
Supplement to

“Temporally Disentangled Representation Learning”

Appendix organization:

S1 Identifiability Theory 13
S1.1 Proof for Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

S1.2 Proof for Theorem 2 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

S1.3 Comparisons with Existing Nonlinear ICA Theories . . . . . . . . . . . . . . . . . 18

S1.4 Discussion of the Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

S1.4.1 Linear Independence Condition . . . . . . . . . . . . . . . . . . . . . . . 19

S1.4.2 Independent Noise Condition . . . . . . . . . . . . . . . . . . . . . . . . 20

S1.4.3 Causal Influences between Observed Variables . . . . . . . . . . . . . . . 21

S1.5 Extension to Multiple Time Lags . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

S2 Experiment Settings 21
S2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

S2.1.1 Synthetic Dataset Generation . . . . . . . . . . . . . . . . . . . . . . . . . 21

S2.1.2 Real-world Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

S2.2 Mean Correlation Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

S3 Implementation Details 23
S3.1 Modular Prior Likelihood Derivation . . . . . . . . . . . . . . . . . . . . . . . . . 23

S3.2 Comparisons with AdaRL [30] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

S3.3 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

S3.4 Hyperparameter and Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

S4 Additional Experiment Results 25

S1 Identifiability Theory

The observed variables were generated according to :

xt = g(zt), (10)

in which g is invertible, and zit, as the ith component of zt, is generated by (some) components of
zt�1 and noise Eit. E1t, E2t, ..., Ent are mutually independent. In other words, the components of
zt are mutually independent conditional on zt�1. Let ⌘kt , log p(zkt|zt�1). Assume that ⌘k(t) is
twice differentiable in zkt and is differentiable in zl,t�1, l = 1, 2, ..., n. Note that the parents of zkt
may be only a subset of zt�1; if zl,t�1 is not a parent of zkt, then @⌘k

@zl,t�1
= 0.

S1.1 Proof for Theorem 1

Theorem S1 (Identifiablity under a Fixed Temporal Causal Model). Suppose there exists invertible
function f , which is the estimated mixing function (i.e., we use f and ĝ interchangeably in Appendix)
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that maps xt to ẑt, i.e.,
ẑt = f(xt) (11)

such that the components of ẑt are mutually independent conditional on ẑt�1. Let

vk,t ,
⇣ @2⌘kt
@zk,t@z1,t�1

,
@2⌘kt

@zk,t@z2,t�1
, ...,

@2⌘kt
@zk,t@zn,t�1

⌘|

v̊k,t ,
⇣ @3⌘kt
@z2

k,t
@z1,t�1

,
@3⌘kt

@z2
k,t

@z2,t�1
, ...,

@3⌘kt
@z2

k,t
@zn,t�1

⌘|
.

(12)

If for each value of zt, v1t, v̊1t,v2t, v̊2t, ...,vnt, v̊nt, as 2n vector functions in z1,t�1, z2,t�1, ...,
zn,t�1, are linearly independent, then zt must be an invertible, component-wise transformation of a
permuted version of ẑt.

Proof. Combining Eq. 10 and Eq. 11 gives zt = g
�1(f�1(ẑt)) = h(ẑt), where h , g

�1 � f
�1.

Since both f and g are invertible, h is invertible. Let Ht be the Jacobian matrix of the transformation
h(ẑt), and denote by Hkit its (k, i)th entry.

First, it is straightforward to see that if the components of ẑt are mutually independent conditional
on ẑt�1, then for any i 6= j, ẑit and ẑjt are conditionally independent given ẑt�1 [ (ẑt \ {ẑit, ẑjt}).
Mutual independence of the components of ẑt conditional on ẑt�1 implies that ẑit is independent
from ẑt \ {ẑit, ẑjt} conditional on ẑt�1, i.e.,

p(ẑit | ẑt�1) = p(ẑit | ẑt�1 [ (ẑt \ {ẑit, ẑjt})).

At the same time, it also implies ẑit is independent from ẑt \ {ẑit} conditional on ẑt�1, i.e.,

p(ẑit | ẑt�1) = p(ẑit | ẑt�1 [ (ẑt \ {ẑit})).

Combining the above two equations gives p(ẑit | ẑt�1[(ẑt\{ẑit})) = p(ẑit | ẑt�1[(ẑt\{ẑit, ẑjt})),
i.e., for i 6= j, ẑit and ẑjt are conditionally independent given ẑt�1 [ (ẑt \ {ẑit, ẑjt}).
We then make use of the fact that if ẑit and ẑjt are conditionally independent given ẑt�1 [ (ẑt \
{ẑit, ẑjt}), then

@2 log p(ẑt, ẑt�1)

@ẑit@ẑjt
= 0,

assuming the cross second-order derivative exists [41]. Since p(ẑt, ẑt�1) = p(ẑt | ẑt�1)p(ẑt�1)
while p(ẑt�1) does not involve ẑit or ẑjt, the above equality is equivalent to

@2 log p(ẑt | ẑt�1)

@ẑit@ẑjt
= 0. (13)

