)dytdyPT

t dw

=
/

Rule 2 and Rule 1 of do-calculus
/

=

∫
· · ·
∫
ytp(yt|do

(
XPY
s,t = xPY) , IPY

0:t−1,y
PT
t ,w)

× p(yPT
t ,w|do(Xs,t = xs,t) , I0:t−1)dytdyPT

t dw (1)

=

∫
· · ·
∫

E
[
Yt|do

(
XPY
s,t = xPY) , IPY

0:t−1,y
PT
t ,w

]

× p(yPT
t ,w|do(Xs,t = xs,t) , I0:t−1)dyPT

t dw

=
/

Assumption (2)
/

=

∫
· · ·
∫
fYY (yPT

t ) + fNY
Y (xPY, iPY,w)

× p(yPT
t ,w|do(Xs,t = xs,t) , I0:t−1)dyPT

t dw (2)

=

∫
· · ·
∫
fYY (yPT

t )p(yPT
t ,w|do(Xs,t = xs,t) , I0:t−1)dyPT

t dw

+

∫
· · ·
∫
fNY
Y (xPY, iPY,w)p(yPT

t ,w|do(Xs,t = xs,t) , I0:t−1)dyPT
t dw
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=

∫
fYY (yPT

t )p(yPT
t |do(Xs,t = xs,t) , I0:t−1)dyPT

t (3)

+

∫
fNY
Y (xPY, iPY,w)p(w|do(Xs,t = xs,t) , I0:t−1)dw

=
/

Time assumption
/

=

∫
fYY (yPT

t )p(yPT
t |I0:t−1)dyPT

t +

∫
fNY
Y (xPY, iPY,w)p(w|do(Xs,t = xs,t) , I0:t−1)dw (4)

=
/

Observed interventions
/

= fYY (f?) +

∫
fNY
Y (xPY, iPY,w)p(w|do(Xs,t = xs,t) , I0:t−1)dw (5)

= fYY (f?) + Ep(w| do(Xs,t=xs,t),I0:t−1)

[
fNY
Y (xPY, iPY,w)

]
(6)

with f? = {E
[
Yi|do

(
X?
s,i = x?s,i

)
, I0:i−1

]
}Yi∈Y PT

t
denoting the values of Y PT

t corresponding to
the optimal interventions implemented at previous time steps . Eq. (1) follows from Yt |= (XNPY

s,t ∪
INPY
0:t−1)|XPY

s,t , I
PY
0:t−1,W, Y PT

t in G
XPY

s,t,I
PY
0:t−1X

NPY
s,t ,I

NPY
0:t−1

(Rule 2 of do-calculus) and Yt |= (XNPY
s,t ∪

INPY
0:t−1)|XPY

s,t , I
PY
0:t−1,W, Y PT

t in G
XPY

s,t,I
PY
0:t−1

(Rule 1 of do-calculus). Eq. (2) follows from the

second assumption in Assumptions (1) in the main text. Eq. (4) follows from Y PT
t |= Xs,t as

interventions at time t cannot affect variables at time steps 0 : t−1. Finally, noticing that p(yPT
t |I0:t−1)

is the distribution targeted when optimizing the objective function at previous time steps one can
obtain Eq. (6).

�

The derivations above show how the objective function at time t is given by the expected value
of the output of the functional relationship fNY

Y where the expectation is taken with respect to the
variables that are not intervened on. This expectation is then shifted to account for the interventions
implemented in the system at previous time steps that are affecting the target variable through
fYY . Notice that, given our assumption on the absence of unobserved confounders, the distribution
p(w|do(Xs,t = xs,t) , I0:t−1) can be further simplified by conditioning on the variables in G that
are on the back-door path between (Xs,t, I0:t−1) and Yt and are not colliders. When the variable Yt
does not depend on the previous target nodes, the function fYY does not exist and Eq. (6) reduces to

Ep(w| do(Xs,t=xs,t),I0:t−1)

[
fNY
Y (xPY, iPY,w)

]
. (7)

In this case previous interventions impact the target variable at time t by changing the distributions of
the parents of Yt that are not intervened but the information in f? is lost.

Eq. (6) can be further manipulated to reduce the second term to a do-free expression. Instead of apply-
ing the rules of do-calculus, one can expand p(w|do(Xs,t = xs,t) , I0:t−1) by further conditioning
on the parents of W that are not in (Xs,t ∪ I0:t−1). In this case, w in fNY

Y (xPY, iPY,w) is replaced
by the functions {fW (·)}W∈W in the SCM corresponding to the variables in W and computed in
w. This leads to a partial composition of fNY

Y with {fW (·)}W∈W and can be repeated recursively
until the set of variables with respect to which we are taking the expectation is a subset of Xs,t or
IV0:t−1 thus making the distribution a delta function. For instance, when W ⊂ Xs,t in Eq. (6), we
have p(w|do(Xs,t = xs,t) , I0:t−1) = δ(w = xW)) where xW are the values in xs,t corresponding
to the variables in W. Therefore, Eq. (6) reduces to fYY (f?) + fNY

Y (xPY, iPY,xW).

For a generic W ∈W 6⊆ (Xs,t ∪ IV0:t−1), denote by XPW
s,t and IPW

0:t−1 the subset of variables in Xs,t

and I0:t−1 that are parents of W with corresponding values xPW and iPW. Let R = Pa(W ) \(XPW
s,t ∪

IPW
0:t−1) and r be the corresponding value. We can define the C(·) function as:

C(W ) =





fW (uW ,x
PW, iPW) if R = ∅

fW (uW ,x
PW, iPW, r) if R ⊆ Xs,t ∪ IV0:t−1

fW (uW ,x
PW, iPW, C(R)) if R 6⊆ Xs,t ∪ IV0:t−1

(8)
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with uW representing the exogenous variables with edges into W and fW denoting the func-
tional mapping for W in the SCM. Note that if R = ∅ and XPW

s,t and IPW
0:t−1 are also

empty then fW (uW ,x
PW, iPW) reduces to fW (uW ). The same holds for the other cases that

is fW (uW ,x
PW, iPW, r) = fW (uW , r) and fW (uW ,x

PW, iPW, C(R)) = fW (uW , C(R)) when
XPW
s,t , I

PW
0:t−1 = ∅. Exploiting Eq. (8) we can rewrite Eq. (6) as:

