
Active Ranking without Strong Stochastic Transitivity

Hao Lou
Dept. of Electrical & Computer Engineering

University of Virginia
Charlottesville, VA 22903
haolou@virginia.edu

Tao Jin
Department of Computer Science

University of Virginia
Charlottesville, VA 22903
taoj@virginia.edu

Yue Wu
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095
ywu@cs.ucla.edu

Pan Xu
Dept. of Biostatistics & Bioinformatics

Duke University
Durham, NC 27705
pan.xu@duke.edu

Quanquan Gu*

Department of Computer Science
University of California, Los Angeles

Los Angeles, CA 90095
qgu@cs.ucla.edu

Farzad Farnoud∗

Dept. of Electrical & Computer Engineering
University of Virginia

Charlottesville, VA 22903
farzad@virginia.edu

Abstract

Ranking from noisy comparisons is of great practical interest in machine learning.
In this paper, we consider the problem of recovering the exact full ranking for a list
of items under ranking models that do not assume the Strong Stochastic Transitivity
property. We propose a δ-correct algorithm, Probe-Rank, that actively learns the
ranking from noisy pairwise comparisons. We prove a sample complexity upper
bound for Probe-Rank, which only depends on the preference probabilities between
items that are adjacent in the true ranking. This improves upon existing sample
complexity results that depend on the preference probabilities for all pairs of items.
Probe-Rank thus outperforms existing methods over a large collection of instances
that do not satisfy Strong Stochastic Transitivity. Thorough numerical experiments
in various settings are conducted, demonstrating that Probe-Rank is significantly
more sample-efficient than the state-of-the-art active ranking method.

1 Introduction

Ranking from noisy comparisons has a wide range of applications including voting [5, 7], identifying
the winner/full ranking of teams in sport leagues, ranking players in online gaming systems [17],
crowdsourcing services [6], web search [8], and recommendation systems [2, 23]. In practice,
comparisons usually contain certain levels of “noise”. For example, duels in a game are not always
won by the more proficient player, and preferences between movies/restaurants can also vary among
different individuals. The presence of noise is commonly studied using a probabilistic comparison
model [12, 25], where an item has a certain probability to win the comparison over another or a group
of items.

We are interested in estimating the total ranking. To guarantee that the ranking is consistent with the
preference probabilities, it is often assumed [12, 14, 21, 25] that if i ranks higher than j, then i wins

∗Co-corresponding Authors

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

a comparison against j with probability pi,j >
1
2 . This assumption is referred to as Weak Stochastic

Transitivity (WST). It is clear that the closer pi,j is to 1
2 , the more difficult it becomes to compare i

and j. A more strict assumption, Strong Stochastic Transitivity (SST), is also often made [10, 24, 26].
SST requires items that have closer ranks to be more difficult to compare, i.e., if i ≻ j ≻ k, then
pi,k ≥ max (pi,j , pj,k) >

1
2 . Formal definitions of WST and SST are stated in Section 2.

However, SST can be too strong in many scenarios. For instance, in sports, match outcomes are
usually affected by team tactics. Team k may play a tactic that counters team i, resulting in a higher
winning rate against team i compared with team j. Furthermore, items usually have multidimensional
features and people may compare different pairs based on different features. A close pair in the overall
ranking is thus not necessarily harder to compare than a pair that has a large gap. For example, when
comparing cars, people might compare a given pair based on their interior design and another pair
based on performance. As another example, in an experiment with games of chance with different
probabilities of winning and payoffs [30], it was observed that “people chose between adjacent
gambles according to the payoff and between the more extreme gambles according to probability, or
expected value.”

Motivated by such applications, in this paper, we study the problem of recovering the full ranking
of n items under a more general setting, where only WST holds, while SST is not assumed to hold.
We focus on only pairwise queries as they are easier to obtain and less prone to error in practice.
Furthermore, as many applications [6, 22] allow interactions between users/annotators, we consider
comparisons collected in an adaptive manner. Our goal is to use as few comparisons as possible and
achieve a high confidence.

Existing algorithms [21, 25] cannot avoid comparing every item i with the item i∗ that is the most
similar to i, i.e.,

∣∣pi,i∗ − 1
2

∣∣ = minj ̸=i{
∣∣pi,j − 1

2

∣∣}. Further, [25] pointed out that comparing item
pairs that are adjacent in the true ranking are necessary. When SST holds, adjacent pairs are also the
most difficult pairs to distinguish, existing methods thus achieve sample-efficiency. For example, the
Iterative-Insertion-Ranking (IIR) algorithm proposed in [25] maintains a preference tree and performs
ranking by inserting items one after another. During the insertion process, every item is possible to
be compared with every other item (and thus the most similar one), depending on the relative order of
insertion and the true ranking. Under SST, IIR was shown to enjoy the optimal sample complexity
with mild conditions.

However, when SST does not hold, comparing nonadjacent items harms the performance. Consider
an extreme scenario where the true ranking is 1 ≻ 2 ≻ 3 and p1,2 = p2,3 = 0.8, p1,3 = 1

2 + 2−10. If
item 1 is directly compared to item 3, then it can take Θ

(
220
)

queries2. For instance, in IIR, this can
happen during the insertion process of item 3 when item 1 happens to be the root of the preference
tree. A simple fix exists as we can let the three pairs be compared simultaneously. The comparisons
between items 1 and 2, items 2 and 3 will terminate much earlier and provide us with the accurate
enough information 1 ≻ 2, 2 ≻ 3, which is sufficient to recover the total ranking. Therefore, it is
important to devise an algorithm whose sample complexity will not be harmed when SST fails to
hold.

Contribution. In this paper, we propose an active algorithm, termed Probe-Rank, that ranks n
items based on pairwise comparisons. Probe-Rank is a maxing-based algorithm, i.e., it ranks items
by performing n− 1 steps of maxing. We show that as long as the WST condition is satisfied, with
probability at least 1− δ, Probe-Rank returns the correct ranking after conducting at most

O

(
n

n∑
i=1

(
∆̃−2

i

)(
log log

(
∆̃−1

i

)
+ log (n/δ)

))
(1)

comparisons, where ∆̃i = minj:j and i are adjacent
∣∣pi,j − 1

2

∣∣ . Probe-Rank is the first algorithm whose
sample complexity only depends on comparison probabilities of adjacent items instead of all pairs
of items [21, 25, 29, 31]. Theoretical analyses and numerical experiments under various settings
are provided and show that Probe-Rank is more efficient than the state-of-the-art methods when
comparing nonadjacent items is more difficult than comparing adjacent items. We also present a
preliminary analysis on the sample complexity lower bound in the worst case scenario when SST

2In fact, according to [13], we need Θ
(
(pi,j − 1/2)−2

)
comparisons to be confident enough about the order

between any two items i and j , i, j ∈ [n].

2

does not hold. Further, we present a variant of Probe-Rank, named Probe-Rank-SE, in Appendix B.
Numerical experiments show that the variant is more sample-efficient under various settings.

2 Preliminaries

Notation Without loss of generality, let [n] = {1, 2, . . . , n} denote the set of n items. We write
p ∼ Uni(a, b) to denote that p is sampled uniformly at random from the interval (a, b), and use Ber(p)
to denote a Bernoulli random variable which equals 1 with probability p. We use (i, j) to denote the
unordered item pair, i.e., (i, j) = (j, i). Comparisons between items are probabilistic. Whenever
two items i, j are compared, i (respectively, j) is preferred with probability pi,j (respectively, pj,i),
independent of any other quantities. For all i ̸= j, pi,j + pj,i = 1. A probabilistic comparison model
over [n] is thus defined by the set of probabilities P = {pi,j}1≤i<j≤n.

In this paper, asymptotic notation including O(·),Ω(·),Θ(·) are defined in the standard sense, with
Õ(·), Ω̃(·), Θ̃(·) denoting corresponding weaker forms by allowing logarithmic factors.

Problem setup We assume that there exists a total ordering ‘≻’ over [n] such that σ1 ≻ σ2 ≻
· · · ≻ σn for some permutation σ = (σ1, . . . , σn) of [n]. The permutation σ is referred to as the true
ranking. Two items are called adjacent if they are adjacent in σ, i.e., one ranks right next to the other.
To ensure that the true ranking σ is consistent with comparisons, we also assume that i has a higher
rank than j if and only if pi,j > 1

2 . In other words, if an item i is more preferred than j in σ, then
i has a better chance to win the comparison with j. This assumption is known as Weak Stochastic
Transitivity (WST). A more strict assumption, Strong Stochastic Transitivity (SST), is also frequently
adopted. In addition to WST, SST assumes that whenever i ≻ j ≻ k, pi,k ≥ max (pi,j , pj,k). In this
paper, we assume only WST and our goal is to recover the true ranking σ with a given confidence
level δ by taking pairwise comparisons and minimize the sample complexity. Problem instances
are uniquely determined by the permutation σ representing the true ranking and the comparison
probabilities P.

Definition 1 (δ-correct algorithm). An algorithm is said to be δ-correct if for any input instance, with
probability at least 1− δ, it returns a correct result in finite time.