The Jacobian matrix of the mapping from (xt�1, ẑt) to (xt�1, zt) is

I 0

⇤ Ht

�
, where ⇤ stands for

a matrix, and the (absolute value of the) determinant of this Jacobian matrix is |Ht|. Therefore
p(ẑt,xt�1) = p(zt,xt�1) · |Ht|. Dividing both sides of this equation by p(xt�1) gives

p(ẑt |xt�1) = p(zt |xt�1) · |Ht|. (14)

Since p(zt | zt�1) = p(zt |g(zt�1)) = p(zt |xt�1) and similarly p(ẑt | ẑt�1) = p(ẑt |xt�1), Eq. 14
tells us

log p(ẑt | ẑt�1) = log p(zt | zt�1) + log |Ht| =
nX

k=1

⌘kt + log |Ht|. (15)

Its partial derivative w.r.t. ẑit is

@ log p(ẑt | ẑt�1)

@ẑit
=

nX

k=1

@⌘kt
@zkt

· @zkt
@ẑit

� @ log |Ht|
@ẑit

=
nX

k=1

@⌘kt
@zkt

·Hkit �
@ log |Ht|

@ẑit
.
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Its second-order cross derivative is

@2 log p(ẑt | ẑt�1)

@ẑit@ẑjt
=

nX

k=1

⇣@2⌘kt
@z2

kt

·HkitHkjt +
@⌘kt
@zkt

· @Hkit

@ẑjt

⌘
� @2 log |Ht|

@ẑit@ẑjt
. (16)

The above quantity is always 0 according to Eq. 13. Therefore, for each l = 1, 2, ..., n and each value
zl,t�1, its partial derivative w.r.t. zl,t�1 is always 0. That is,

@3 log p(ẑt | ẑt�1)

@ẑit@ẑjt@zl,t�1
=

nX

k=1

⇣ @3⌘kt
@z2

kt
@zl,t�1

·HkitHkjt +
@2⌘kt

@zkt@zl,t�1
· @Hkit

@ẑjt

⌘
⌘ 0, (17)

where we have made use of the fact that entries of Ht do not depend on zl,t�1.

If for any value of zt, v1t, v̊1t,v2t, v̊2t, ...,vnt, v̊nt are linearly independent, to make the above
equation hold true, one has to set HkitHkjt = 0 or i 6= j. That is, in each row of Ht there is only one
non-zero entry. Since h is invertible, then zt must be an invertible, component-wise transformation
of a permuted version of ẑt.

The linear independence condition in Theorem S1 is the core condition to guarantee the identifiability
of zt from the observed xt. Roughly speaking, for a randomly chosen conditional density function
p(zkt | zt�1), the chance for this constraint to hold on its second- and third-order partial derivatives is
slim. For illustrative purposes, below we make this claim more precise, by considering a specific
unidentifiable case, in which the noise terms in zt are additive Gaussian, and two identifiable cases,
in which zt has additive, heterogeneous noise or follows some linear, non-Gaussian temporal process.

Let us start with an unidentifiable case. If all zkt follow the additive noise model with Gaussian noise
terms, i.e.,

zt = q(zt�1) +Et, (18)

where q is a transformation and the components of the Gaussian vector Et are independent and
also independent from zt�1. Then @

2
⌘kt

@z
2
kt

is constant, and @
3
⌘kt

@z
2
kt@zl,t�1

⌘ 0, violating the linear
independence condition. In the following proposition we give some alternative solutions and verify
the unidentifiability in this case.
Proposition S1 (Unidentifiability under Gaussian noise). Suppose xt was generated according
to Eq. 10 and Eq. 18, where the components of Et are mutually independent Gaussian and also
independent from zt�1. Then any ẑt = D1UD2 ·zt, where D1 is an arbitrary non-singular diagonal
matrix, U is an arbitrary orthogonal matrix, and D2 is a diagonal matrix with Var�1/2(Ekt) as its
kth diagonal entry, is a valid solution to satisfy the condition that the components of ẑt are mutually
independent conditional on ẑt�1.

Proof. In this case we have

ẑt = D1UD2 · q(zt�1) +D1UD2 ·Et.

It is easy to verify that the components of D1UD2 ·Et are mutually independent and are independent
from D1UD2 · q(zt�1). As a consequence, ẑt are mutually independent conditional on ẑt�1.

Now let us consider some cases in which the latent temporally processes zt are naturally identifiable
under some technical conditions. Let us first consider the case where zkt follows a heterogeneous
noise process, in which the noise variance depends on its parents:

akt = qk(zt�1) +
1

bk(zt�1)
Ekt. (19)

Here we assume Ekt is standard Gaussian and E1t, E2t, .., Ent are mutually independent and inde-
pendent from zt�1. 1

bk
, which depends on zt�1, is the standard deviation of the noise in zkt. (For

conciseness, we drop the argument of bk and qk when there is no confusion.) Note that in this model,
if qk is 0 for all k = 1, 2, ..., n, it reduces to a multiplicative noise model. The identifiability result of
zt is established in the following proposition.
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Corollary S1 (Identifiablity under Heterogeneous Noise). Suppose xt was generated according to
Eq. 10 and Eq. 19. Suppose Eq. 11 holds true. If bk · @bk

@zt�1
and bk · @bk

@zt�1
(zkt � qk) � b2

k
· @qk

@zt�1
,

with k = 1, 2, ..., n, which are in total 2n function vectors in zt�1, are linearly independent, then zt

must be an invertible, component-wise transformation of a permuted version of ẑt.