E[Yt|do(Xs,t = xs,t) , I0:t−1] = fYY (f?) + Ep(U0:t)

[
fNY
Y (xPY, iPY, {C(W )}W∈W)

]
(9)

The distribution p(U0:t) can be further simplified to consider only the exogenous variables with
outgoing edges into the variables on the directed paths between Xs,t and Y PNT

t and between IV0:t−1
and Y PNT

t . Notice how the second term in Eq. (9) propagates the interventions, both at the present
and past time steps, through the SCM so as to express the parents of the target variable as a function
of the intervened values. The expected target is then obtained as the propagation of the intervened
variables and intervened targets through the function fYt in the SCM.
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3 Example derivations

Next we show how one can use Theorem 1 to derive some of the objective functions used by DCBO
for the DAGs in Fig. 1.

· · ·

· · ·

X0

· · ·

Z0

X1

Z1

XT

ZT

Y0 Y1 YT

(a) DAG 1

· · ·

· · ·

X0

· · ·

Z0

X1

Z1

XT

ZT

Y0 Y1 YT

(b) DAG 2

Figure 1: Dynamic Bayesian networks with different topologies. Figure 1a shows a DAG in which
(per time-slice) the manipulative variable X flows through Z, whereas in Fig. 1b the manipulative
variables are independent of each other (note the direction of the vertical edges).

3.1 Derivations for DAG 1 in Fig. 1a

Consider the DAG in Fig. 1a and assume that the optimal intervention implemented at time t = 0
is given by I0 = do(Z0 = z?0) and gives a target value of y?0 . At t = 1 the target variable is Y1,
Y PT
t = {Y0} and Y PNT

t = {Z1}. Given I0 we have IPY
0:t−1 = ∅ and INPY

0:t−1 = Z0. We can write
the objective functions by noticing that, for Xs,1 = {Z1} we have XPY

s,t = {Z1}, XNPY
s,t = ∅ and

W = ∅, while for Xs,1 = {X1} we have XPY
s,t = ∅, XNPY

s,t = {X1} and W = {Z1}. We do not
compute the objective function for Xs,1 = {X1, Z1} as this is equal to the function for Xs,1 = {Z1}.
Starting with Xs,1 = {Z1} we have:

E[Y1|do(Z1 = z) , I0] =

∫
y1p(y1|do(Z1 = z) , I0)dy1

=

∫ ∫
y1p(y1|y0,do(Z1 = z) , I0)p(y0|do(Z1 = z) , I0)dy1dy0

=

∫
E[Y1|y0,do(Z1 = z)]p(y0|do(Z1 = z) , I0)dy0

=

∫
[fYY (y0) + fNY

Y (z)]p(y0|I0)dy0

=

∫
fYY (y0)p(y0|I0)dy0 + fNY

Y (z)

= fYY (y?0) + fNY
Y (z)

Notice that here XPY
s,t = {Z1}, IPY

0:t−1 = ∅ and W = ∅ thus
Ep(w| do(Xs,t=xs,t),I0:t−1)

[
fNY
Y (xPY, iPY,w)

]
= fNY

Y (z). The objective function for Xs,1 = {X1}
can be written as:
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E[Y1|do(X1 = x) , I0] =

∫
y1p(y1|do(X1 = x) , I0)dy1

=

∫ ∫ ∫
y1p(y1|y0, z1,do(X1 = x) , I0)p(y0, z1|do(X1 = x) , I0)dy1dy0dz1

=

∫ ∫ ∫
y1p(y1|y0, z1)p(y0, z1|do(X1 = x) , I0)dy1dy0dz1

=

∫ ∫
E[Y1|y0, z1]p(y0, z1|do(X1 = x) , I0)dy0dz1

=

∫ ∫
[fYY (y0) + fNY

Y (z1)]p(y0, z1|do(X1 = x) , I0)dy0dz1

=

∫ ∫
fYY (y0)p(y0, z1|do(X1 = x) , I0)dy0dz1 (10)

+

∫ ∫
fNY
Y (z1)p(y0, z1|do(X1 = x) , I0)dy0dz1

=

∫
fYY (y0)p(y0|I0)dy0 +

∫ ∫
fNY
Y (z1)p(z1|do(X1 = x) , I0)dz1

= fYY (y?0) +

∫
fNY
Y (z1)p(z1|do(X1 = x) , I0)dz1 (11)

In this case XPY
s,t = ∅, IPY

0:t−1 = ∅ and W = {Z1} thus

Ep(w| do(Xs,t=xs,t),I0:t−1)

[
fNY
Y (xPY, iPY,w)

]
= Ep(z1|do(X1=x),I0)

[
fNY
Y (z1)

]
. (12)

We can further expand Eq. (11) noticing that in this case W = {Z1} 6⊆ {X1, Z0} but XPW
s,t = {X1},

IPW0:t−1 = {Z0} and R = ∅. Therefore we have C(Z1) = fZ1
(εZ1

, x1, z1) and Eq. (11) becomes:

E[Y |do(X1 = x) , I0] = fYY (y?0) +

∫
fNY
Y (z1)p(z1|do(X1 = x) , I0)dz1

= fYY (y?0) +

∫ ∫
fNY
Y (z1)p(z1|εZ1

,do(X1 = x) , I0)p(εZ1
|do(X1 = x) , I0)dz1dεZ1

= fYY (y?0) +

∫ ∫
fNY
Y (z1)δ(z1 = fZ1

(εZ1
, x, z?0))p(εZ1

)dz1dεZ1

= fYY (y?0) + Ep(εZ1
)

[
fNY
Y (fZ1

(εZ1
, x, z?0))

]
.

