
Supplementary Material for DropPos: Pre-Training Vision Transformers by1

Reconstructing Dropped Positions2

In this supplementary material, we first provide mode implementation details for reproducibility3

in Sec. A. Next, in Sec. B, we evaluate the performance of the position reconstruction task using4

pre-trained models under different settings, and we provide more evidence to support the proposed5

three difficulties in Sec. 1.6

A Implementation details7

ViT architecture. We follow the standard vanilla ViT [8] architecture used in MAE [9] as the8

backbone, which is a stack of Transformer blocks [17]. Following MAE [9], we use the fixed 2D9

sine-cosine positional embeddings during pre-training. For the downstream classification task, we10

use features globally averaged from the encoder output for both end-to-end fine-tuning.11

Effective training epochs. Following iBOT [24], we take the effective training epochs as the metric12

of the training schedule, due to extra computation costs brought by the multi-crop [2] augmentation,13

which is a widely used technique for contrastive methods. Specifically, the effective training epochs14

are defined as the actual pre-training epochs multiplied with a scaling factor r. For instance, DINO [3]15

is trained with 2 global 224×224 crops and 10 local 96×96 crops, and thus r = 2+(96/224)2×10 ≈16

4. More details and examples can be found in [24].17

A.1 ImageNet classification18

For all experiments in this paper, we take ImageNet-1K [16], which contains 1.3M images for 1K19

categories, as the pre-trained dataset. By default, we take ViT-B/16 [8] as the backbone and it is20

pre-trained 200 epochs followed by 100 epochs of end-to-end fine-tuning. Implementation details can21

be found in the following table. Most of the configurations are borrowed from MAE [9]. The linear22

learning rate scaling rule is adopted: lr = lrbase × batch_size / 256. For supervised training from23

scratch, we simply follow the fine-tuning setting without another tuning. For ViT-B/16, pre-training24

and fine-tuning are conducted with 64 and 32 2080Ti GPUs, respectively. For ViT-L/16, pre-training25

and fine-tuning are conducted with 32 and 16 Tesla V100 GPUs, respectively.26

config pre-training fine-tuning
optimizer AdamW AdamW
base learning rate 1.5e-4 1e-3
weight decay 0.05 0.05
momentum β1, β2 = 0.9, 0.95 β1, β2 = 0.9, 0.999
layer-wise lr decay 1.0 0.8
batch size 4096 1024
learning rate schedule cosine decay cosine decay
warmup epochs 10 (ViT-B/16), 40 (ViT-L/16) 5
training epochs 200 100 (ViT-B/16), 50 (ViT-L/16)
augmentation RandomResizedCrop RandAug (9, 0.5) [6]
label smoothing - 0.1
mixup [22] - 0.8
cutmix [21] - 1.0
drop path [11] - 0.1

A.2 COCO object detection and segmentation27

We take Mask R-CNN [10] with FPN [14] as the object detector. Following [9] and [18], to obtain28

pyramid feature maps for matching the requirements of FPN [14], whose feature maps are all with a29

stride of 16, we equally divide the backbone into 4 subsets, each consisting of a last global-window30

block and several local-window blocks otherwise, and then apply convolutions to get the intermediate31

feature maps at different scales (stride 4, 8, 16, or 32).32

We perform end-to-end fine-tuning on COCO [15] for 1× schedule with 1024×1024 resolution,33

where 88,750 iterations of training with a batch size of 16 are performed. We simply follow the34

configuration of ViTDet [13], where the learning rate is 3e-4 and decays at the 78,889-th and 85,463-th35

iteration by a factor of 10. Experiments are conducted on 8 Tesla V100 GPUs.36
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Table S1: Top-1 accuracy of position reconstruction using ViT-B/16 [8] pre-trained with different
mask ratio γ. We underline the special parameter different from our default settings. Default settings
are highlighted in color. “Avg. acc” is the averaged top-1 accuracy over 16 different cases. We
evaluate the performance using the same pre-trained model under different γ and γpos. Larger γ and
γpos indicates a more challenging task.

(a) Pre-training with γ = 0 (Avg. acc: 59.79).

γ
γpos 0.25 0.50 0.75 0.95 avg.

0.00 99.37 99.26 99.15 98.34 99.03
0.25 87.97 87.45 86.20 70.79 83.10
0.50 55.37 55.11 49.84 22.96 45.82
0.75 12.99 14.85 12.85 4.21 11.23

(b) Pre-training with γ = 0.25 (Avg. acc: 79.62).