It is clear that the closer pi,j is to 1
2 , the more difficult it becomes to obtain the ordering between

i and j. Therefore, the probability gap ∆i,j , defined as ∆i,j =
∣∣pi,j − 1

2

∣∣, provides a charac-
terization of the ranking task difficulty and will be used as a parameter for measuring sample
complexities of algorithms. For instance, [25, lemma 12] shows that for any δ-correct algorithm A,
lim sup∆→0

TA[∆]
∆−2(log log∆−1+log δ−1) > 0, where TA[∆] is the expected number of samples taken by

A on two items with probability gap ∆. Further, for each item i, we define

∆i = min
j:j ̸=i

∆i,j , (2)

the minimum probability gap between item i and any other item j, and define

∆̃i = min
j:j and i are adjacent in σ

∆i,j , (3)

the minimum probability gap between i and its adjacent items in the true ranking. Note that ∆i ≤ ∆̃i

by definition and the equality holds when SST is satisfied.

3 Related work

The problem of ranking under coherent probabilistic comparisons dates back to 1994 [14]. Feige
et al. [14] studied the comparison model assuming that i ≻ j ⇔ pi,j =

1
2 +∆ for some known ∆.

It was shown that any δ-correct algorithm finds the true ranking with at least Θ(n∆−2 log (n/δ))
comparisons in the worst case. Later in [21], a δ-correct algorithm TOP was proposed to rank the
top-k elements by assuming only the existence of a total ranking (WST). The state-of-the-art IIR
algorithm was proposed in [25], as discussed in Section 1. A comparison of related algorithms are
presented in Table 1.

3

Table 1: δ-correct algorithms for exact ranking with sample complexity guarantee. Definitions of
∆i,j ,∆i, ∆̃i can be found in Section 2.

Algorithm Assumptions on P Sample complexity

Single Elimination
Tournament [21] WST O

(
n(logn)2 log(1/δ)

min1≤i<j≤n ∆2
i,j

)
PLPAC-AMPR [29] The Plackett-Luce model O

(
n lognmaxi∈[n]{ 1

∆2
i
log(n

δ∆i
)}
)

Iterative-Insertion-Ranking [25] WST O

(
n∑

i=1

1
∆2

i

(
log log 1

∆i
+ log n

δ

))
Probe-Rank (this paper) WST O

(
n

n∑
i=1

1

(∆̃i)2

(
log log 1

∆̃i
+ log n

δ

))

Ranking or maxing has also been widely studied under more strict assumptions, e.g., SST, RST3 and
STI4 and usually in the probably approximately correct (PAC) setting [10, 11, 12, 24, 26, 27, 29, 32].
In particular, [24, 26, 27, 29] considered parametric comparison models such as the multinomial
logit (MNL) model. Note that parametric models are often more restrictive and can imply SST/STI
conditions. In the PAC setting, the goal is to find an ϵ-ranking r1 ≻ r2 ≻ · · · ≻ rn such that
pri,rj > 1

2 − ϵ for all i < j. Although ϵ-rankings become closer to the true ranking as ϵ goes
to 0, it is pointed out by [25] that PAC ranking algorithms cannot be easily extended to the case
when ϵ = 0. Among all, [12] is the most relevant work to this paper. In [12], PAC ranking and
maxing were studied for both SST and WST settings. For WST, an instance-independent lower
bound Θ(n2) was proved, and a brute-force algorithm which compares each pair to an accuracy of
ϵ and thus conducts O((n2/ϵ2) log(n/δ)) comparisons was proposed. Note that in this paper, we
are aiming at recovering the exact ranking instead of an ϵ-ranking. An exact ranking is preferred
over an epsilon-ranking in competitive applications like voting and sport games, where people are
not satisfied with an approximate winner. Furthermore, as suggested by [25], analyzing the exact
ranking helps us to gain a better understanding about the instance-wise upper and lower bounds. A
trivial extension of the brute-force algorithm can lead to sample complexity Õ

(
n2

mini,j ∆2
i,j

)
, which

is substantially worse than our proposed algorithm.

Although we believe WST can be considered a natural and reasonably weak assumption, there
are situations that WST does not hold as a ranking over items may not exist or, if it does, all
comparison probabilities are not necessarily consistent with that ranking. So another line of research
is to allow comparison probabilities pi,j take any values in (0, 1) as long as pi,j + pj,i = 1. In
such scenarios, rankings can be defined and derived based on various criteria including Borda
score [16, 19, 28] and Copeland score [4, 33]. The ranking problem has also been studied from
a heterogeneous perspective [18, 31], where queries are made by multiple agents with different
comparison probabilities. In [15], the problem of testing whether the WST condition holds was
studied. More broadly, the problems of ranking, maxing or selection can be formulated in the context
of dueling bandits. A comprehensive survey can be found in [3].

4 Proposed algorithm

In this section, we propose a δ-correct algorithm for exact ranking of all problem instances that satisfy
the WST condition. As mentioned previously, our algorithm is designed to outperform existing
methods in situations where nonadjacent items can be more difficult to compare than adjacent items.

To avoid spending unnecessary samples on item pairs with small probability gaps, we propose a
subroutine named Successive-Comparison (SC) (see Subroutine 1). SC uses a parameter τ for
controlling to what extent the comparison should last. Specifically, SC compares a given item pair
for a fixed number bτ =

⌈
(2/ϵ2τ) log(1/δτ)

⌉
times with an accuracy level ϵτ = 2−τ and confidence

level δτ = 6δ/(τ2π2). If the empirical probability that i (respectively, j) wins is over 1/2 by more

3Under relaxed stochastic transitivity (RST), it is assumed that for all i ≻ j ≻ k, ∆i,k ≥ γmax{∆i,j ,∆j,k}
for some 0 < γ < 1.

4Under stochastic triangle inequality (STI), it is assumed that for all i ≻ j ≻ k, ∆i,k ≤ ∆i,j +∆j,k.

4

than ϵτ/2, then SC returns i (respectively, j) as the more preferred item. Otherwise, SC will return
‘unsure’ to inform us that more samples are needed.

For two items i and j, SC (i, j, δ, τ) will be called successively with τ increasing by 1 at a time. We
show in Appendix A that after τ gets large enough such that ϵτ ≤ ∆i,j , the correct ordering between
i and j will be returned with high probability.

Subroutine 1 Successive-Comparison(i, j, δ, τ) (SC)
1: Input: items i, j, confidence level δ, probing parameter τ
2: wi = 0, ϵτ = 2−τ , δτ = δ

cτ2 , c =
π2

6 , bτ =
⌈

2
ϵ2τ

log 1
δτ

⌉
;

3: For t = 1 to bτ do
4: compare i and j once; if i wins, wi = wi + 1;
5: p̂i = wi/bτ ;
6: return [i, j] if p̂i − 1

2 > 1
2ϵτ ; return [j, i] if p̂i − 1

2 < − 1
2ϵτ ; and return ‘unsure’ else;

Partial order preserving graph During the ranking process, we maintain a directed graph T to
store the partial orders we have obtained from SC instances so far. The graph T is initialized with n
nodes V1, . . . , Vn and no edge exists between any two nodes. Nodes V1, V2, . . . , Vn represent items
1, 2, . . . , n, respectively. In our algorithm, T is involved with three types of operations, edge update,
node removal and maximal set selection. Every time an instance of SC returns a pairwise order, e.g.,
i ≻ j, we add a directed edge from Vi to Vj , written as T = T ∪ (i ≻ j). Moreover, we also complete
all edges in the transitive closure of the existing edges. In other words, if the edge between Vi and
Vj induces a directed path from Vk1 to Vk2 , then a directed edge from Vk1 to Vk2 is also added to T .
By completing the transitive closure, we can avoid comparing pairs whose ordering can be inferred
from current knowledge and keep T acyclic. In the ranking process, we only run comparisons on
item pairs that are not connected by edges and hence no contradictions in orderings will be returned
by SC. By removing node Vi, we remove Vi and all edges of Vi from T . The maximal elements of
T are the nodes which do not have any incoming edges. Since edges represent comparison results
returned by SC, maximal elements correspond to items that have not lost to any other items. Note
that since T is acyclic, maximal elements always exist.

Next, we establish our ranking algorithm Probe-Rank (see Algorithm 2). Probe-Rank finds the true
ranking by performing maxing for n− 1 rounds. In every round t, subroutine Probe-Max returns an
item in St as the most preferred item (the maximum), where St denotes the set of remaining unranked
items right before round t. The strategy of Probe-Max is to repeatedly apply SC on all item pairs. For
every item pair (i, j), we initialize a global variable τi,j as the probing parameter for SC instances
that run over i, j. The graph T storing obtained partial orders is also viewed as a global variable.
Parameters τi,j and graph T will be accessed and altered in Probe-Max.

Algorithm 2 Probe-Rank
1: Input: items [n], confidence level δ
2: S1 = [n], Ans = [0]n, initialize T , τi,j = 1 for all pairs of items i ̸= j;
3: For t = 1 to n− 1 do
4: imax = Probe-Max(St, 2δ/n

2);
5: remove imax from T ; Ans[t− 1] = imax; St+1 = St \ {imax};
6: Ans[n− 1] = Sn[0]; return Ans;

In Probe-Max(S, δ) (see Subroutine 3), SC instances are performed only on items that are possible to
be the actual maximum. Let U be the set of maximal elements in T . By definition, every item in U
has not lost to any other item in S yet. Assuming all previous comparison results (obtained form SC)
are correct, to find the actual maximum, it suffices to focus on items in U . We use S2 to denote the
set of all unordered item pairs in S, i.e., S2 = {(a, b) : a, b ∈ S, a ̸= b}. All ‘legitimate’ pairs that
can potentially provide us with information about the maximum item in S are thus

P = {(i, j) : (i ∈ U or j ∈ U) , (i, j) ∈ S2, (i, j) /∈ T}, (4)

where (i, j) /∈ T means that nodes Vi and Vj are not connected in T . While U contains more than
one items, Probe-Max keeps applying SC on item pairs in P . If an item in U loses a comparison, then

5

we remove it from U . In every iteration of the while loop, the pairs (i∗, j∗) in P with the smallest
τ value are chosen and SC (i∗, j∗, δ, τi∗,j∗) are performed. Note that the τ value increases by one
after each call of SC. Starting with item pairs with small τ values guarantees that we do not miss any
useful information that can be obtained by paying only a small amount of comparisons.