3.2 Derivations for DAG 2 in Fig. 1b

Next we consider the DAG in Fig. 1b and assume that the optimal interventions implemented at
time t = 0 and t = 1 are given by I0 = do(X0 = x?0) and I1 = do(Z1 = z?1). The optimal target
values associated with these two interventions are given by y?0 and y?1 respectively. We are interested
in computing two objective functions: E[Y2|do(X2 = x2) , I0, I1] and E[Y2|do(Z2 = z2) , I0, I1].
In this case yPT

t = {Y1}, Y PNT
t = {X2, Z2}, IPY

0:t−1 = ∅ and INPY
0:t−1 = {X0, Z1}. Starting

from E[Y2|do(X2 = x2) , I0, I1], when Xs,2 = {X2} we have XPY
s,t = {X2}, XNPY

s,t = ∅ and
W = {Z2}. We can write:

8



E[Y2|do(X2 = x2) , I0, I1] =

∫
y2p(y2|do(X2 = x2) , I0, I1)dy2

=

∫ ∫ ∫
y2p(y2|y1, z2,do(X2 = x2) , I0, I1)p(y1, z2|do(X2 = x2) , I0, I1)dy2dy1dz2

=

∫ ∫ ∫
y2p(y2|y1, z2,do(X2 = x2))p(y1, z2|do(X2 = x2) , I0, I1)dy2dy1dz2

=

∫ ∫
E[Y2|y1, z2,do(X2 = x2)]p(y1, z2|do(X2 = x2) , I0, I1)dy1dz2

=

∫ ∫
[fYY (y1) + fNY

Y (x2, z2)]p(y1, z2|do(X2 = x2) , I0, I1)dy1dz2

=

∫ ∫
fYY (y1)p(y1, z2|do(X2 = x2) , I0, I1)dy1dz2

+

∫ ∫
fNY
Y (x2, z2)p(y1, z2|do(X2 = x2) , I0, I1)dy1dz2

=

∫
fYY (y1)p(y1|I0, I1)dy1 +

∫
fNY
Y (x2, z2)p(z2|do(X2 = x2) , I0, I1)dz2

= fYY (y?1) +

∫
fNY
Y (x2, z2)p(z2|I1)dz2

= fYY (y?1) + Ep(εZ2
)

[
fNY
Y (x2, fZ2

(z?1 , εZ2
))
]

Next we compute E[Y2|do(Z2 = z2) , I0, I1] by noticing that, when Xs,2 = {Z2}, we have XPY
s,t =

{Z2}, XNPY
s,t = ∅ and W = {X2}. In this case we have:

E[Y2|do(Z2 = z2) , I0, I1] =

∫
y2p(y2|do(Z2 = z2) , I0, I1)dy2

=

∫ ∫ ∫
y2p(y2|y1, x2,do(Z2 = z2) , I0, I1)p(y1, x2|do(Z2 = z2) , I0, I1)dy2dy1dx2

=

∫ ∫ ∫
y2p(y2|y1, x2,do(Z2 = z2))p(y1, x2|do(Z2 = z2) , I0, I1)dy2dy1dx2

=

∫ ∫
E[Y2|y1, x2,do(Z2 = z2)]p(y1, x2|do(Z2 = z2) , I0, I1)dy1dx2

=

∫ ∫
[fYY (y1) + fNY

Y (x2, z2)]p(y1, x2|do(Z2 = z2) , I0, I1)dy1dx2

=

∫
fYY (y1)p(y1|I0, I1)dy1 +

∫
fNY
Y (x2, z2)p(x2|do(Z2 = z2) , I0, I1)dx2

= fYY (y?1) +

∫
fNY
Y (x2, z2)p(x2|do(Z2 = z2) , I0, I1)dx2 (13)

Let’s now focus on Eq. (13). Here W = {X2} 6⊆ {Z2, X0, Z1}, XPW
s,t = ∅, IPW

0:t−1 = ∅ and
R = {X1}. Therefore we have C(X2) = fX2(εX2 , C(R)) as R 6⊆ {Z2, X0, Z1}. We thus need to
compute C(R) = C(X1). When W = X1, XPW

s,t = ∅ but IPW0:t−1 = {X0} and R = ∅. We can thus
write C(X2) = fX2

(εX2
, fX1

(εX1
, x0)) and replace it in Eq. (13) to get:

E[Y2|do(Z2 = z2) , I0, I1] = fYY (y?1) + Ep(εX2
)p(εX1

)

[
fNY
Y (fX2(εX2 , fX1(εX1 , x0)), z2)

]
.
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4 Reducing the search space

In this section we give the proof for Proposition 3.1 in the main text. Denote by Mt ⊆ P(Xt) the set
of MISs at time t and let St = P(Xt)\Mt include the sets that are not MIS. For any set Xs,t ∈ St
we denote the superfluous variables by Ss,t. These are the variables not needed in the computa-
tion of the objective functions that is those variables for which E[Yt|do(Xs,t = xs,t) , I0:t−1] =
E
[
Yt|do

(
X′s,t = x′s,t

)
, I0:t−1

]
where X′s,t = Xt\Ss,t. Given the initial set of MISs at time t = 0

represented by M0 we have:
Proposition 4.1. Minimal intervention sets in time. If Gt = G,∀t then Mt = M0 for t > 0.

Proof. Consider a generic set Xs,t ∈ St. The corresponding objective function can be written as:

E[Yt|do(Xs,t = xs,t) , I0:t−1] = E
[
Yt|do

(
X′s,t = x′s,t

)
,do(Ss,t = ss,t) , I0:t−1

]

=

∫
E
[
Yt|do

(
X′s,t = x′s,t

)
,do(Ss,t = ss,t) , I0:t−1,V0:t−1\I0:t−1

]

× p(V0:t−1\I0:t−1|do
(
X′s,t = x′s,t

)
,do(Ss,t = ss,t) , I0:t−1)dV0:t−1

=

∫
E
[
Yt|do

(
X′s,t = x′s,t

)
, I0:t−1,V0:t−1\I0:t−1

]
(14)

× p(V0:t−1\I0:t−1|do
(
X′s,t = x′s,t

)
, I0:t−1)dV0:t−1

= E
[
Yt|do

(
X′s,t = x′s,t

)
, I0:t−1

]
(15)

where Eq. (14) can be obtained by noticing that Yt |= Ss,t|X′s,t, I0:t−1,V0:t−1\I0:t−1 in
GSs,t,I0:t−1,X′s,t

. This is due to the fact that Ss,t does not have back door paths to Yt in GSs,t,I0:t−1,X′s,t

and its front door paths to Yt in GSs,t,I0:t−1,X′s,t
are blocked by X′s,t. Indeed, Ss,t cannot have outgo-

ing edges to variables in 0 : t− 1 and the front door paths to Yt going through variables at time t are
blocked by definition of a MIS set by X′s,t in Gt = G,∀t.
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5 Additional experimental details and results

This section contains additional experimental details associated to the experiments discussed in
Section 4 of the main text.