γ
γpos 0.25 0.50 0.75 0.95 avg.

0.00 99.24 99.26 99.18 98.92 99.15
0.25 98.67 98.81 98.63 97.21 98.33
0.50 93.96 93.62 90.01 62.11 84.93
0.75 50.02 47.79 35.03 11.46 36.08

(c) Pre-training with γ = 0.5 (Avg. acc: 87.27).

γ
γpos 0.25 0.50 0.75 0.95 avg.

0.00 99.33 99.23 99.13 98.85 99.14
0.25 99.05 98.95 98.78 98.20 98.75
0.50 94.60 95.94 94.28 83.31 92.03
0.75 78.77 72.75 59.54 25.59 59.16

(d) Pre-training with γ = 0.75 (Avg. acc: 87.83).

γ
γpos 0.25 0.50 0.75 0.95 avg.

0.00 97.19 98.69 98.20 92.30 96.60
0.25 96.78 98.26 97.66 91.05 95.93
0.50 97.26 96.82 95.66 89.12 94.72
0.75 79.94 78.10 68.73 40.24 66.75

A.3 ADE20k semantic segmentation37

We take UperNet [20] as the segmentation decoder following the code of [1, 5, 18]. Fine-tuning38

on ADE20k [23] for 80k iterations is performed. Specifically, each iteration consists of 16 images39

with 512×512 resolution. The AdamW optimizer is adopted with an initial learning rate of 7e-440

and a weight decay of 0.05 with ViT-B. We apply a polynomial learning rate schedule with the first41

warmup of 1500 iterations following common practice [18, 5, 1]. When fine-tuning using backbones42

pre-trained with different methods, we search for the optimal learning rate or simply follow their43

official implementation for a fair comparison. Specifically, the learning rate is 1e-4 for [4, 9, 12],44

4e-4 for [7, 19], respectively. All experiments are conducted on 8 Tesla V100 GPUs.45

B Performance of position reconstruction46

In this section, we evaluate the performance of the position reconstruction task using pre-trained47

models under different settings. Specifically, we vary γ ∈ {0, 0.25, 0.5, 0.75} and γpos ∈48

{0.25, 0.5, 0.75, 0.95} when measuring the position prediction accuracy. We report performance49

under different evaluation settings as well as the averaged accuracy among 16 different cases. From50

Tabs. S1 to S3, we find evidence to support the three difficulties for designing an appropriate position-51

related pretext task introduced in Sec. 1: (i) discrepancies between pre-training and fine-tuning, (ii)52

failing to learn highly semantic representations by solving this simple position reconstruction task,53

and (iii) difficult to decide which patch positions to reconstruct precisely.54

We study the effectiveness of different values of γ during pre-training in Tab. S1. Interestingly, we55

find evidence for failing to learn highly semantic representations by solving this simple position56

reconstruction task. As illustrated by Tab. S1a, the pre-trained model performs extremely well when57

we set γ = 0 for evaluation but fails to keep this trend when we enlarge γ. This indicates that given58

the strength of ViTs in modeling long-range dependencies, they have easily solved this task in a59

superficial way, and thus pre-training with γ = 0 becomes trivial for ViTs. To this end, an appropriate60

γ is necessary to increase the difficulty of the pretext task and avoid trivial solutions.61

We study the effectiveness of different values of γpos during pre-training in Tab. S2, and we find62

evidence for discrepancies between pre-training and fine-tuning. As shown by Tab. S2d, the model63

fails to reconstruct accurate positions given some visible anchors. This is because the model has64

never been exposed to any positional embeddings (PEs) during pre-training. Therefore, providing65

some anchors is necessary to address discrepancies. Also, it may help the model focus on modeling66

relative relationships instead of simply reconstructing absolute positions.67
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Table S2: Top-1 accuracy of position reconstruction using ViT-B/16 [8] pre-trained with different
positional mask ratio γpos. We underline the special parameter different from our default settings.

(a) Pre-training with γpos = 0.25 (Avg. acc: 65.19).

γ
γpos 0.25 0.50 0.75 0.95

0.00 96.52 89.38 59.29 14.58
0.25 96.62 91.27 66.00 19.17
0.50 95.58 91.10 72.07 21.69
0.75 80.56 73.72 57.89 17.66
avg. 92.32 86.37 63.81 18.28

(b) Pre-training with γpos = 0.5 (Avg. acc: 86.70).