Subroutine 3 Probe-Max(S, δ)
1: Input: set of unranked items S, SC confidence level δ
2: Let U be the set of maximal elements according to T ;
3: While |U | > 1 do
4: Let P = {(i, j) : (i ∈ U or j ∈ U) , (i, j) ∈ S2, (i, j) /∈ T};
5: For (a, b) in argmin(x,y)∈P τx,y do
6: Ans = SC (a, b, δ, τa,b); τa,b = τa,b + 1;
7: If Ans is not ‘unsure’ then
8: w, l = Ans; T = T ∪ (w ≻ l); If |U | > 1 and l ∈ U then U = U \ {l};
9: return U [0];

We provide a simple example demonstrating the ranking process.

Example 1. Consider items {1, 2, 3, 4} with true ranking 1 ≻ 2 ≻ 3 ≻ 4. Figure 1 shows the status
of T,U, St throughout the ranking process. In particular, we assume the pairwise comparison results
are all correct and returned in order 1 ≻ 2, 2 ≻ 4, 1 ≻ 3, 2 ≻ 3, 3 ≻ 4.

1

2

3

4

(a) ranking starts. S1 =
{1, 2, 3, 4}, U = S1.

1

2

3

4

(b) 1 ≻ 2 returned. U =
{1, 3, 4}.

1

2

3

4

(c) 2 ≻ 4 returned. U =
{1, 3}.

1

2

3

4

(d) 1 ≻ 3 returned. U = {1}.

2

3

4

(e) 1 is the maximum, remove it.
S2 = {2, 3, 4}, U = {2, 3}.

2

3

4

(f) 2 ≻ 3 returned. U = {2}.

3

4

(g) 2 is the maximum, remove
it. S3 = {3, 4}, U =
{3, 4}.

3

4

(h) 3 ≻ 4 returned. U =
{3}.

Figure 1: An illustration of the steps by Probe-Ranking, assuming true ranking as 1 ≻ 2 ≻ 3 ≻ 4.

5 Upper bound on the sample complexity of Probe-Rank

In this section, we provide a sample complexity upper bound for the proposed algorithm Probe-Rank.

Theorem 2. Let δ > 0 be an arbitrary constant. For all problem instances satisfying the Weak
Stochastic Transitivity (WST) property, with probability at least 1− δ, Probe-Rank returns the true
ranking of n items and conducts at most

O

(
n

n∑
i=1

(
∆̃−2

i

)(
log log

(
∆̃−1

i

)
+ log

(n
δ

)))
(5)

comparisons, where ∆̃i is defined as in (3).

The proof of Theorem 2 is deferred to Appendix A.

6

By the preceding theorem, the sample complexity of Probe-Rank is upper bounded by the sum of
terms (∆̃i)

−2(log log(∆̃i)
−1 + log(n/δ)) with an additional multiplicative factor of n. Recall from

Section 2 that the term (∆̃i)
−2(log log(∆̃i)

−1 + log(n/δ)) can be viewed as a lower bound on the
number of comparisons that is needed for obtaining the order between i and its adjacent items with
confidence level δ/n. Theorem 2 thus suggests that in Probe-Rank, every item is compared until it
can be distinguished from its neighbors and no further. This matches with our intuition that only
comparisons between adjacent items are necessary, and a single nonadjacent pair being extremely
hard to distinguish should not harm the overall sample complexity. In contrast, sample complexities
of existing algorithms are determined by the smallest probability gap between items, which can lead
to a substantially large amount of unnecessary comparisons.

However, Probe-Rank achieves the dependence on ∆̃i instead of ∆i at the cost of an additional
multiplicative factor of n. Intuitively, because we have zero prior information about which items are
adjacent and which are not, Probe-Rank pays Θ(n) attempts for each item i in order to ‘identify’ its
neighbors and get the ordering feedback.

We compare Probe-Rank with the state-of-the-art IIR algorithm. Let C (Probe) and C (IIR) denote
the sample complexities of two algorithms. From Table 1 and Theorem 2,

C (Probe) =
n∑

i=1

Θ̃
(
n(∆̃i)

−2
)
, C (IIR) =

n∑
i=1

Θ̃
(
(∆i)

−2
)
, (6)

noting that from the proofs, the sample complexity upper bounds are both tight in the worst case.

Under WST with no other conditions assumed, ∆i ≤ ∆̃i. In particular, when ∆̃i/∆i = Θ(
√
n) for all

i, then C (Probe) and C (IIR) are of the same asymptotic order with respect to n; if ∆̃i/∆i = ω(
√
n),

then Probe-Rank is asymptotically more sample-efficient than IIR. These phenomena are also reflected
in our numerical experiments in Section 6 (see Figure 3).

Remark. It is worth noting that IIR is optimal if the more strict assumption SST as well as
some other conditions are made, as shown in [25]. When SST holds, ∆̃i = ∆i. Probe-Rank thus
suffers from an additional factor of n. This case is also included in our numerical experiment (see
Figure 2(a)).

6 Experiments

In this section, we present numerical experiments demonstrating the practical performance of Probe-
Rank. We compare Probe-Rank with the IIR algorithm, which was shown to outperform all the other
baseline algorithms both theoretically and numerically [25]. Our implementation can be found on
Github 5.

We study different settings where SST is satisfied, not guaranteed, or violated, but WST always
holds, which is consistent with our theory. Specifically, we want to rank n items with the true
ranking σ1 ≻ σ2 ≻ · · · ≻ σn, where n varies over [10, 100]. The probabilistic comparison model
pij is generated in different ways to satisfy different assumptions. Note that ∆ and ∆d are tuning
parameters in all the following settings.

• SST: SST is satisfied. Comparison probabilities pij are generated from the MNL model, where
pσi,σj

= (exp(sσi
− sσj

)+1)−1, and sσ1
, . . . , sσn

is a decreasing sequence where sσi
= 100∆d ·

(n+1−i)
n .

• WST: SST does not necessarily hold. Let pi,j ∼ Uni(12 +∆d, 1) for all items i ≻ j.
• NON-SST: SST does not hold. For adjacent items, we have pσi,σi+1 ∼ Uni

(
1
2 +∆d, 1

)
. Otherwise,

we have pσi,σj
∼ Uni

(
1
2 + ∆d

10 ,
1
2 +∆d

)
for j > i+ 1.

• ADJ-ASYM: SST does not hold. This setting is used to verify the asymptotic analysis in Section 5.
For adjacent items, we set pσi,σi+1

= 1
2 +∆d. Otherwise, we set pσi,σj

= 1
2 + ∆d

nα for j > i+ 1.
We consider cases where α equals 0.5 or 1.

• ADJ-CNST: SST does not hold. For adjacent items, we set pσi,σi+1
= 1

2 +∆. Otherwise pσi,σj
=

1
2 +∆d for j > i+ 1. Here ∆ > ∆d.
5https://github.com/tao-j/aht/releases/tag/v0.1

7

https://github.com/tao-j/aht/releases/tag/v0.1

25 50 75 100
Number of items to rank

104

105

106

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank

(a) SST: ∆d = 0.3

25 50 75 100
Number of items to rank

104

105

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank

(b) WST: ∆d = 0.3

25 50 75 100
Number of items to rank

104

105

106

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank

(c) NON-SST: ∆d = 0.3

Figure 2: Comparison of sample complexities of Probe-Rank and IIR under various settings. In each
subfigure, ∆d is fixed while the number of items varies.

25 50 75 100
Number of items to rank

105

107

109

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank

(a) ADJ-ASYM: ∆d = 0.3, α = 1

25 50 75 100
Number of items to rank

105

107

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank

(b) ADJ-ASYM: ∆d = 0.3, α = 0.5

Figure 3: Relationship between n and gap ∆d

All experiments are averaged over 100
independent trials. For each trial, the
ground truth ranking σ is generated uni-
formly at random and the comparison
probabilities are assigned accordingly.
The confidence level δ is fixed to be 0.1.
Throughout the experiment, every trial
for every algorithm successfully recov-
ered the correct ranking.

We use internal clusters of intel “Sky-
lake” generation CPUs. Each job con-
tains a single model type for item num-
bers ranging from 10 to 100 with a step size of 10. Models are generated from a job unique random
seed shared among the two algorithms. Most jobs with sample complexity smaller than 107 terminate
in 3 minutes. For ∆d = 0.1 under the ADJ-ASYM model, 3 hours are needed due to high sample
complexity. Due to the space limit, more detailed experimental setups and thorough ablation studies
can be found in Appendix C.