5.1 Stationary DAG and SCM (STAT.)

The SCM used for this experiments is given by:

Xt = Xt−11t>0 + εX
Zt = exp(−Xt) + Zt−11t>0 + εZ
Yt = cos(Zt)− exp(−Zt/20) + Yt−11t>0 + εY

where εi ∼ N (0, 1) for i ∈ {X,Z, Y } and 1t>0 represent an indicator function that is equal to
one t > 0 and zero otherwise. We run this experiment 10 times by setting T = 3, N = 10,
D(Xt) = {−5.0, 5.0} and D(Zt) = {−5.0, 20.0}. Notice that given the DAG (Fig. X) we have
Mt = {{Xt}, {Zt}}.
The right panel of Fig. 2 shows the true objective functions together with the optimal intervention
per time step (1st row), the dynamic causal GP model for the intervention on Z (2nd row) and the
convergence of the DCBO algorithm to the optimum (3rd row). Notice how the location of the optimum
changes significantly both in terms of optimal set and intervention value when going from t = 0 to
t = 1. DCBO quickly identifies the optimum via the prior dependency on y?0:t−1.
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Figure 2: Stationary synthetic experiment (STAT.). Left panel: G0:T and SCM. Right panel, 1st

row: Objective functions for the sets in M = {{Z}, {X}}. Right panel, 2nd row: Posterior GP
obtained when using the dynamic causal GP construction vs alternative models. Right panel, 3rd row:
Convergence of DCBO and alternative models to the true optimum (red line) across 10 replicates.
Shaded areas give ± one standard deviation.

5.2 Noisy manipulative variables (NOISY)

The SCM used for this experiments is given by:

Xt = Xt−11t>0 + εX
Zt = exp(−Xt) + Zt−11t>0 + εZ
Yt = cos(Zt)− exp(−Zt/20) + Yt−11t>0 + εY

where, differently from before, we have εY ∼ N (0, 1) and εi ∼ N (2, 4) for i ∈ {X,Z}. We
keep the remaining parameters equal to the previous experiment. This means T = 3, N = 10,
D(Xt) = {−5.0, 5.0} and D(Zt) = {−5.0, 20.0}.

5.3 Missing observational data (MISS.)

For this experiment we use the same SCM of the experiment STAT. However, we set T = 6, N = 10
for the first three time steps and N = 0 afterwards. Fig. 3 shows the convergence paths for this
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Figure 3: Experiment MISS.. Convergence of DCBO and competing methods across replicates. The
red line gives the optimal y∗t ,∀t. Shaded areas are ± standard deviation.
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Figure 4: Experiment MULTIV.. Convergence of DCBO and competing methods across replicates.
The red line gives the optimal y∗t ,∀t. Shaded areas are ± standard deviation.

experiment. In this setting DCBO consistently outperform CBO at every time step. However, notice
how ABO performance improves over time and outperforms DCBO starting from t = 5. This is due to
the ability of ABO to learn the time dynamic of the objective function and exploit all interventional
data collected over time to predict at the next time step.

5.4 Multivariate intervention sets (MULTIV.)

The SCM used for this experiments is given by:
Wt = εW
Xt = −Xt−11t>0 + εX
Zt = sin(Wt)− Zt−11t>0 + εZ

Yt = −2 ∗ exp(−(Xt − 1)2)− exp(−(Xt + 1)2)− (Zt − 1)2

− Z2
T + cos(Zt ∗ Yt−1)− Yt−11t>0 + εY

where εi ∼ N (0, 1) for i ∈ {X,Z,W, Y }. We set T = 3, N = 500, D(Xt) = {−5.0, 5.0},
D(Zt) = {−5.0, 20.0} and D(Wt) = {−3.0, 3.0}. Notice that here DCBO and CBO explore the
set Mt = {{Xt}, {Zt}, {Xt, Zt}} while BO and ABO intervene on {Xt, Zt,Wt}. Fig. 4 shows the
convergence paths for this experiment.

5.5 Independent manipulative variables (IND.)

The SCM used for this experiments is given by:
Xt = −Xt−11t>0 + εX
Zt = −Zt−11t>0 + εZ

Yt = −2 ∗ exp(−(Xt − 1)2)− exp(−(Xt + 1)2)− (Zt − 1)2

− Z2
T + cos(Zt ∗ Yt−1)− Yt−11t>0 + εY

where εi ∼ N (0, 1) for i ∈ {X,Z, Y }. We set T = 3,N = 10,D(Xt) = {−5.0, 5.0} andD(Zt) =
{−5.0, 20.0}. Notice that here DCBO and CBO explore the set Mt = {{Xt}, {Zt}, {Xt, Zt}} while
BO and ABO intervene on {Xt, Zt}. In this case, exploring Mt and propagating uncertainty in the
causal prior slows down DCBO convergence, see Fig. 5.
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Figure 5: Experiment IND. Convergence of DCBO and competing methods across replicates. The red
line gives the optimal y∗t ,∀t. Shaded areas are ± standard deviation.