Proof. Under the assumptions, one can see that

⌘kt = log p(zkt | zt�1) = �1

2
log(2⇡) + log bk � b2

k

2
(zkt � qk)

2.

Consequently, one can find

@3⌘kt
@z2

kt
@zl,t�1

= �bk · @bk
@zl,t�1

,

@2⌘kt
@zkt@zl,t�1

= �bk · @bk
@zl,t�1

(zkt � qk) + b2
k
· @qk
@zl,t�1

.

Then the linear independence of vkt and v̊kt (defined in Eq. 12), with k = 1., 2, ..., n, reduces to
the linear independence condition in this proposition. Theorem S1 then implies that zt must be an
invertible, component-wise transformation of a permuted version of ẑt.

Let us then consider another special case, with linear, non-Gaussian temporal model for zt: the latent
processes follow Eq. 18, with q being a linear transformation and Ekt following a particular class of
non-Gaussian distributions. The following corollary shows that zt is identifiable as long as each zkt
receives causal influences from some components of zt�1.
Corollary S2 (Identifiablity under a Specific Linear, Non-Gaussian Model for Latent Processes).
Suppose xt was generated according to Eq. 10 and Eq. 18, in which q is a linear transformation and
for each zkt, there exists at least one k0 such that ckk0 , @zkt

@zk0,t�1
6= 0. Assume the noise term Ekt

follows a zero-mean generalized normal distribution:

p(Ekt) / e��|ekt|� , with positive � and � > 2 and � 6= 3. (20)
Suppose Eq. 11 holds true. Then zt must be an invertible, component-wise transformation of a
permuted version of ẑt.

Proof. In this case, we have

@3⌘kt
@z2

kt
@zk0,t�1

= �� · sgn(ekt) · ↵(� � 1)(� � 2)|ekt|��3ckk0 , (21)

@2⌘kt
@zkt@zk0,t�1

= ���(� � 1)|ekt|��2ckk0 .

We know that |elt|��2 and |elt|��3 are linearly independent (because their ratio, |elt|, is not constant).
Furthermore, |elt|��2 and |elt|��3, with l = 1, 2, ..., n, are 2n linearly independent functions
(because of the different arguments involved).

Suppose there exist ↵l1 and ↵l2, with l = 1, 2, ..., n, such that
nX

l=1

�
↵l1vlt + ↵l2v̊lt

�
= 0. (22)

It is assumed that for each k = 1, 2, ..., n, there exists at least one k0 such that ckk0 6= 0. Eq. 22 then
implies that for any k we have

↵k1ckk0 |ekt|��2 + ↵k2ckk0 |ekt|��3 +
X

l 6=k

�
↵l1clk0 |elt|��2 + ↵l2clk0 |elt|��3

�
= 0. (23)

Since |elt|��2 and |elt|��3, with l = 1, 2, ..., n, are linearly independent and ckk0 6= 0, to make the
above equation hold, one has to set ↵k1 = ↵k2 = 0. As this applies to any k, we know that for Eq. 22
to be satisfied, ↵l1 and ↵l2 must be 0, for all l = 1, 2, ..., n. That is, v1t, v̊1t,v2t, v̊2t, ...,vnt, v̊nt

are linearly independent. The linear independence condition in Theorem S1 is satisfied. Therefore zt

must be an invertible, component-wise transformation of a permuted version of ẑt.
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S1.2 Proof for Theorem 2 and 3

Let vkt(ur) be vkt, which is defined in Eq. 12, in the ur context. Similarly, Let v̊kt(ur) be v̊kt in
the ur context. Let

skt ,
⇣
vkt(u1)

|, ...,vkt(um)|,
@2⌘kt(u2)

@z2
kt

� @2⌘kt(u1)

@z2
kt

, ...,
@2⌘kt(um)

@z2
kt

� @2⌘kt(um�1)

@z2
kt

⌘|
,

s̊kt ,
⇣
v̊kt(u1)

|, ..., v̊kt(um)|,
@⌘kt(u2)

@zkt
� @⌘kt(u1)

@zkt
, ...,

@⌘kt(um)

@zkt
� @⌘kt(um�1)

@zkt

⌘|
.

As provided below, in our case, the identifiablity of zt is guaranteed by the linear independence of
the whole function vectors skt and s̊kt, with k = 1, 2, ..., n. However, the identifiability result in Yao
et al. (2021) relies on the linear independence of only the last m� 1 components of skt and s̊kt with
k = 1, 2, ..., n; this linear independence is generally a much stronger condition.
Theorem S2 (Identifiability under Changing Causal Dynamics). Suppose the observed processes
xt was generated by Eq. 10 and that the conditional distribution p(zkt | zt�1) may change across
m values of the context variable u, denoted by u1, u2, ..., um. Suppose the components of zt are
mutually independent conditional on z�1 in each context. Assume that the components of ẑt produced
by Eq. 11 are also mutually independent conditional on ẑt�1. If the 2n function vectors skt and
s̊kt, with k = 1, 2, ..., n, are linearly independent, then ẑt is a permuted invertible component-wise
transformation of zt.