Performance comparison Figure 2 with y-axis in log-scale shows comparison of IIR and Probe-
Ranking under the SST, WST and NON-SST settings. The parameter ∆d is set to be 0.3. It can be seen
that under the SST and WST settings (Figures 2(a), 2(b)), Probe-Rank consumes less samples than IIR
for small n. As n gets larger, however, IIR becomes more sample-efficient due to that Probe-Rank
has an additional factor of n in its sample complexity compared with IIR for instances satisfy SST.
However, under the NON-SST setting where SST does not hold, Probe-Rank has a clear advantage
over IIR, as shown in Figure 2(c).

Dependence on n and the probability gaps Following Theorem 2, we verify that the sample
complexity of Probe-Rank is lower than IIR when the number of items n gets larger. We use the

0.0 0.2 0.4
∆d

107

109

S
am

pl
e

co
m

pl
ex

it
y IIR

Probe-Rank

(a) NON-SST: n = 80

0.0 0.2 0.4
∆d

106

107

S
am

pl
e

co
m

pl
ex

it
y IIR

Probe-Rank

(b) ADJ-CNST: n = 80, ∆ = 0.4

Figure 4: Ablation study on the dependence of the sample
complexity on the probability gap ∆d.

ADJ-ASYM setting to simulate situations
where nonadjacent items can be much
more difficult to compare. In particu-
lar, we choose α = 1 (see Figure 3(a))
and α = 1/2 (see Figure 3(b)). It
can be seen from Figure 3(a) that as
the number of items n gets larger, the
gap between the two curves also gets
larger. This matches our analysis that
when ∆̃i/∆i = ω(

√
n), then the sam-

ple complexity of IIR is of higher or-
der than that of Probe-Rank. When
∆̃i/∆i = Θ(

√
n), Figure 3(b) shows

that the gap between the two sample
complexities varies little as n increases.
Our analysis also suggests that sample complexities of two algorithms are of the same order.

8

Furthermore, we show through the NON-SST and ADJ-CNST settings that when the probability gaps
of nonadjacent item pairs decrease, the advantage of our algorithm will be more and more prominent.

In Figure 4, we fix n = 80 and let ∆d vary. Clearly, Probe-Rank has an advantage over IIR in
both settings. In particular, Figure 4(b) shows the comparison of two algorithms in the ADJ-CNST
setting with the probability gaps between adjacent items ∆ fixed as 0.4. As the probability gap
between nonadjacent items ∆d varies from 0.01 to 0.4, it can be seen that the sample complexity of
Probe-Rank does not vary much. However, the sample complexity of IIR has a positive correlation
with 1

∆2
d

. This numerical result matches our analysis that Probe-Ranking is not affected by the
comparison probability of nonadjacent items, which does not hold for IIR.

7 Discussion on the lower bound

In this section, we provide some insights about the lower bound for pairwise ranking by proposing a
conjecture based on a particularly hard instance IWST that satisfies the WST condition.

Problem 1 (IWST). The problem instance IWST is constructed as follows. Consider n items with
an underlying ordering ‘≻’. For all i ≻ j,

pi,j =

{
1
2 +∆, if i and j are adjacent,
1
2 + cn−10∆2/ log(1/δ), otherwise,

where c and ∆ are constants and n−10 can be replaced by any other quantity that is smaller than n−2.

By a reduction, any δ-correct algorithm that finds the maximum item for IWST can be constructed
to find the maximum item for ISNG, described below in Problem 2. Therefore, a lower bound on
the sample complexity for maxing in Problem 2 will imply a lower bound of the same order for
the maxing (and thus, ranking) problem for IWST . This lower bound is also a worst-case lower
bound for ranking under WST. In the following, we provide an analysis for Problem 2. The reduction
technique will be deferred to Appendix D.

Problem 2 (ISNG). Consider n items with an underlying ordering ‘≻’. One can make queries of the
form ‘if i ≻ j’. The feedback Yi,j is a binary random variable which takes value 1 if the answer is
YES and takes value 0 otherwise. The random variables Yi,j are defined to follow distributions:

Yi,j ∼
{

Ber(12 − 2∆), if i ≺ j and i, j are adjacent,
Ber(12), otherwise.

Consider random vectors defined by pi = (Yi,1, Yi,2, . . . , Yi,n) in Problem 2. The maximum element
i∗ corresponds to the random vector pi∗ , where each entry is a 1/2-Bernoulli random variable. For
every other non-maximum element i, pi will contain exactly one (1/2 − 2∆)-Bernoulli random
variable. Under such problem setting, finding the maximum item is equivalent to finding which vector
has all its entries as 1/2-Bernoulli random variables.

We conjecture that any δ-correct algorithm that can find the maximum item for ISNG has a sample
complexity at least

Ω
(
n2∆−2 log(1/δ)

)
. (7)

We start from viewing it as a hypothesis testing problem. Consider that an agent is asked to determine
if p1 satisfies hypothesis H0, defined as

H0 : p1 = (p1,1, . . . , p1,n), where p1,k ∼ Ber(1/2),∀k ∈ [n],

or Hj , in which the j-th entry is biased:

Hj : p1 = (p1,1, . . . , p1,n), where p1,j ∼ Ber(1/2− 2∆), p1,k ∼ Ber(1/2),∀k ̸= j.

Suppose the hypothesis testing algorithm A is δ-correct and stops within T rounds of interactions.
We denote A(T) as the output at the T -th round, which is either 0 (accept H0) or 1 (reject H0). For
any given j ̸= 1, by the Bretagnolle–Huber inequality, we have

2δ ≥ P0(A(T) ̸= 0) + Pj(A(T) = 0) ≥ 1

2
e−KL(PA

0 ||PA
j), (8)

9

where P0 is the probability measure under H0, and PA
0 is the probability measure of the canonical

bandit model under H0. In fact, we have the divergence decomposition lemma [20, Lemma 15.1]:

KL(PA
0 ||PA

j) =

n∑
k=1

E0[Nk(T)]KL(P0,k||Pj,k) = E0[Nj(T)]KL(Ber(1/2)||Ber(1/2− 2∆)), (9)

where E0 denotes the expectation under H0; E0[Nk(T)] denotes under H0, the expected number of
queries for the entry p1,k within T rounds.; P0,k, Pj,k are the Bernoulli distributions specified by p1,k
under H0, Hj , respectively. The second equality is due to the fact that the only difference between
H0 and Hj is that the j-th entry has different Bernoulli distributions.

Combining the two inequality above gives:

E0[Nj(T)]KL(Ber(1/2)||Ber(1/2− 2∆)) ≥ log(1/4δ). (10)

Since KL(Ber(1/2)||Ber(1/2−x)) < (4x)2 for all x < 2/9, we get E0[Nj(T)] = Ω(∆−2 log(1/δ)).
Thus, the total expected number of queries under H0 will be Ω(n∆−2 log(1/δ)).

In Problem 2, there are in total n vectors. We reasonably conjecture that to identify which vector
satisfies H0 requires at least Ω(n) attempts, with each attempt costs Ω(n∆−2 log(1/δ)), i.e, any
δ-correct algorithm requires Ω

(
n2 log(1/δ)/∆2

)
queries.

8 Conclusion and future work

In this paper, we studied the problem of exact ranking under the most general assumption WST.
We proposed a δ-correct algorithm Probe-Rank, and derived an instance-wise upper bound on its
sample complexity. The upper bound shows that the performance of Probe-Rank only depend on
the comparison probabilities of adjacent items and thus improves existing results when SST does
not hold. Numerical results also suggest that our ranking algorithm outperforms state-of-the-art. A
discussion over the lower bound for pairwise ranking is also provided. We propose a conjecture that
in the worst case, any algorithm has sample complexity n times the number of comparisons needed
for comparing all adjacent items. However, it remains an open problem whether our conjecture holds
and will be left to future work.

Acknowledgments and Disclosure of Funding

We would like to thank the anonymous reviewers for their helpful comments. HL, TJ and FF are
supported in part by the NSF grant CIF-1908544. YW and QG are supported in part by the NSF
grant CIF-1911168. The views and conclusions contained in this paper are those of the authors and
should not be interpreted as representing any funding agencies.

10

References
[1] Nir Ailon, Zohar Karnin, and Thorsten Joachims. Reducing dueling bandits to cardinal bandits.

In International Conference on Machine Learning, pages 856–864. PMLR, 2014.

[2] Linas Baltrunas, Tadas Makcinskas, and Francesco Ricci. Group recommendations with rank
aggregation and collaborative filtering. In Proceedings of the fourth ACM conference on
Recommender systems, pages 119–126, 2010.

[3] Viktor Bengs, Róbert Busa-Fekete, Adil El Mesaoudi-Paul, and Eyke Hüllermeier. Preference-
based online learning with dueling bandits: A survey. J. Mach. Learn. Res., 22:7–1, 2021.

[4] Róbert Busa-Fekete, Balazs Szorenyi, Weiwei Cheng, Paul Weng, and Eyke Hüllermeier. Top-k
selection based on adaptive sampling of noisy preferences. In International Conference on
Machine Learning, pages 1094–1102. PMLR, 2013.

[5] Andrew Caplin and Barry Nalebuff. Aggregation and social choice: A mean voter theorem.
Econometrica: Journal of the Econometric Society, pages 1–23, 1991.

[6] Xi Chen, Paul N Bennett, Kevyn Collins-Thompson, and Eric Horvitz. Pairwise ranking
aggregation in a crowdsourced setting. In Proceedings of the sixth ACM international conference
on Web search and data mining, pages 193–202, 2013.