5.6 Non-stationary DAG and SCM (NONSTAT.)

The SCM used for this experiment is more complex than the others due to the fact that the DAG is
non-stationary but so too is the SCM:





f(t) if t = 0

g(t) if t = 1

h(t) if t = 2

(16)

where

f(t) =





Xt = εX
Zt = Xt + εZ
Yt =

√
|36− (Zt − 1)2|+ 1 + εY

g(t) =





Xt = Xt−1 + εX
Zt = − Xt

Xt−1
+ Zt−1 + εZ

Yt = Zt cos(Ztπ)− Yt−1 + εY

h(t) =





Xt = Xt−1 + εX
Zt = Xt + Zt−1 + εZ
Yt = Zt − Yt−1 − Zt−1 + εY

where εi ∼ N (0, 1) for i ∈ {X,Z, Y }. We set T = 3,N = 10,D(Xt) = {−5.0, 5.0} andD(Zt) =
{−5.0, 20.0}. Notice that here DCBO and CBO explore the set Mt = {{Xt}, {Zt}, {Xt, Zt}} while
BO and ABO intervene on {Xt, Zt}.

5.7 Real-World Economic data (ECON.)

We create an observational data set by extracting the following indicators from the OECD data portal
(https://data.oecd.org/):

• GDP = GDP in milion of US dollars.
• CPI = annual growth of inflation measured by consumer price index CPI.
• TAXREV = tax revenues measured as a percentage of GDP.
• HUR = unemployment rate as measured by the numbers of unemployed people as a percentage of

the labour force.

We manipulate these indicators to get the nodes in the DAG of Fig.. 3d. We define

Ut = log(HURt)

Tt =
TAXREVt ∗ GDPt − TAXREVt−1 ∗ GDPt−1

TAXREVt−1 ∗ GDPt−1

Gt =
GDPt − GDPt−1

GDPt−1

It = CPIt

13



For this analysis we consider the annual data for 10 countries namely Australia, Canada, France,
Germany, Italy, Japan, Korea, Mexico, Turkey, Great Britain and the United States of America for the
period (2000 - 2019). We fit the following SCM:

Tt = fT (t) + εT
It = fI(t) + εI
Gt = fG(Tt, It) + εG
Ut = fU (Gt, It) + εU

by placing GPs on all functions fi(·), i ∈ {T, I,G, U}. This SCM is then used to generate interven-
tional data and compute the values of y?t , t = 2010, . . . , 2012.
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Figure 6: Experiment ECON. Convergence of DCBO and competing methods across replicates. The
black line gives the optimal y∗t ,∀t. Shaded areas are ± one standard deviation.

We run the optimization 10 times and plot the convergence path for DCBO and competing models (see
Fig. 6). While all method perform similarly at t = 2010 and t = 2011, DCBO outperforms competing
approaches at t = 2012. On average (see Table 1) DCBO finds the optimal intervention faster.

5.8 Results without convergence

We repeat all experiments in the paper allowing the algorithms to perform a lower number of trials at
every time steps. This means that, for t > 0, when moving to step t the convergence of the algorithm
at step t− 1 is not guaranteed. In turn this affect the optimum value that the algorithm can reach at
subsequent steps. Results are given in Table 1 and Table 2. The convergence paths for DCBO and
competing methods are given in Fig. 7 to Fig. 11.

Table 1: Average modified gap measure (10 replicates) across time steps and for different experiments.
See Fig. 1 for a summary of the compared methods. Higher values are better. The best result for each
experiment is bolded. Standard errors in brackets.

Synthetic data Real data

STAT. MISS. NOISY MULTIV. IND. NONSTAT. ECON. ODE

DCBO
0.88 0.72 0.73 0.49 0.47 0.47 0.40 0.67

(0.00) (0.07) (0.00) (0.00) (0.05) (0.00) (0.04) (0.00)

CBO
0.57 0.51 0.67 0.47 0.48 0.47 0.41 0.65

(0.02) (0.09) (0.01) (0.04) (0.04) (0.00) (0.04) (0.00)

ABO
0.43 0.45 0.42 0.40 0.50 0.41 0.38 0.47

(0.06) (0.04) (0.06) (0.05) (0.00) (0.03) (0.04) (0.01)

BO
0.42 0.41 0.41 0.38 0.50 0.40 0.40 0.46

(0.06) (0.05) (0.07) (0.07) (0.01) (0.04) (0.04) (0.03)

5.9 Results over multiple datasets and replicates

In this section we show the results obtained running all the experiments in the main paper across 10
different observational dataset sampled from the SCM given above. Results are given in Table 3.
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Table 2: Average percentage of replicates across time steps and for different experiments for which
the optimal intervention set is identified. See Fig. 1 for a summary of the compared methods. Higher
values are better. The best result for each experiment is bolded.

Synthetic data Real data

STAT. MISS. NOISY MULTIV. IND. NONSTAT. ECON. ODE

DCBO 90.0 70.00 93.00 93.33 96.67 66.67 73.33 33.33
CBO 76.67 63.33 76.67 86.67 93.33 33.33 80.00 33.33
ABO 0.00 0.00 0.00 0.00 100.00 0.00 66.67 0.00
BO 0.00 0.00 0.00 0.00 100.00 0.00 66.67 0.00
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Figure 7: Experiment STAT. with maximum number of trials H = 30. Convergence of DCBO and
competing methods across replicates. The black line gives the optimal y∗t ,∀t. Shaded areas are ±
one standard deviation.
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Figure 8: Experiment MISS. with maximum number of trials H = 30. Convergence of DCBO and
competing methods across replicates. The black line gives the optimal y∗t ,∀t. Shaded areas are ±
one standard deviation.
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Figure 9: Experiment NOISY. with maximum number of trials H = 30. Convergence of DCBO and
competing methods across replicates. The black line gives the optimal y∗t ,∀t. Shaded areas are ±
one standard deviation.

0 20 40 60

cost(Xs,t,xs,t)

−2

−1

0

y
? t

t = 0

0 20 40 60

cost(Xs,t,xs,t)

−1

0

1
t = 1

0 20 40 60

cost(Xs,t,xs,t)

−1

0

1

2
t = 2 DCBO

CBO

ABO

BO

E
[
Yt | do(X?

s,t = x?s,t)
]

Figure 10: Experiment IND. with maximum number of trials H = 30. Convergence of DCBO and
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Figure 11: Experiment MULTIV. with maximum number of trials H = 30. Convergence of DCBO
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± one standard deviation.