Proof. As in the proof of Theorem S1, because the components of ẑt are mutually independent
conditional on ẑt�1, we know that for i 6= j,

@2 log p(ẑt | ẑt�1;u)

@ẑit@ẑjt
=

nX

k=1

⇣@2⌘kt(u)

@z2
kt

·HkitHkjt+
@⌘kt(u)

@zkt
· @Hkit

@ẑjt

⌘
� @2 log |Ht|

@ẑit@ẑjt
⌘ 0. (24)

Compared to Eq. 16, here we allow p(ẑt | ẑt�1) to depend on u. Since the above equation is always
0, taking its partial derivative w.r.t. zl,t�1 gives

@3 log p(ẑt | ẑt�1;u)

@ẑit@ẑjt@zl,t�1
=

nX

k=1

⇣ @3⌘kt(u)

@z2
kt
@zl,t�1

·HkitHkjt +
@2⌘kt(u)

@zkt@zl,t�1
· @Hkit

@ẑjt

⌘
⌘ 0. (25)

Similarly, Using different values for u in Eq. 24 take the difference of this equation across them gives

@2 log p(ẑt | ẑt�1;ur+1)

@ẑit@ẑjt
� @2 log p(ẑt | ẑt�1;ur+1)

@ẑit@ẑjt

=
nX

k=1

h⇣@2⌘kt(ur+1)

@z2
kt

� @2⌘kt(ur)

@z2
kt

⌘
·HkitHkjt +

⇣@⌘kt(ur+1)

@zkt
� @⌘kt(ur)

@zkt

⌘
· @Hkit

@ẑjt

i
⌘ 0.

(26)

Therefore, if skt and s̊kt, for k = 1, 2, ..., n, are linearly independent, HkitHkjt has to be zero for
all k and i 6= j. Then as shown in the proof of Theorem S1, ẑt must be a permuted component-wise
invertible transformation of zt.

Theorem S3 (Identifiability under Observation Changes). Suppose xt = g(zt) and that the condi-
tional distribution p(zk,t |u) may change across m values of the context variable u, denoted by u1,
u2, ..., um. Suppose the components of zt are mutually independent conditional on u in each context.
Assume that the components of ẑt produced by Eq. 3 are also mutually independent conditional on
ẑt�1. If the 2n function vectors sk,t and s̊k,t, with k = 1, 2, ..., n, are linearly independent, then ẑt

is a permuted invertible component-wise transformation of zt.

Proof. As in the proof of Theorem S2, because zt is not dependent on the history zt�1 so are the
components of ẑt, the conditioning on ẑt in Eq. 24 and the following equations can be removed
because of the independence. This directly leads to the same conclusion as in Theorem S2.
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Corollary S3 (Identifiability under Modular Distribution Shifts). Assume the data generating process
in Eq. 1. If the three partitioned latent components zt = (zfix

t
, zchg

t
, zobs

t
) respectively satisfy the

conditions in Theorem 1, Theorem 2, and Theorem 3, then zt must be an invertible, component-wise
transformation of a permuted version of ẑt.

Proof. Because the three partitioned subspaces (zfix
t
, zchg

t
, zobs

t
) are conditional independent given the

history and domain index, it is straightforward to factorize the joint conditional log density into three
components. By using the proof in Theorem 1, 2, and 3, we can directly derive the same quantity as
in Eq. 15 or Eq. 24. Therefore, if skt and s̊kt, for k = 1, 2, ..., n, are linearly independent, HkitHkjt

has to be zero for all k and i 6= j. Then as shown in the proof of Theorem S1, ẑt must be a permuted
component-wise invertible transformation of zt.

S1.3 Comparisons with Existing Nonlinear ICA Theories

We compare our established theory with (1) PCL [7], (2) SlowVAE [12], (3) i-VAE [9], (4) GCL [8]
and (5) LEAP [14] in terms of their mathematical formulation and assumptions.

PCL [7] The formulation of the underlying processes in PCL is in Eq. 27:

log p(zi,t|zi,t�1) = G(zi,t � ⇢zi,t�1) or log p(zi,t|zi,t�1) = �� (zi,t � r(zi,t�1))
2 + const, (27)

where G is a non-quadratic function corresponding to the log-pdf of innovations, ⇢ < 1 is the
regression coefficient, r is some nonlinear, strictly monotonic regression, and � is a positive precision
parameter.

PCL is applicable to stationary environments only when the sources zit are mutually independent
(see Assumption 1 of Theorem 1 in PCL) and follow functional and distribution assumptions in
Eq. 27. Our formulation allows latent variables to have arbitrary, nonparametric time-delayed causal
relations in between without functional form or distribution assumptions.

SlowVAE [12] The formulation of the underlying sources in SlowVAE is in Eq. 28:

p(zt|zt�1) =
dY

i=1

↵�

2�(1/↵)
exp�(�|zi,t � zi,t�1|↵) with ↵ < 2, (28)

where the latent processes have independent, identity transitions with generalized Laplacian noises.