[7] Vincent Conitzer and Tuomas Sandholm. Communication complexity of common voting rules.
In Proceedings of the 6th ACM conference on Electronic commerce, pages 78–87, 2005.

[8] Cynthia Dwork, Ravi Kumar, Moni Naor, and Dandapani Sivakumar. Rank aggregation methods
for the web. In Proceedings of the 10th international conference on World Wide Web, pages
613–622, 2001.

[9] Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Pac bounds for multi-armed bandit and
markov decision processes. In International Conference on Computational Learning Theory,
pages 255–270. Springer, 2002.

[10] Moein Falahatgar, Yi Hao, Alon Orlitsky, Venkatadheeraj Pichapati, and Vaishakh Ravindraku-
mar. Maxing and ranking with few assumptions. Advances in Neural Information Processing
Systems, 30, 2017.

[11] Moein Falahatgar, Alon Orlitsky, Venkatadheeraj Pichapati, and Ananda Theertha Suresh.
Maximum selection and ranking under noisy comparisons. In International Conference on
Machine Learning, pages 1088–1096. PMLR, 2017.

[12] Moein Falahatgar, Ayush Jain, Alon Orlitsky, Venkatadheeraj Pichapati, and Vaishakh Ravin-
drakumar. The limits of maxing, ranking, and preference learning. In International conference
on machine learning, pages 1427–1436. PMLR, 2018.

[13] Roger H Farrell. Asymptotic behavior of expected sample size in certain one sided tests. The
Annals of Mathematical Statistics, pages 36–72, 1964.

[14] Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy informa-
tion. SIAM Journal on Computing, 23(5):1001–1018, 1994.

[15] Björn Haddenhorst, Viktor Bengs, and Eyke Hüllermeier. On testing transitivity in online
preference learning. Machine Learning, 110(8):2063–2084, 2021.

[16] Reinhard Heckel, Nihar B Shah, Kannan Ramchandran, and Martin J Wainwright. Active
ranking from pairwise comparisons and when parametric assumptions do not help. The Annals
of Statistics, 47(6):3099–3126, 2019.

[17] Ralf Herbrich, Tom Minka, and Thore Graepel. Trueskill™: a bayesian skill rating system.
Advances in neural information processing systems, 19, 2006.

[18] Tao Jin, Pan Xu, Quanquan Gu, and Farzad Farnoud. Rank aggregation via heterogeneous
thurstone preference models. In Proceedings of the AAAI Conference on Artificial Intelligence,
2020.

11

[19] Sumeet Katariya, Lalit Jain, Nandana Sengupta, James Evans, and Robert Nowak. Adaptive
sampling for coarse ranking. In International Conference on Artificial Intelligence and Statistics,
pages 1839–1848. PMLR, 2018.

[20] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

[21] Soheil Mohajer, Changho Suh, and Adel Elmahdy. Active learning for top-k rank aggregation
from noisy comparisons. In International Conference on Machine Learning, pages 2488–2497.
PMLR, 2017.

[22] Thomas Pfeiffer, Xi Alice Gao, Yiling Chen, Andrew Mao, and David G Rand. Adaptive polling
for information aggregation. In Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

[23] Chris Piech, Jonathan Huang, Zhenghao Chen, Chuong Do, Andrew Ng, and Daphne Koller.
Tuned models of peer assessment in moocs. arXiv preprint arXiv:1307.2579, 2013.

[24] Wenbo Ren, Jia Liu, and Ness B Shroff. Pac ranking from pairwise and listwise queries: Lower
bounds and upper bounds. arXiv preprint arXiv:1806.02970, 2018.

[25] Wenbo Ren, Jia Kevin Liu, and Ness Shroff. On sample complexity upper and lower bounds for
exact ranking from noisy comparisons. Advances in Neural Information Processing Systems,
32, 2019.

[26] Aadirupa Saha and Aditya Gopalan. Active ranking with subset-wise preferences. In The 22nd
International Conference on Artificial Intelligence and Statistics, pages 3312–3321. PMLR,
2019.

[27] Aadirupa Saha and Aditya Gopalan. From pac to instance-optimal sample complexity in the
plackett-luce model. In International Conference on Machine Learning, pages 8367–8376.
PMLR, 2020.

[28] Nihar B Shah and Martin J Wainwright. Simple, robust and optimal ranking from pairwise
comparisons. The Journal of Machine Learning Research, 18(1):7246–7283, 2017.

[29] Balázs Szörényi, Róbert Busa-Fekete, Adil Paul, and Eyke Hüllermeier. Online rank elicitation
for plackett-luce: A dueling bandits approach. Advances in Neural Information Processing
Systems, 28, 2015.

[30] Amos Tversky. Intransitivity of preferences. Psychological review, 76(1):31, 1969.

[31] Yue Wu, Tao Jin, Hao Lou, Pan Xu, Farzad Farnoud, and Quanquan Gu. Adaptive sampling for
heterogeneous rank aggregation from noisy pairwise comparisons. In International Conference
on Artificial Intelligence and Statistics, pages 11014–11036. PMLR, 2022.

[32] Yisong Yue and Thorsten Joachims. Beat the mean bandit. In Proceedings of the 28th
international conference on machine learning (ICML-11), pages 241–248. Citeseer, 2011.

[33] Masrour Zoghi, Zohar S Karnin, Shimon Whiteson, and Maarten De Rijke. Copeland dueling
bandits. Advances in neural information processing systems, 28, 2015.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] We mentioned that the pro-
posed algorithm has an additional factor of n compared with state-of-the-art. We also
illustrated that the proposed lower bound is a conjecture.

(c) Did you discuss any potential negative societal impacts of your work? [No] We believe
that our work will not cause any negative societal impact.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

12

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] Due to space limitation,

a part of the proofs is deferred to in Appendices A and D.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] The code and
dataset link is provided in Sec 6, they are under GPLv3 license.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A] We do not use

any existing assets. For algorithms, we implement our version of algorithms in cited
resources. For dataset, it is generated purely by code.

(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

A Proof of the sample complexity upper bound on Probe-Rank

In this section, we prove our theoretical upper bound presented in Theorem 2, Section 5.

We first show in the following lemma that the subroutine Successive-Comparison returns desired
outcomes with high probability. Given an item pair (i, j) with probability gap ∆i,j > 0 and a positive
integer τ , we say SC (i, j, δ, τ) is successful if one of the following two events holds,

E1 = {∆i,j ≥ ϵτ and SC correctly returns [i, j]}, (11)
E2 = {∆i,j < ϵτ and SC returns ‘unsure’ or [i, j]}. (12)

Lemma 3. For an item pair (i, j) with probability gap ∆i,j > 0 and a positive integer τ , SC (i, j, δ, τ)

is successful with probability at least 1− δ
cτ2 , where c = π2

6 .

Proof of Lemma 3. Hoeffding’s inequality gives that

Pr

(
p̂i − pi,j ≤ −1

2
ϵτ

)
≤ exp

(
−2bτ

(
1

2
ϵτ

)2
)

≤ δ

cτ2
. (13)

Therefore, the probability that SC outputs [j, i] is at most

Pr

(
p̂i −

1

2
< −1

2
ϵτ

)
≤ Pr

(
p̂i − pi,j ≤ −1

2
ϵτ

)
≤ δ

cτ2
, (14)

and the probability that SC returns [i, j] or ‘unsure’ is at least 1− δ
cτ2 .

Further, if ∆i,j ≥ ϵτ , the probability that SC returns [i, j] is at least

Pr

(
p̂i −

1

2
>

1

2
ϵτ

)
= Pr

(
p̂i >

1

2
+

1

2
ϵτ

)
≥ Pr

(
p̂i > pi,j −

1

2
ϵτ

)
≥ 1− δ

cτ2
. (15)

This completes the proof.

By Lemma 3, with high probability, SC does not return the incorrect ordering. Further, if τ is large
enough, then SC is guaranteed to return the correct ordering. We use Lemma 3 to show the theoretical
performance of Probe-Rank.

Theorem 2. Let δ > 0 be an arbitrary constant. For all problem instances satisfying the Weak
Stochastic Transitivity (WST) property, with probability at least 1− δ, Probe-Rank returns the true
ranking of n items and conducts at most

O

(
n

n∑
i=1

(
∆̃−2

i

)(
log log

(
∆̃−1

i

)
+ log

(n
δ

)))
(5)

comparisons, where ∆̃i is defined as in (3).

Proof of Theorem 2. Define events

Ei,j(τ) = {SC
(
i, j, 2δ/n2, τ

)
is successful}. (16)

Define the bad event

Ebad = ∪(i,j)∈[n]2 ∪∞
τ=1 (Ei,j(τ))

c
. (17)

By the union bound and Lemma 3

Pr
(
Ebad

)
≤

∑
(i,j)∈[n]2

∞∑
τ=1

2δ

cn2τ2
≤

∞∑
τ=1

δ

cτ2
≤ δ. (18)

In the following, we assume that Ebad does not happen.

14

Correctness. We show that when Ebad does not happen, in every round t, Probe-Max(St, 2δ/n
2)

(line 4 of Algorithm 2) correctly returns the most preferred item in the set of remaining items St.
Since the probability of Ebad is upper bounded by δ, the correctness of Probe-Rank thus follows.