Table 3: Average modified gap measure across 10 observational datasets and 10 replicates. Results
are average figures across time steps. See Fig. 1 for a summary of the compared methods. Higher
values are better. The best result for each experiment is bolded. Standard errors in brackets.

Synthetic data

STAT. MISS. NOISY MULTIV. IND. NONSTAT.

DCBO
0.83 0.82 0.82 0.48 0.46 0.63

(0.06) (0.05) (0.05) (0.02) (0.03) (0.06)

CBO
0.80 0.68 0.74 0.48 0.47 0.64

(0.05) (0.04) (0.09) (0.01) (0.02) (0.04)

ABO
0.47 0.49 0.47 0.45 0.48 0.38

(0.01) (0.00) (0.01) (0.08) (0.00) (0.01)

BO
0.47 0.47 0.47 0.40 0.50 0.38

(0.01) (0.01) (0.01) (0.07) (0.00) (0.01)
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6 Intervening on differential equations (ODE)

In this section we describe in detail the experiment conducted in §4.2. This example is based on
the work by Blasius et al. (2020). In this demonstration we continue along that paradigm when we
investigate a biological systems in which two species interact, one as a predator and the other as
prey. Blasius et al. (2020) performed microcosm experiments (in a chemostat or bioreactor) with a
planktonic predator–prey system.

We use the provided ODE (§6.2) from the paper (Blasius et al., 2020, Methods), which describes a
stage-structured predator–prey community in a chemostat, as our SCM. As DO we use the experimen-
tal data collected in vitro (for raw data see supplementary material of (Blasius et al., 2020)). The
corresponding DAG (§6.3) and SCM (§6.4) is constructed from the ODE (see overleaf), by rolling out
the temporal variable dependencies in the ODE (the idea is well illustrated in (Weber, 2016, Fig. 1)).

Using this setup we investigate a requisite intervention policy necessary to reduce the concentration
of dead animals in the chemostat – Dt in Fig. 3e.

6.1 Interpreting differential equations as causal models

A lot of work (Peters et al., 2020; Kaiser, 2016; Mooij et al., 2013; Bongers & Mooij, 2018; Hansen
et al., 2014; Weber, 2016) has been dedicated to interpreting ordinary differential equations as
structural causal models and consequently the associated task of intervening therein. More precisely,
attention has been placed on extending causal theory (Pearl, 2000; Spirtes, 1995) to the cyclic case,
thereby enabling causal modelling of systems that involve feedback (Mooij et al., 2013; Koster et al.,
1996; Dechter, 1996; Neal, 2000; Hyttinen et al., 2012; Rubenstein et al., 2016; Peters et al., 2020).

Naively, the simplest extension to the cyclical case is by simply dropping the acyclicity constraint
from the SCM (Mooij et al., 2013, §1). But then we are faced with a new problem: how do we
“interpret cyclic structural equations” (Mooij et al., 2013)? The most common approach is to “assume
an underlying discrete-time dynamical system, in which the structural equations are used as fixed
point equations” (Mooij et al., 2013). This renders a simple schema wherein which we use the SCM
as a set of updates rules, to find the values of the variables at t+1, using the information from t. This
is a popular paradigm, advanced by e.g. Spirtes (1995); Hyttinen et al. (2012); Dash (2005); Lacerda
et al. (2012); Mooij et al. (2011). This is also the one we will use herein.

Another philosophy that deals with interventions in systems, was developed by Casini et al. (2011).
In the same vein is the work by Gebharter (2014); Gebharter & Schurz (2016). This suite of work
comes from the philosophy of science domain, rather than the statistical and machine learning
literature, briefly reviewed in the previous two paragraphs. Theirs is primarily a concern with
mechanisms (specifically “mechanistic biological models with complex dynamics” in the case of
Kaiser (2016)) – fundamentally they are the same thing as our causal effects but the perspective is
different. Casini et al. (2011) suggests that modelling (acyclical) mechanisms should be done by
way of recursive Bayesian networks (RBN). Gebharter (2014) points out some shortcomings with
Caisini’s approach and proposes the multilevel causal model (MLCM) as a remedy. Notably though,
both works assume acyclicity (and so cannot feature mechanisms with feedback) of the problem
domain a shortcoming that Gebharter & Schurz (2016) deals with by extending the MLCM to allow
for cycles. For completeness we should also say that the RBN was extended to handle cycles by
Clarke et al. (2014) (their approach was used Gebharter & Schurz (2016) for extending the MLCM).

6.2 Ordinary differential equation

Blasius et al. (2020) develop a mathematical model, the set of ordinary differential equations in
Eq. (17)–Eq. (22), to describe a stage-structured predator–prey community in a chemostat, which
closely follows their experimental setup.
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dN
dt

= δNin − FP (N)P − δN (17)

dP
dt

= FP (N)P − FB(P )B

ε
− δP (18)

dE
dt

= RE −RJ − δE (19)

dJ
dt

= RJ −RA − (m+ δ)J (20)

dA
dt

= βRA − (m+ δ)A (21)

dD
dt

= m(J +A)− δD (22)

A full description of all variables and parameters can be found in Table 4.

Table 4: Table describing variable and parameters of ODE in Eq. (17) – Eq. (22).
Variable Description Value Unit

N Nitrogen (prey) concentration ∈ R1 µmol · N · L−1
P Phytoplankton (predator) concentration ∈ R1 µmol · N · L−1
E Predator egg concentration ∈ R1 µmol · N · L−1
J Predator juvenile concentration ∈ R1 µmol · N · L−1
A Predator adult concentration ∈ R1 µmol · N · L−1
D Dead animal concentration ∈ R1 µmol · N · L−1

Parameter Description Value Unit

Nin Nitrogen concentration in the external medium 80 µmol · N · L−1
FP Algal nutrient uptake - µmol · N · L−1
FB Rotifer nutrient uptake - µmol · N · L−1
ε Predator assimilation efficiency 0.55 -
RE Egg recruitment rate - -
RJ Juvenile recruitment rate - -
RA Adult recruitment rate - -
m Rotifer (predator) mortality rate 0.15 Per day
β Adult/juvenile mass ratio 5 -

For additional details see (Blasius et al., 2020, Methods).