SlowVAE established identifiability under stationary, mutually independent processes (similar to
PCL [7]), in which time-delayed causal influences are not allowed. Furthermore, it assumes that
the transition function of each independent process is an identity function and the process noise has
generalized Laplacian distribution. Our Theorem 1 includes both SlowVAE and PCL as special
cases, in the sense that (1) we remove the functional and distributional assumptions to allow the latent
processes to have nonparametric causal influences in between, and (2) our Corollay 2, which is an
illustrative example of Theorem 1, further completes to Eq. 28 by allowing linear time-delayed
transitions in the latent process with non-Gaussian noises.

i-VAE [9] Similar to TCL [6] and GIN [10], i-VAE exploits the nonstationarity brought by class
labels on the distribution of latent variables. As one can see from Eq. 29, the latent variables are
conditionally independent, without causal relations in between while all of our theorems consider
(time-delayed) causal relations between latent variables. In addition, iVAE assumes the modulation
of class labels on latent distributions is limited within the exponential family distribution. On the
contrary, our nonparametric conditions (Theorems 1,2,3) allow any kind of modulation caused by
fixed, changing transition dynamics or observation changes without those strong assumptions on the
distribution of latent variables or noise distribution (i.e., SlowVAE [12]).

pT,�(z|u) =
Y

i

Qi(zi)

zi(u)
exp [

kX

j=1

Ti,j(zi)�i,j(u)] (29)
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GCL [8] The formulation of the underlying sources in GCL is in Eq 30, which is also described by
Eqs. 4,15 in the original paper [8]:

p(zt|zt�1) =
dY

i=1

pi(zi,t|zi,t�1), (30)

where the latent processes are free from the exponential family distribution assumptions but still
constrained within mutually-independent processes. On the contrary, our work considers causally-
related latent space in which cross causal relations between latent variables can be recovered.
Additionally, we want to mention that we provide an antenna tube in the schema of the proof in
Theorems 1-2-3, which is a more direct way of using sufficient variability conditions than [8].

LEAP [14] LEAP in Eq. 31 considers one special case of nonstationarity caused by changes in
noise distributions, while our work can allow changing causal relations over context. Furthermore,
because LEAP assumes all latent processes are changed across contexts, it doesn’t use or benefit
from the fixed time-delayed causal relations for identifiability. On the contrary, our work exploits the
modular distribution changes from the fixed causal dynamics, changing dynamics, and observation
changes, and hence our identifiability conditions are generally weaker than [14].

xt = g(zt)| {z }
Nonlinear mixing

, zit = fi ({zj,t�⌧ |zj,t�⌧ 2 Pa(zit)}, ✏it)| {z }
Nonparametric transition

with ✏it ⇠ p✏i|u| {z }
Nonstationary noise

. (31)

S1.4 Discussion of the Assumptions

We first explain and justify each critical assumption in the proposed conditions. We then discuss how
restrictive or mild the conditions are in real applications.

S1.4.1 Linear Independence Condition

Our proposed linear independence condition is a combination of stationary identifiability conditions
(Eq. 4) in each context ur, plus the identifiability conditions for nonrecurrent influences (Eq. 8). The
condition is essential to make each row of the Jacobian matrix Ht of the indeterminacy function of
the learned latent space in Eq. 17 to have only one non-zero entry, thus making the learned latent
variables identifiable up to permutation and component-wise invertible transformations.

In stationary environments, this condition essentially states that, during the generation of zt, if
either of the two conditions is satisfied, then the linear independence condition holds in general.

(1) If the history information zHx = {zt�⌧}L⌧=1 up to maximum time lag L, and the process noise ✏t
are coupled in a nontrivial way for generating zt (e.g., heterogeneous noise process in Eq. 32), such
that zHx can modulate the variance or higher-order statistics of the conditional distribution p(zt|zHx),
then the linear independence condition generally holds;

zk,t = qk(zt�1) +
1

bk(zt�1)
✏k,t. (32)

(2) If the latent transition is an additive noise model (then (1) is violated) but the process noise is
non-Gaussian, it will be extremely hard for the linear independence condition to be violated. Roughly
speaking, for a randomly chosen conditional density function p(zk,t | zt�1) in which zk,t is not
independent from zt�1 (i.e., there is temporal dependence in the latent processes) and which does not
follow an additive noise model with Gaussian noise, the chance for its specific second- and third-order
partial derivatives to be linearly dependent is slim.

In nonstationary environments, this condition was introduced in GCL [8], namely, “sufficient
variability”, to extend the modulated exponential families [6] to general modulated distributions.
Essentially, the condition says that the nonstationary regimes u must have a sufficiently complex
and diverse effect on the transition distributions. In other words, if the underlying distributions are
composed of relatively many domains of data, the condition generally holds true. For instance, in
the linear Auto-Regressive (AR) model with Gaussian innovations where only the noise variance
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changes, the condition reduces to the statement in [42] that the variance of each noise term fluctuates
somewhat independently of each other in different nonstationary regimes. Then the condition is easily
attained if the variance vector of noise terms in any regime is not a linear combination of variance
vectors of noise terms in other regimes.