Let x be the most preferred item in St. When Ebad does not happen, all comparison results returned
by SC are correct and T is always consistent with the true ranking. Thus, no item in St is known to
rank higher than x, i.e., at the beginning of Subroutine 3, x ∈ U . Moreover, x will not be eliminated
from U since x will not lose to any other item in St during calls of SC.

We show that any other item in U will be eliminated from U after a finite number of iterations of the
while loop in Probe-Max. Let y ̸= x be an item in U . Since x is the maximum, y ≺ x in the true
ranking. Whenever ϵτy,x

≤ ∆x,y, a successful call of SC
(
x, y, 2δ/n2, τx,y

)
will return the result

x ≻ y and remove y from U if Ebad does not happen. Since ϵτy,x
converges to 0, there must exist

τ∗x,y such that ϵτ∗
x,y

≤ ∆x,y . After each execution of SC, the corresponding τ value increases by one,
therefore after at most

(
n
2

)
τ∗x,y iterations of the while loop, SC

(
x, y, 2δ/n2, τ∗x,y

)
must have been

called. The same argument holds for any y ∈ U, y ̸= x.

Sample complexity. We first note the asymptotic behavior that for any N > 0,

N∑
τ=1

bτ ≤
N∑

τ=1

2

4−τ
log

cτ2n2

δ
≤

N∑
τ=1

2

4−τ
log

cN2n2

δ
= O

(
4N log

cN2δ2

δ

)
= O (bN) . (19)

Without loss of generality, we assume the true ranking is 1 ≻ 2 ≻ · · · ≻ n. When Ebad does
not happen, all comparison results returned by SC coincide with the true ranking. Therefore, for
every i ∈ [n − 1], item i belongs to S1, S2, . . . , Si and gets eliminated during the execution of
Probe-Max

(
Si, 2δ/n

2
)
.

Recall that SC is only called over item pairs in which at least one of them is a maximal element.
For every SC called on items a, b, if a is maximal, we say item a initializes the comparison and we
charge the number of comparisons taken by SC to item a (if both a and b are maximal, we charge
the number of samples to both). Let c(a) denote the number of comparisons charged to a. The total
sample complexity of Probe-Rank is thus at most

∑
a∈[n] c(a).

Fix i ∈ [n]. We use τ◦i to denote the value of τi,i−1 when the order between i and i− 1 is revealed.
Define τ◦1 = 0 for completeness. We note that the order between i and i− 1 can not be inferred from
any other comparison results therefore can only be returned by SC

(
i, i− 1, 2δ/n2, τ◦i

)
. When Ebad

does not happen, τ◦i ≤
⌈
log 1

∆i,i−1

⌉
since a successful call of SC

(
i, i− 1, 2δ/n2,

⌈
log 1

∆i,i−1

⌉)
will return the order.

For each j ̸= i, we use τ∗i,j to denote the value of τi,j when the last time SC is initialized by i and
called over i, j before the beginning of Probe-Max

(
Si, 2δ/n

2
)
. In other words, for any τ > τ∗i,j , if

SC
(
i, j, 2δ/n2, τ

)
is called in Probe-Max

(
St, 2δ/n

2
)

for some t < i, then it must not be initialized
by i. Moreover, we use τ ti,j to denote the value of τi,j right after Probe-Max(St, 2δ/n

2) terminates.
Since i is ranked and removed from T after Probe-Max(Si, 2δ/n

2) is called, τ ii,j is also the value of
τi,j when Probe-Rank terminates. It is clear that

c(i) ≤
∑
j ̸=i

τ∗
i,j∑

τ=1

bτ +
∑
j ̸=i

τ i
i,j∑

τ=τ i−1
i,j +1

bτ . (20)

We consider the first term on the right-hand side of (20). Before Probe-Max
(
Si−1, 2δ/n

2
)

terminates,
item i− 1 is in T . Therefore, whenever i is a maximal element, the order between i and i− 1 must
have not been revealed. So when i initializes the comparison SC

(
i, j, 2δ/n2, τ∗i,j

)
, the item pair

(i, i− 1) is also in the set of ‘legitimate’ pairs P . Therefore, τ∗i,j is no larger than the value of τi,i−1

at that point, and further no larger than τ◦i . The same argument holds for any j. It follows that

∑
j ̸=i

τ∗
i,j∑

τ=1

bτ ≤
∑
j ̸=i

τ∗
i,j∑

τ=1

bτ ≤
τ◦
i∑

τ=1

nbτ . (21)

15

Next, we bound the second term on the right-hand side of (20). Note that if there is no SC called during

Probe-Max(Si, 2δ/n
2), then

∑
j ̸=i

∑τ i
i,j

τ=τ i−1
i,j +1

bτ = 0. So it suffices to consider the case when at

least one instance of SC is called during Probe-Max(Si, 2δ/n
2). Consider the last group of SC called

in Probe-Max(Si, 2δ/n
2), here group means that there might be multiple item pairs whose τ values

are the minimum in P . Denote their τ values by τ i. There must be some SC
(
ai, bi, 2δ/n

2, τ i
)

returning bi ≻ ai such that ai is a maximal item, otherwise no maximal item is removed from U and
Probe-Max will not terminate. When Ebad does not happen, ai is not the maximum in Si so ai > i.
Thus, item ai − 1 is also in Si and before the call of SC

(
ai, bi, 2δ/n

2, τ i
)
, the ordering between

ai − 1 and ai is not revealed, i.e., τ i ≤ τ◦ai
. Moreover, τ ii,j ≤ τ i by the fact that we always compare

item pairs with the smallest τ values. It follows that

∑
j ̸=i

τ i
i,j∑

τ=τ i−1
i,j +1

bτ ≤ n

τ i∑
τ=1

bτ = O (nbτ i) . (22)

The same argument holds for all i ∈ [n− 1].

Consider the sets

D1 = {bτ i : i = 1, 2, . . . , n− 1}, D2 = ∪n
i=2Di

2 = ∪n
i=2{bτ : τ = 1, 2, . . . , τ◦i }. (23)

We claim that if i1 ̸= i2, then the pairs (ai1 , τ
i1) and (ai2 , τ

i2) do not equal. With the facts that
ai > i and τ i ≤ τ◦ai

, there is an injective mapping from D1 to D2 given by bτ i is mapped to the
element bτ i in Dai

2 . It follows that

n−1∑
i=1

O (nbτ i) = O

(∑
x∈D1

nx

)
≤ O

(∑
x∈D2

nx

)
= O

 n∑
i=2

τ◦
i∑

τ=1

nbτ

 . (24)

The reason for pairs (ai1 , τ
i1) and (ai2 , τ

i2) equal if and only if i1 = i2 is as follows. Let i2 > i1
and suppose ai1 = ai2 = a. When SC

(
a, bi1 , 2δ/n

2, τ i1
)

is called, SC
(
a, b, 2δ/n2, τ i1

)
for all b

such that (a, b) /∈ T and τa,b = τ i1 are also called. It follows that τa,b > τ i for all such b after this
point. When SC

(
a, bi2 , 2δ/n

2, τ i2
)

is called, the order between a and bi2 is not know and thus also
not known when SC

(
a, bi1 , 2δ/n

2, τ i1
)

was called. So τ i2 must be larger than τ i1 .

Combining (20), (21) and (24) gives,

n∑
i=1

c(i) ≤
n∑

i=2

∑
j ̸=i

τ∗
i,j∑

τ=1

bτ +

n−1∑
i=1

∑
j ̸=i

τ i
i,j∑

τ=τ i−1
i,j +1

bτ (25)

≤ O

 n∑
i=2

τ◦
i∑
τ

nbτ

 = O

(
n

n∑
i=2

bτ◦
i

)
. (26)

The desired sample complexity follows from τ◦i ≤
⌈
log 1

∆i,i−1

⌉
and

b⌈log 1
∆⌉ = O

(
1

∆2

(
log log

1

∆
+ log

n

δ

))
, (27)

which completes the proof.

B A sample-efficient variant of Probe-Rank

In this section, we present a variant of Probe-Rank, named Probe-Rank-SE. When demonstrating
more detailed experiments in Appendix C, Probe-Rank-SE is also included and is shown to have
better practical performance. However, we will not prove its correctness due to the high similarity it
shares with Probe-Rank.

Compared with Probe-Rank, the variant Probe-Rank-SE finds the ranking also by performing n− 1
steps of maxing and differs only in the subroutine for collecting comparison samples. Specifically,

16

Probe-Rank-SE takes queries from all unknown item pairs simultaneously. Comparison results for
pairs that terminate earlier are still collected and stored in the graph T , which represents our current
knowledge about the ranking. We use T to decide whether to pause, drop or resume comparisons of
remaining item pairs.

We adopt the Successive Elimination (SE) algorithm from [9], shown in Algorithm 4, as a procedure
to perform comparisons.

Subroutine 4 Successive Elimination (modified for comparing two items)
1: Input: items i, j, confidence level δ
2: t = 1;
3: while true do
4: Compare i and j for 2t times; Let p̂ti be the winning rate of i;

5: Let αt =
√

log(ct2/δ)
2t , c = π2

3 ;
6: return i ≻ j if p̂ti − 1

2 > αt; return j ≻ i if p̂ti − 1
2 < −αt; t = t+ 1 else;

7: end while

It was shown that with probability at least 1− δ, Subroutine 4 correctly returns the more preferred
item between i and j using at most O

(
1

∆2
i,j

(
log 1

δ + log log 1
∆i,j

))
comparisons [9, Remark 1].