γ
γpos 0.25 0.50 0.75 0.95

0.00 98.98 98.81 98.24 92.80
0.25 98.59 98.34 97.51 89.73
0.50 96.63 95.85 93.40 74.38
0.75 81.94 76.70 64.87 30.44
avg. 94.04 92.43 88.51 71.84

(c) Pre-training with γpos = 0.75 (Avg. acc: 87.83).

γ
γpos 0.25 0.50 0.75 0.95

0.00 97.19 98.69 98.20 92.30
0.25 96.78 98.26 97.66 91.05
0.50 97.26 96.82 95.66 89.12
0.75 79.94 78.10 68.73 40.24
avg. 92.79 92.97 90.06 78.18

(d) Pre-training with γpos = 1 (Avg. acc: 19.44).

γ
γpos 0.25 0.50 0.75 0.95

0.00 15.57 23.24 20.41 23.59
0.25 12.51 21.10 24.30 29.41
0.50 7.76 14.18 25.56 45.01
0.75 3.34 6.00 12.53 26.45
avg. 9.80 16.13 20.70 31.12

Table S3: Top-1 accuracy of position reconstruction using ViT-B/16 [8] pre-trained with different (i)
σ and (ii) τ . We underline the special parameter different from our default settings.

(a) Pre-training with σ = 0 (Avg. acc: 88.81).

γ
γpos 0.25 0.50 0.75 0.95

0.00 98.48 98.74 98.29 94.37
0.25 98.06 98.31 97.76 93.48
0.50 96.06 96.08 94.48 85.49
0.75 82.19 78.64 69.39 41.23

(b) Pre-training with σ = 1 (Avg. acc: 87.13).

γ
γpos 0.25 0.50 0.75 0.95

0.00 97.03 98.50 97.93 91.40
0.25 96.63 98.04 97.33 89.69
0.50 94.30 95.58 93.68 81.47
0.75 79.14 77.06 67.43 38.89

(c) Pre-training with σ = 2 (Avg. acc: 69.48).

γ
γpos 0.25 0.50 0.75 0.95

0.00 78.45 78.81 78.19 72.33
0.25 78.03 78.41 77.68 70.49
0.50 76.14 76.27 74.53 63.52
0.75 63.75 61.21 53.30 30.47

(d) Pre-training with σ = 1 → 0 (Avg. acc: 87.83).

γ
γpos 0.25 0.50 0.75 0.95

0.00 97.19 98.69 98.20 92.30
0.25 96.78 98.26 97.66 91.05
0.50 97.26 96.82 95.66 89.12
0.75 79.94 78.10 68.73 40.24

(e) Pre-training with σ = 2 → 0 (Avg. acc: 87.65).

γ
γpos 0.25 0.50 0.75 0.95

0.00 97.63 98.61 97.93 91.30
0.25 97.22 98.19 97.46 89.96
0.50 94.99 95.85 94.06 82.50
0.75 80.33 77.92 68.42 40.11

(f) Pre-training with τ = ∞ (Avg. acc: 88.66).

γ
γpos 0.25 0.50 0.75 0.95

0.00 98.66 98.31 97.72 91.22
0.25 98.54 98.17 97.46 91.00
0.50 96.85 96.20 94.52 84.64
0.75 83.57 79.30 70.04 42.29

(g) Pre-training with τ = 0.1 (Avg. acc: 87.83).

γ
γpos 0.25 0.50 0.75 0.95

0.00 97.19 98.69 98.20 92.30
0.25 96.78 98.26 97.66 91.05
0.50 97.26 96.82 95.66 89.12
0.75 79.94 78.10 68.73 40.24

(h) Pre-training with τ = 0.5 (Avg. acc: 87.78).

γ
γpos 0.25 0.50 0.75 0.95

0.00 97.68 97.94 97.82 91.78
0.25 97.83 97.91 97.53 91.01
0.50 96.44 96.06 94.52 84.49
0.75 80.16 77.16 66.01 40.18
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We study the effectiveness of different values of γpos during pre-training in Tab. S2, and we find68

evidence for hard to decide which patch positions to reconstruct precisely. As shown by Tabs. S3a69

and S3f, the model achieves higher position prediction accuracy but performs worse on downstream70

tasks (please refer to Tabs. 3 and 4 for downstream performances). Therefore, to prevent being71

overwhelmed by this particular position reconstruction task, techniques for relaxing the patch-wise72

classification problem become necessary, i.e., position smoothing, and attentive reconstruction.73
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