We further illustrate the condition using the example of modulated conditional exponential families
in [8]. Let the log-pdf q(zt|{zt�⌧},u) be a conditional exponential family distribution of order k
given nonstationary regime u and history zHx = {zt�⌧}:

q(zit|zHx,u) = qi(zit) +
kX

j=1

qij(zit)�ij(zHx,u)� logZ(zHx,u), (33)

where qi is the base measure, qij is the function of the sufficient statistic, �ij is the natural parameter,
and logZ is the log-partition. Loosely speaking, the sufficient variability holds if the modulation of
by u on the conditional distribution q(zit|zHx,u) is not too simple in the following sense:

1. Higher order of k (k > 1) is required. If k = 1, the sufficient variability cannot hold;

2. The modulation impacts �ij by u must be linearly independent across regimes u. The
sufficient statistics functions qij cannot be all linear, i.e., we require higher-order statistics.

Further details of this example can be found in Appendix B of [8]. In summary, we need the
modulation by u to have diverse (i.e., distinct influences) and complex impacts on the underlying
data generation process.

Applicability By combining the stationary and nonstationary conditions, our proposed identifiabil-
ity condition is generally mild, in the sense that if there is at least one regime r out of the m contexts
which satisfies the stationary identifiability conditions, OR, if the overall nonstationary influences are
diverse and complex, thus satisfying the nonstationary identifiability conditions, the latent temporal
causal processes are identifiable. For stationary conditions, the only situation where we find the latent
processes unidentifiable is when the latent temporal transition is described by a Gaussian additive
noise model, which violates both (1) and (2). However, for real-world data, it is very unlikely for
the process noise to be perfectly Gaussian. Nonstationarity seems to be prominent in many kinds
of temporal data. For example, nonstationary variances are seen in EEG/MEG, and natural video,
and are closely related to changes in volatility in financial time series [6]. The data that most likely
satisfy the nonstationary condition is a collection of multiple trials/segments of data with different
temporal dynamics in between.

S1.4.2 Independent Noise Condition

The IN condition was introduced in the Structural Equation Model (SEM), which represents effect Y
as a function of direct causes X and noise E:

Y = f(X,E) with X ?? E| {z }
IN condition

. (34)

If X and Y do not have a common cause, as seen from the causal sufficiency assumption of structural
equation models in Chapter 1.4.1 of Pearl’s book [43], the IN condition states that the unexplained
noise variable E is statistically independent of cause X . IN is a direct result of assuming causal
sufficiency in SEM. The main idea for the proof is that if IN is violated, then by the common cause
principle [44], there exist hidden confounders that cause their dependence, thus violating the causal
sufficiency assumption. Furthermore, the noise terms in different variables are mutually independent
for a causally sufficient system with acyclic causal relations. The main idea is that when the noise
terms are dependent, it is customary to encode such dependencies by augmenting the graph with
hidden confounder variables [43], which means that the system is not causally sufficient.

This paper assumes that the underlying latent processes form a casually-sufficient system without
latent causal confounders. Then, the process noise terms ✏it are mutually independent, and moreover,
the process noise terms ✏it are independent of direct cause/parent nodes Pa(zit) because of time
information (the causal graph is acyclic because of the temporal precedence constraint).
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Applicability Loosely speaking, if there are no latent causal confounders in the (latent) causal
processes and the sampling frequency is high enough to observe the underlying dynamics, then
the IN condition assumed in this paper is satisfied in a causally-sufficient system and, moreover,
there is no instantaneous causal influence (because of the high enough resolution). At the same
time, we acknowledge that there exist situations where the resolution is low and there appears to
be instantaneous dependence. However, several pieces of work deal with causal discovery from
measured time series in such situations; see. e.g., [45, 46, 47, 48]. In case there are instantaneous
causal relations among latent causal processes, one would need additional sparsity or minimality
conditions to recover the latent processes and their relations, as demonstrated in [49, 50]. How to
address the issue of instantaneous dependency or instantaneous causal relations in the latent processes
will be one line of our future work.

S1.4.3 Causal Influences between Observed Variables

Although causal discovery between observed variables is not the main focus of our work, our model
can discover causal relations between observed variables as a special case, thanks to the nonlinear
mixing function assumed in this paper. In our formulation in Eq. 1, we assume the observations xt

are nonlinear, invertible mixtures of latent processes zt. However, if in the data generating process,
one observed variable xi has direct causal edges with the other observed variable xj , the mixing
function that generates xi and xj will just be reduced to identity mappings of zi and zj , which is a
special case of the nonlinear invertible mixing function in Eq. 1.

S1.5 Extension to Multiple Time Lags

For the sake of simplicity, we consider one lag for the latent processes in Section 3 (and only
in Section 3). Our identifiability proof can actually be applied for arbitrary lags directly. For
instance, in the stationary case in Eq. 4, one can simply re-define ⌘kt , log p(zk,t|zHx), where
zHx denotes the lagged latent variables up to maximum time lag L. We plug it into Eq. 4, and take
derivatives with regard to z1,t�⌧ , . . . , zn,t�⌧ , which can be any latent temporal variables at lag ⌧ ,
instead of z1,t�1, . . . , zn,t�1. If there exists one ⌧ (out of the L lags) that satisfies the condition,
then the stationary latent processes are identifiable. Similarly, for Eq. 8, one can simply re-define
⌘_kt(ur) , log p(zk,t|zHx, ur) and plug it into Eq. 8. No extra changes are needed.