In Probe-Rank-SE, we do not call SE directly, rather, SE is used as a black-boxed unit that repeatedly
collects query samples from the input pair i, j. Moreover, after every sample, it generates feedback
which is either Null, i ≻ j or j ≻ i, where Null corresponds to that the number of samples has not
accumulated to 2t or

∣∣p̂ti − 1
2

∣∣ < αt; feedback i ≻ j and j ≻ i correspond to that inside the black
box, SE actually terminates and returns the order between i and j. Note that the SE procedure can be
replaced by any algorithm that can rank two items, including all best-arm-identification algorithms.

Denote the instance of Successive Elimination that runs over items i, j with confidence level δ as
SEi,j(δ). When the value of δ is given without ambiguity, we will drop the dependence and write
SEi,j as a shorthand. We define two operations on SEi,j , named advance and feed. The advance
operation returns one of the three possible internal outcomes, Null, i ≻ j or j ≻ i. The feed operation
is used for simulating the sampling process. We write feed (SEi,j , Yi,j) to represent that SEi,j is
fed with a comparison sample Yi,j . As a black-boxed unit, before advance returns one of i ≻ j and
j ≻ i, advance and feed operations are invoked in an alternating fashion. The idea of viewing a
sampling subroutine as a black-box controlled by artificial operations was also used in [1], but for a
different problem setting.

Probe-Rank-SE is presented in Algorithm 5. We initialize
(
n
2

)
independent instances of

SEi,j

(
2δ/n2

)
, each for obtaining the order between an item pair (i, j), 1 ≤ i < j ≤ n. The

probability of being unable to recover the true ranking is thus upper bounded by probability that at
least one of the SE instances fails, which is at most δ. Same as Probe-Rank, we use T to denote the
transitive closure composed of results returned by the SE instances.

Algorithm 5 Probe-Rank-SE
1: Input: items [n], confidence level δ
2: S1 = [n], Ans = [0]n; initialize T ;
3: initialize SEi,j (2δ/n2) for all 1 ≤ i < j ≤ n;
4: for t from 1 to n− 1 do
5: imax =Probe-Max-SE(St);
6: remove imax from T ; Ans[t− 1] = imax; St+1 = St \ {imax};
7: end for
8: Ans[n− 1] = Sn[0]; return Ans;

The procedure Probe-Max-SE serves as a switch for the SE instances. Let S2
t denote the set of

unordered item pairs {(i, j) : i, j ∈ St, i ̸= j}. In each round t, all SE instances for ‘legitimate’
pairs in S2

t are turned on and take queries in a round-robin fashion. ‘Legitimate’ pairs are similarly

17

defined as in Probe-Rank. A pair (i, j) is ‘legitimate’ if the order between i, j is unknown, i.e., not in
T , and at least one of i and j is a maximal element in St.

Algorithm 6 Probe-Max-SE(St)

1: Let U be sets of maximal elements according to T
2: while |U | ≥ 1 do
3: C = []
4: for (i, j) in S2

t do
5: if (i ∈ U or j ∈ U) and (i, j) /∈ T then
6: compare i with j once and get result Yi,j ; feed (SEi,j (δ/n2) , Yi,j)
7: if advance (SEi,j (2δ/n2)) == i ≻ j then C.append([i, j]);
8: else if advance (SEi,j (2δ/n2)) == j ≻ i then C.append([j, i]);
9: end if

10: end if
11: end for
12: for w, l in C do
13: if (w, l) /∈ T then
14: T = T ∪ (w ≻ l);
15: if |U | > 1 and l ∈ U then U = U \ {l};
16: end if
17: end if
18: end for
19: end while
20: return U [0];

C Additional experiments

In this section, we present more detailed numerical experiments comparing the sample complexities
of Probe-Rank, Probe-Rank-SE and the state-of-the-art algorithm IIR by Ren et al. [25]. In particular,
we focus on the WST, SST, NON-SST and ADJ-ASYM settings and perform these three algorithms with
various parameters. Same as the results presented in Section 6, all experiments are averaged over 100
independent trials. For each trial, the ground truth ranking σ is generated uniformly at random and
the comparison probabilities are assigned according to the chosen setting. The confidence level δ is
fixed to be 0.1. Throughout the experiment, every trial for every algorithm successfully recovered the
correct ranking. Moreover, for IIR, if the rank has not been recovered after the sample complexity
reaches 109, we manually stop the ranking process and record the sample complexity as 109 to
avoid extremely large running times. Note that the extreme cases happen in Figures 8(a), 8(b) 8(c)
and 12(d).

Figures 5, 6, 7 and 8 compare the three algorithms under different settings where the difficulty
parameter ∆d is fixed and the number of items n varies from 10 to 100. Figures 9, 10, 11 and 12
compare the three algorithms under different settings where the number of items n is fixed and
the difficulty parameter ∆d varies from 0.1 to 0.4. It can be seen that Probe-Rank and its variant
always consume less samples than IIR to recover the true ranking. Note that in the WST setting,
comparison probabilities are all identically distributed and thus on average, adjacent items are as
hard as nonadjacent items to compare. When ∆d is fixed, as n gets larger and larger, IIR will
eventually outperform Probe-Rank. This is consistent with our theoretical results presented in Section
5. Moreover, as indicated by the experimental results, Probe-Rank-SE can further reduce the sample
complexity compared with Probe-Rank.

18

25 50 75 100
Number of items to rank

104

105

106

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank-SE

Probe-Rank

(a) WST: ∆d = 0.1

25 50 75 100
Number of items to rank

104

105

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank-SE

Probe-Rank

(b) WST: ∆d = 0.2

25 50 75 100
Number of items to rank

104

105

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank-SE

Probe-Rank

(c) WST: ∆d = 0.3

25 50 75 100
Number of items to rank

104

105

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank-SE

Probe-Rank

(d) WST: ∆d = 0.4

Figure 5: Comparison of Probe-Rank, Probe-Rank-SE and IIR under the WST setting. In each
subfigure, ∆d is fixed while the number of items varies.

25 50 75 100
Number of items to rank

105

107

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank-SE

Probe-Rank

(a) SST: ∆d = 0.1

25 50 75 100
Number of items to rank

104

105

106

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank-SE

Probe-Rank

(b) SST: ∆d = 0.2

25 50 75 100
Number of items to rank

104

105

106

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank-SE

Probe-Rank

(c) SST: ∆d = 0.3

25 50 75 100
Number of items to rank

104

105

106

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank-SE

Probe-Rank

(d) SST: ∆d = 0.4

Figure 6: Comparison of Probe-Rank, Probe-Rank-SE and IIR under the SST setting. In each
subfigure, ∆d is fixed while the number of items varies.

25 50 75 100
Number of items to rank

105

107

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank-SE

Probe-Rank

(a) NON-SST: ∆d = 0.1

25 50 75 100
Number of items to rank

104

105

106

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank-SE

Probe-Rank

(b) NON-SST: ∆d = 0.2

25 50 75 100
Number of items to rank

104

105

106

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank-SE

Probe-Rank

(c) NON-SST: ∆d = 0.3

25 50 75 100
Number of items to rank

104

105

106

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank-SE

Probe-Rank

(d) NON-SST: ∆d = 0.4

Figure 7: Comparison of Probe-Rank, Probe-Rank-SE and IIR under the NON-SST setting. In each
subfigure, ∆d is fixed while the number of items varies.

25 50 75 100
Number of items to rank

106

108

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank-SE

Probe-Rank

(a) ∆d = 0.1, α = 1

25 50 75 100
Number of items to rank

105

107

109

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank-SE

Probe-Rank

(b) ∆d = 0.2, α = 1

25 50 75 100
Number of items to rank

105

107

109

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank-SE

Probe-Rank

(c) ∆d = 0.3, α = 1

25 50 75 100
Number of items to rank

105

107

109

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank-SE

Probe-Rank

(d) ∆d = 0.4, α = 1

25 50 75 100
Number of items to rank

106

108

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank-SE

Probe-Rank

(e) ∆d = 0.1, α = 0.5

25 50 75 100
Number of items to rank

105

107

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank-SE

Probe-Rank

(f) ∆d = 0.2, α = 0.5

25 50 75 100
Number of items to rank

105

107

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank-SE

Probe-Rank

(g) ∆d = 0.3, α = 0.5

25 50 75 100
Number of items to rank

104

105

106

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank-SE

Probe-Rank

(h) ∆d = 0.4, α = 0.5

Figure 8: Comparison of Probe-Rank, Probe-Rank-SE and IIR under the ADJ-ASYM setting. In
each subfigure, ∆d and α are fixed while the number of items varies.

19

0.1 0.2 0.3 0.4
∆d

104

105

S
am

pl
e

co
m

pl
ex

it
y IIR

Probe-Rank-SE

Probe-Rank

(a) WST, n = 20

0.1 0.2 0.3 0.4
∆d

105

S
am

pl
e

co
m

pl
ex

it
y IIR

Probe-Rank-SE

Probe-Rank

(b) WST, n = 40

0.1 0.2 0.3 0.4
∆d

105

106

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank-SE

Probe-Rank

(c) WST, n = 60

0.1 0.2 0.3 0.4
∆d

105

106

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank-SE

Probe-Rank

(d) WST, n = 80

Figure 9: Comparison of Probe-Rank, Probe-Rank-SE and IIR under the WST setting. In each
subfigure, n is fixed while ∆d varies.