6.3 Corresponding directed acyclical graph

The original rolled-out DAG (Fig. 12b) is modified to remove graph cycles (Fig. 12c), where the
corresponding dependencies are replicated in the SCM. Now, note first that the temporal roll-out
of Fig. 12a contains no cycles (once the self-cycles have been re-purposed as temporal transition
functions). Nonetheless, comparing Fig. 12b and Fig. 12c it can be seen that two edges have been
removed to simplify the causal dependencies on the phytoplankton (predator) concentration i.e. to
make it only dependent on the nitrogen concentration in the external medium as well as the most
immediate predator concentration at time t− 1.

One large deviation from the original set of ODEs, is that we treat the Nin as an instrument variable
and moreover allow it to be manipulative. This means that in order to reduce the concentration Dt

we allow the optimisation frameworks to intervene also on Nin.
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(c) Second DAG approximation.

Figure 12: Proposed time-indexed DAG representing the causal dependencies in the stage-structured
predator–prey community in a chemostat. The vertices of the graph represent the concentrations of
the different chemostat compounds at different discrete time points, where time is moving from left
to right. Fig. 12a shows the variable dependencies as described in the original ODE found in Eq. (17)
– Eq. (22) – notice the presence of self-loops and cycles. Figure 12b shows a first approximation to
a corresponding causal graph, where the ODE has been ‘rolled’ out in time – note the absence of
self-loops and cycles. Figure 12c shows a second approximation to the original ODE dynamics but
this time removing two parent dependencies from Pt.

6.4 ODE as SEM

We fit the following SCM, based on the DAG in Fig. 12c:

Nin,t = εNin (23)
Nt = fN (Nin,t, Nt−1, Pt−1) + εN (24)
Pt = fP (Nt, Pt−1) + εP (25)
Jt = fJ(Pt, Jt−1, At−1) + εJ (26)
At = fA(Pt, At−1) + εA (27)
Et = fE(Pt, At, Et−1) + εE (28)
Dt = fD(Jt, At, Dt−1) + εD (29)

by placing GPs on all functions {fi(·) | i ∈ {Nin, N, P,E, J,A,D}}. This SCM is then used to
generate interventional data and compute the values of {d?t | t = 0, 1, 2}.
Further, {εj ∼ N (0, 1) | j ∈ {Nin, N, P,E, J,A,D}}. We set T = 3, N = 4 where the manip-
ulative variables are: Nin,t, Jt and At. This means in practise that we are interested in the start of
the simulation where we are trying to reduce the mortality concentration, in the chemostat, from
beginning where our observational samples DO are formed from four time-series2.

2We use data-files C1.csv, C2.csv, C3.csv, C4.csv from the original publication (Blasius et al.,
2020) – available here: https://figshare.com/articles/dataset/Time_series_of_long-term_
experimental_predator-prey_cycles/10045976/1 [Accessed: 01/04/21].
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Intervention domains are given by

D(Nin,t) = [40.0, 160.0]

D(Jt) = [0.0, 20.0]

D(At) = [0.0, 100.0]

Notice that DCBO and CBO explore the set

Mt = {{Nin,t}, {Jt}, {At}, {Nin,t, Jt}, {Nin,t, At}, {Jt, At}, {Nin,t, Jt, At}}
while BO and ABO will only intervene on {Nin,t, Jt, At}. The optimal sequence of interventions is
given by {{J0, A0}, {M1}, {M2}}.
Results are shown in Fig. 13. Note that the performance of DCBO and CBO are almost identical.
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Figure 13: Experiment ODE with maximum number of trials H = 20. Convergence of DCBO and
competing methods across replicates. The black line gives the optimal y∗t ,∀t. Shaded areas are ±
one standard deviation.
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7 Applicability of DCBO to real-world problems

As previously done in CBO (Aglietti et al., 2020) and other causal decision-making frameworks (e.g.
Bareinboim et al. (2015)) for static settings, in DCBO we assume to be able to repeatedly intervene
in the system with interventions that have an instantaneous effect observed within the time slice
duration. In other words, within every time step, we perform an intervention that changes the system
and that leads to an effect for which we collect the corresponding target experimental value. However,
the system reverts back once the experiment has been implemented and the agent can then explore
alternative interventions and measure their effect too. In DCBO, the dynamics of the time resolution
specified by the graph time indices is slower than the time you can take actions and see the effects.

While this assumption can be difficult to verify when interacting directly with the psychical world,
it does not limit the applicability of the proposed framework to real-world problems. Indeed, in a
variety of real-world settings, simulators or digital twins of real-world assets/processes are used in
industrial settings and are fundamental in selecting actions before intervening in the real physical
world. Digital twins provide virtual replicas of a physical object or system, such as a bridge or an
engine, that engineers use for simulations before something is created or to monitor its operation
in real-time. Examples are given by the digital twin of a 3D-printed stainless steel bridge (bri),
NASA and U.S. Air Force vehicles (Glaessgen & Stargel, 2012), jet-engine monitoring, infrastructure
inspection as well as cardiac medicine (vir). In all these settings, observational data are used to
build the emulator which is “a living computer model which is continuously learning to imitate
the physical world” (bri). We can then intervene on the digital twin to collect interventional data
and measure the causal effects. Intervening in a simulator has a cost e.g. a computationally cost
thus interventions need to be carefully picked by employing a probabilistic model that correctly
quantifies uncertainty and integrates different sources of information. In DCBO this is done by using
the dynamic causal GP model. Once an intervention has been implemented, the digital twin “reverts”
to its unperturbed/observational nature (i.e. without intervention), allowing the user to investigate
other interventions without having changed the “underlying state of the system” nor, indeed, the true
system. Once an optimal intervention is found, the agent can implement it in the real system thus
changing it. Note that our approach allows for noise in the likelihood function thus the simulator can
be a noisy version of the physical world.