S2 Experiment Settings

S2.1 Datasets

S2.1.1 Synthetic Dataset Generation

We consider three representative simulation settings to validate the identifiability results under fixed
causal dynamics, changing causal dynamics, and modular distribution shift which contains fixed
dynamics, changing dynamics, and global changes together in the latent processes. For synthetic
datasets with fixed and changing causal dynamics, we set latent size n = 8. For the modular shift
dataset, we add one dimension for global observation changes. The lag number of the process is set
to L = 2. The mixing function g is a random three-layer MLP with LeakyReLU units.

Fixed Causal Dynamics For the fixed causal dynamics. We generate 100,000 data points according
to Eq. (6), where the latent size is n = 8, lag number of the process is L = 2. We apply a 2-layer
MLP with LeakyReLU as the state transition function. The process noise are sampled from i.i.d.
Gaussian distribution (� = 0.1). The process noise terms are coupled with the history information
through multiplication with the average value of all the time-lagged latent variables.

Changing Causal Dynamics We use a Gaussian additive noise model with changes in the influ-
encing strength as the latent processes. To add changes, we vary the values of the first layer of the
MLP across the 20 segments and generate 7,500 samples for each segment. The entries of the kernel
matrix of the first layer are uniformly distributed between [�1, 1] in each domain.

Modular Distribution Shifts The latent space of this dataset is partitioned into 6 fixed dynamics
components under the heterogeneous noise model, 2 changing components with changing causal
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dynamics and 1 component modulated by domain index only. The fixed and changing dynamics
components follow the same generating procedures above. The global change component is sampled
from i.i.d Gaussian distribution whose mean and variance are modulated by domain index. In
particular, distribution mean terms are uniformly sampled between [�1, 1] and variance terms are
uniformly sampled between [0.01, 1].

S2.1.2 Real-world Dataset

Modified Cartpole The Cartpole problem [30] “consists of a cart and a vertical pendulum attached
to the cart using a passive pivot joint. The cart can move left or right. The task is to prevent the
vertical pendulum from falling by putting a force on the cart to move it left or right. The action space
consists of two actions: moving left or right.”

Left Right

(a) (b)

Figure S1: “Visual examples of Cartpole game and change factors. (a) Cartpole game; (b) Modified
Cartpole game with Gaussian noise on the image. The light blue arrows are added to show the
direction in which the agent can move.” Figure source: [30].

The original dataset [30] introduces “two change factors respectively for the state transition dynamics
✓dyn
k

: varying gravity and varying mass of the cart, and a change factor in the observation function
✓obs
k

that is the image noise level. Fig. S1 gives a visual example of Cartpole game, and the image
with Gaussian noise. The images of the varying gravity and mass look exactly like the original image.
Specifically, in the gravity case, we consider source domains with gravity g = {5, 10, 20, 30, 40}.
We take into account both interpolation (where the gravity in the target domain is in the support
of that in source domains) with g = {15}, and extrapolation (where it is out of the support w.r.t.
the source domains) with g = {55}. Similarly, we consider source domains where the mass of
the cart is m = {0.5, 1.5, 2.5, 3.5, 4.5}, while in target domains it is m = {1.0, 5.5}. In terms
of changes on the observation function, we add Gaussian noise on the images with variance � =
{0.25, 0.75, 1.25, 1.75, 2.25} in source domains, and � = {0.5, 2.75} in target domains. The detailed
settings in both source and target domains are in Table S1.”

Gravity Mass Noise
Source domains {5, 10, 20, 30, 40} {0.5, 1.5, 2.5, 3.5, 4.5} {0.25, 0.75, 1.25, 1.75, 2.25}
Interpolation set {15} {1.0} {0.5}
Extrapolation set {55} {5.5} {2.75}
Table S1: “The settings of source and target domains for modified Cartpole experiments” [30].

CMU-Mocap CMU MoCap (http://mocap.cs.cmu.edu/) is an open-source human mo-
tion capture dataset with various motion capture recordings (e.g., walk, jump, basketball, etc.)
performed by over 140 subjects. In this work, we fit our model on 11 trials of “walk” recordings
(Subject #8). Skeleton-based measurements have 62 observed variables corresponding to the locations
of joints (e.g., head, foot, shoulder, wrist, throat, etc.) of the human body at each time step.
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S2.2 Mean Correlation Coefficient

MCC is a standard metric for evaluating the recovery of latent factors in ICA literature. MCC first
calculates the absolute values of the correlation coefficient between every ground-truth factor against
every estimated latent variable. Pearson correlation coefficients or Spearman’s rank correlation
coefficients can be used depending on whether componentwise invertible nonlinearities exist in the
recovered factors. The possible permutation is adjusted by solving a linear sum assignment problem
in polynomial time on the computed correlation matrix.