0.1 0.2 0.3 0.4
∆d

104

105

S
am

pl
e

co
m

pl
ex

it
y IIR

Probe-Rank-SE

Probe-Rank

(a) SST, n = 20

0.1 0.2 0.3 0.4
∆d

105

106

S
am

pl
e

co
m

pl
ex

it
y IIR

Probe-Rank-SE

Probe-Rank

(b) SST, n = 40

0.1 0.2 0.3 0.4
∆d

105

106

S
am

pl
e

co
m

pl
ex

it
y IIR

Probe-Rank-SE

Probe-Rank

(c) SST, n = 60

0.1 0.2 0.3 0.4
∆d

106

107

S
am

pl
e

co
m

pl
ex

it
y IIR

Probe-Rank-SE

Probe-Rank

(d) SST, n = 80

Figure 10: Comparison of Probe-Rank, Probe-Rank-SE and IIR under the SST setting. In each
subfigure, n is fixed while ∆d varies.

0.1 0.2 0.3 0.4
∆d

104

105

106

S
am

pl
e

co
m

pl
ex

it
y IIR

Probe-Rank-SE

Probe-Rank

(a) NON-SST, n = 20

0.1 0.2 0.3 0.4
∆d

105

106

S
am

pl
e

co
m

pl
ex

it
y IIR

Probe-Rank-SE

Probe-Rank

(b) NON-SST, n = 40

0.1 0.2 0.3 0.4
∆d

105

106

S
am

pl
e

co
m

pl
ex

it
y IIR

Probe-Rank-SE

Probe-Rank

(c) NON-SST, n = 60

0.1 0.2 0.3 0.4
∆d

106

S
am

pl
e

co
m

pl
ex

it
y IIR

Probe-Rank-SE

Probe-Rank

(d) NON-SST, n = 80

Figure 11: Comparison of Probe-Rank, Probe-Rank-SE and IIR under the NON-SST setting. In each
subfigure, n is fixed while ∆d varies.

0.1 0.2 0.3 0.4
∆d

105

107

S
am

pl
e

co
m

pl
ex

it
y IIR

Probe-Rank-SE

Probe-Rank

(a) α = 1, n = 20

0.1 0.2 0.3 0.4
∆d

106

108

S
am

pl
e

co
m

pl
ex

it
y IIR

Probe-Rank-SE

Probe-Rank

(b) α = 1, n = 40

0.1 0.2 0.3 0.4
∆d

106

108

S
am

pl
e

co
m

pl
ex

it
y IIR

Probe-Rank-SE

Probe-Rank

(c) α = 1, n = 60

0.1 0.2 0.3 0.4
∆d

107

109

S
am

pl
e

co
m

pl
ex

it
y IIR

Probe-Rank-SE

Probe-Rank

(d) α = 1, n = 80

0.1 0.2 0.3 0.4
∆d

104

105

106

S
am

pl
e

co
m

pl
ex

it
y IIR

Probe-Rank-SE

Probe-Rank

(e) α = 1/2, n = 20

0.1 0.2 0.3 0.4
∆d

105

106

107

S
am

pl
e

co
m

pl
ex

it
y IIR

Probe-Rank-SE

Probe-Rank

(f) α = 1/2, n = 40

0.1 0.2 0.3 0.4
∆d

105

106

107

S
am

pl
e

co
m

pl
ex

it
y IIR

Probe-Rank-SE

Probe-Rank

(g) α = 1/2, n = 60

0.1 0.2 0.3 0.4
∆d

106

107

108

S
am

pl
e

co
m

pl
ex

it
y

IIR

Probe-Rank-SE

Probe-Rank

(h) α = 1/2, n = 80

Figure 12: Comparison of Probe-Rank, Probe-Rank-SE and IIR under the ADJ-ASYM setting. In
each subfigure, n and α are fixed while ∆d varies.

20

D Lower bound analysis

In this section, we present the reduction from the maxing problem for ISNG (Problem 2) to the
maxing problem for IWST (Problem 1). The two problems are restated as follows.

We first consider another problem instance ISYM and show that the maxing problem for ISYM can
be reduced to the maxing problem for IWST . The problem instance ISYM is modified from IWST

by setting the values of pi,j to be exactly 1
2 .

Problem 3 (ISYM). Consider n items with an underlying ordering ‘≻’. The comparison probabilities
are defined as:

pi,j :=


1
2 +∆, if i ≻ j and i, j are adjacent,
1
2 −∆, if i ≺ j and i, j are adjacent,
1
2 , otherwise.

Note that ISYM does not satisfy the WST condition as the comparison probabilities can be 1
2 .

However, any δ-correct algorithm that finds the maximum item for IWST efficiently can also find the
maximum item for ISYM efficiently, shown as follows.

Reduction from ISYM to IWST Let A be any δ-algorithm that finds the maximum item for any
instance that satisfies the WST condition. Algorithm A is also able to find the maximum item for
IWST with any c > 0. Consider any interaction trajectory T defined by the sequence of comparisons
(including the choices for item pairs and their outcomes) with length smaller than Cn2 log(1/δ)/∆2

for some constant C. Under the two instances ISYM and IWST , the probabilities of occurrences of
T , denoted PSYM and PWST , satisfy

PSYM (T)

PWST (T)
≥
(
1/2− cn−10∆2/ log(1/δ)

1/2

)Cn2 log(1/δ)/∆2

>
(1

1 + 4cn−10∆2/ log(1/δ)

)Cn2 log(1/δ)/∆2

≥ e−4cn−10∆2/ log(1/δ)·Cn2 log(1/δ)/∆2

= e−4cCn−8

≥ 1− δ, (28)

where the first inequality holds because the likelihood ratio for one query is upper bounded by the base
and the number of queries on nonadjacent pairs is bounded by the exponent; the second inequality
assumes cn−10∆2/ log(1/δ) < 1/4, which holds for n sufficiently large; the third inequality is due
to (1 + x) ≤ ex. The last inequality can hold by choosing a small enough c.

If A solves the maxing problem for IWST with probability at least 1 − δ and conducts at most
Cn2 log(1/δ)/∆2 comparisons, then by inequality (28),

PSYM (A finds the correct maximum) =
∑
T ∈Ef

PSYM (T) ≥ (1− δ)
∑
T ∈Ef

PWST (T)

= (1− δ)PWST (A finds the correct maximum)

≥ (1− δ)
2

> 1− 2δ, (29)

where Ef denotes the collection of trajectories where A returns the correct maximum. In other
words, A is also a 2δ-correct algorithm that solves the maxing problem for ISYM and conducts at
most Cn2 log(1/δ)/∆2 comparisons. Further, if we force A to terminate after Cn2 log(1/δ)/∆2

comparisons have been made, then A is still correct with probability at least 1− δ and with expected
number of samples upper bounded by Cn2 log(1/δ)/∆2.

The second step is to reduce the maxing problem for ISNG to the maxing problem for ISYM .

Reduction from ISNG to ISYM Let A be any δ-correct algorithm that can find the maximum item
for ISYM . Without loss of generality, we can assume that when comparing an item pair i, j, i < j,

21

A takes in answer 1 representing i is more preferred and answer 0 representing j is more preferred.
We construct a δ-correct algorithm A′ that can find the maximum item for ISNG from A:

Given A, whenever A compares item pair (i, j),
with probability 1/2, A′ queries ‘if i ≻ j’, gets the sample Y and feeds Y to A;
with probability 1/2, A′ queries ‘if j ≻ i’, gets the sample Y and feeds 1− Y to
A. Whenever A terminates and return an item, A′ also terminates and return the
same item.

It is clear that, if A queries an adjacent pair i, j with i ≻ j, the feedback Y is an average over Yi,j

(Ber(12)) and 1 − Yj,i (1-Ber(12 − 2∆)), which is Ber(12 + ∆); if i, j are adjacent and i ≺ j, the
feedback Y is an average of Ber(12 −2∆) and 1−Ber(12), which is Ber(12 −∆); if i, j are nonadjacent,
the feedback Y is an average of two Ber(12) random variables, which is still Ber(12). Therefore,
A gets the same feedback when it is performed over ISYM . If A is a δ-correct maxing algorithm
for ISYM and conducts at most Cn2 log(1/δ)/∆2 comparisons on average, then A′ is a δ-correct
maxing algorithm for ISNG with the same sample complexity.

To summarize, if there exists a δ-correct algorithm A that solves the maxing problem for IWST

and conducts at most Cn2 log(1/δ)/∆2 on average, then with the reduction, we can conclude there
exists a 2δ-correct algorithm A′ that solves Problem 2 with the same sample complexity. Since
the above argument holds for any C > 0 and in Section 7, we argued that Example 2 requires
Ω(n2 log(1/δ)/∆2) queries, we thus conjecture that any δ-correct algorithm A that solves the
maxing (and thus ranking) problem for IWST conducts Ω(n2 log(1/δ)/∆2) comparisons.

22

	Introduction
	Preliminaries
	Related work
	Proposed algorithm
	Upper bound on the sample complexity of Probe-Rank
	Experiments
	Discussion on the lower bound
	Conclusion and future work
	Proof of the sample complexity upper bound on Probe-Rank
	A sample-efficient variant of Probe-Rank
	Additional experiments
	Lower bound analysis