8 Connections

We conclude by providing a discussion of the links between DCBO, the two methodologies used as
benchmarks in the experimental session, namely the CBO algorithm (Aglietti et al., 2020) and the
ABO algorithm (Nyikosa et al., 2018), and the literature on bandits and RL. We discuss how their
problem setups differ from our and highlight the reasons why DCBO is needed to solve the problem
in Eq. (1).

CBO algoritm The CBO algorithm (Aglietti et al., 2020) can be used to find optimal interventions
to perform in a causal graph so as to optimize a single target node Y . CBO addresses static settings
where variables in G are i.i.d. across time steps, i.e. p(Vt) = p(V),∀t, and only one static target
variable exists. For instance, CBO can be used to find the optimal intervention for Y in the DAG of
Fig. 1b. In order to use CBO for the DAG of Fig. 1a, one would need to identify a unique target
among Y0:T , e.g. YT . However, optimizing YT might lead to chose interventions that are sub-optimal
for Y0:T−1 thus not solving the problem in Eq. (1). In addition, to find the optimal intervention for
YT , CBO explores all interventions in P(X0:T ) which results in a large search space and requires
performing a high number of interventions. This slows down the convergence of the algorithm
and increases the optimization cost. One can alternatively run CBO T times optimizing Yt at each
time step. Doing that would require re-initializing the surrogate models for the objective functions
at every t and would thus imply loosing all the information collected from previous interventions.
Finally, in optimizing Yt, CBO does not account for how the previously taken interventions have
changed the system again slowing down the convergence of the algorithm. In order to recursively
optimise intermediate outputs given the previously taken decisions one need to resort to DCBO. By
changing the objective function at every time step, incorporating prior interventional information in
the objective function and limiting the search space at every time step based on the topology of the G,
DCBO addresses the CBO issues mentioned above making it a framework that can be practically used
for sequential decision making in a variety of applications.
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ABO algorithm While CBO tackles the causal dimension of the DCGO problem but not the temporal
dimension, the ABO algorithm also addresses dynamic settings but does not account for the causal
relationships among variables, see Fig. 1 for a graphical representation of the relationship between
these methods. As in BO, ABO finds the optimal intervention values by breaking the causal dependen-
cies between the inputs and intervening simultaneously on all of them thus setting Xs,t = Xt for all
t. Additionally, considering the inputs as fixed and not as random variables, ABO does not account
for their temporal evolution. This is reflected in the DAG of Fig. 1(c) where both the horizontal links
between the inputs and the edges amongst the input variables are missing. In solving the problem
in Eq. (1) for the DAG in Fig. 1a, BO would disregard both the temporal dependencies in Y and
the input dependencies (DAG in Fig. 1d) while ABO would keep the former but ignore the latter.
Differently from our approach, ABO considers a continuous time space and places a surrogate model
on Yt = f(x, t). f(x, t) is then modelled via a spatio-temporal GP with separable kernel. The ABO
acquisition function for f(x, t) is then restricted to avoid collecting points in the past or too far ahead
in the future where the GP predictions have high uncertainty. The spatio-temporal GP allows ABO
to predict the objective function ahead in time and track the evolution of the optimum. However,
in order for ABO to work the objective function rate of change over time must be slow enough to
gather enough samples to learn the relationships in space and time. In our discrete time setting this
condition is equivalent to ask that, at every time step, it is possible to perform different interventions
with an underlying true function that does not change. Note that also in DCBO, Assumptions 1 imply
a certain level of regularity in the objective functions. For instance, in the DAG of Fig. 1a, given
that Pa(Yt) = {Zt, Yt−1},∀t > 0, the objective functions have a constant shape and are only shifted
vertically by the performed interventions. While some regularity is also required in DCBO, through
the causal graph we impose more structure on the objective function and its input thus lowering the
need for exploration. The more accurate the estimation of the functions in the SCM is the more we can
track the dynamic of the objective function and we can deal with sharp changes in the objectives. One
additional important difference between ABO and DCBO is in the exploration of different intervention
set. Indeed, by intervening on all variables, ABO can lead to sub-optimal solution. As mentioned for
BO in Aglietti et al. (2020), depending on the structural relationships between variables, intervening
on a subgroup might lead to a propagation of effects in the causal graph and a higher final target.
In addition, intervening on all variables is cost-ineffective in cases when the same target can be
obtained by setting only a subgroup of them. This is particularly true in the time setting as the optimal
intervention set might not only be a subset of P(Xt) but might also evolve overtime.

Bandits and RL In the broader decision-making literature, causal relationships have been previously
considered in the context of multi-armed bandit problems (MAB, Bareinboim et al., 2015; Lattimore
et al., 2016; Lee & Bareinboim, 2018, 2019) and reinforcement learning (RL, Lu et al., 2018; Buesing
et al., 2018; Foerster et al., 2018; Zhang & Bareinboim, 2019; Madumal et al., 2020). In these
cases, the actions or arms correspond to interventions on an arbitrary causal graph where there exists
complex links between the agent’s decisions and the received rewards. Causal MAB algorithms focus
on static settings where the distribution of the rewards is stationary and is not affected by the pulled
arms. In addition, MAB focus on intervention on discrete variable and only deal with the problem
of selecting the right intervention set but not the intervention value. Differently from DCBO, RL
algorithms explicitly model the state dynamic and account for the way each action affect the state of
the environment. DCBO setting differs from both causal RL and causal MAB. DCBO does not have a
notion of state and therefore does not require an explicit model of its dynamic. The system is fully
specified by the causal graph and the connected structural equation model. As in BO, DCBO does
not aim at learning an optimal policy but rather a set of optimal actions. Furthermore, within each
time step, DCBO allows the agent to perform a number of explorative interventions which are not
modifying the environment. Once the optimal action is identified this is propagated in the system thus
changing it. Differently from both MAB and RL, DCBO is myopic that is interventions are decided by
maximizing the one-step ahead utility function. We leave the integration of DCBO with a non-myopic
BO scheme to future work.
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