S3 Implementation Details

S3.1 Modular Prior Likelihood Derivation

Let us start with an illustrative example of stationary latent causal processes consisting of two time-
delayed latent variables, i.e., zt = [z1,t, z2,t] with maximum time lag L = 1, i.e., zi,t = fi(zt�1, ✏i,t)
with mutually independent noises. Let us write this latent process as a transformation map f (note
that we overload the notation f for transition functions and for the transformation map):

2

64

z1,t�1

z2,t�1

z1,t
z2,t

3

75 = f

0

B@

2

64

z1,t�1

z2,t�1

✏1,t
✏2,t

3

75

1

CA . (35)

By applying the change of variables formula to the map f , we can evaluate the joint distribution of
the latent variables p(z1,t�1, z2,t�1, z1,t, z2,t) as:

p(z1,t�1, z2,t�1, z1,t, z2,t) = p(z1,t�1, z2,t�1, ✏1,t, ✏2,t)/ |detJf | , (36)

where Jf is the Jacobian matrix of the map f , which is naturally a low-triangular matrix:

Jf =

2
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1 0 0 0
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3

775 .

Given that this Jacobian is triangular, we can efficiently compute its determinant as
Q

i

@zi,t

@✏i,t
. Fur-

thermore, because the noise terms are mutually independent, and hence ✏i,t ? ✏j,t for j 6= i and
✏t ? zt�1, we can write the RHS of Eq. 36 as:

p(z1,t�1, z2,t�1, z1,t, z2,t) = p(z1,t�1, z2,t�1)⇥ p(✏1,t, ✏2,t)/ |detJf | (because ✏t ? zt�1)

= p(z1,t�1, z2,t�1)⇥
Y

i

p(✏i,t)/ |detJf | (because ✏1,t ? ✏2,t)

(37)

Finally, by canceling out the marginals of the lagged latent variables p(z1,t�1, z2,t�1) on both sides,
we can evaluate the transition prior likelihood as:

p(z1,t, z2,t|z1,t�1, z2,t�1) =
Y

i

p(✏i,t)/ |detJf | =
Y

i

p(✏i,t)⇥
��detJ�1

f

�� . (38)

Now we generalize this example and derive the modular prior likelihood below.

Fixed Causal Dynamics Let {f�1
s

}s=1,2,3... be a set of learned inverse fixed dynamics transition
functions that take the estimated latent causal variables in the fixed dynamics subspace and lagged
latent variables, and output the noise terms, i.e., ✏̂s,t = f�1

s

�
ẑfix
s,t
, {ẑt�⌧}

�
.

Design transformation A ! B with low-triangular Jacobian as follows:
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 InL 0
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@ẑfix
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◆
!
.

(39)

Similar to Eq. 38, we can obtain the joint distribution of the estimated fixed dynamics subspace as:

log p(A) = log p (ẑt�L, . . . , ẑt�1) +
nX

i=1

log p(✏̂s,t)

| {z }
Because of mutually independent noise assumption

+ log (|det (JA!B)|) . (40)

log p
�
ẑ

fix
t
|{ẑt�⌧}L⌧=1

�
=

nX

i=1

log p(✏̂s,t) +
nX

i=1

log
���
@f�1

s

@ẑs,t

��� (41)

Changing Causal Dynamics The differences from fixed dynamics are that the learned inverse
changing dynamics transition functions take additional learned change factors of the context as input
arguments to out the noise terms, i.e, ✏̂c,t = f�1

c

⇣
ẑchg
c,t

, {ẑt�⌧},uk

⌘
= f�1

c
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k
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.

log p
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t
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⌘
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nX

i=1

log p(✏̂c,t|uk) +
nX

i=1

log
���
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��� (42)

Observation Changes The global observation changes are captured by the learned inverse
f�1
o

,which takes the estimated latent subspace and the learned change factors for global obser-
vation ✓obs

k
of context k, and output random noise, i.e, ✏̂o,t = f�1

o

�
ẑobs
o,t
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�
= f�1
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@ẑo,t

���. (43)

S3.2 Comparisons with AdaRL [30]

In terms of the implementation, in our work, we enforce the independent noise or conditional
independence condition explicitly in Eq. 9 (derived in Appendix S3.1) for the identifiability of the
latent processes. But disentanglement is not the main goal of AdaRL so it used Mixture Density
Network (MDN) to approximate the transition prior. Our framework is simpler than AdaRL in the
inference module (we use only xt to infer zt) and the loss function (we don’t have the prediction
branch or the sparsity loss), thanks to the nonlinear ICA formulation in Eq. 1. Our identifiability
conditions do not rely on the sparsity constraints in the underlying data generating process.

S3.3 Network Architecture

We summarize our network architecture below and describe it in detail in Table S2 and Table S3.

S3.4 Hyperparameter and Training

Hyperparameter Selection The hyperparameters include �, which is the weight of KLD terms,
as well as the latent size n and maximum time lag L. We use the ELBO loss to select the best pair
of � because low ELBO loss always leads to high MCC. We always set a larger latent size than the
true latent size. This is critical in real-world datasets because restricting the latent size will hurt the
reconstruction performances and over-parameterization makes the framework robust to assumption
violations. For the maximum time lag L, we set it by the rule of thumb. For instance, we use L = 2
for temporal datasets with a latent physics process (e.g, cartpole, cmu-mocap).

Training Details The models were implemented in PyTorch 1.8.1. The VAE network is trained
using AdamW optimizer for a maximum of 50 epochs and early stops if the validation ELBO loss
does not decrease for five epochs. A learning rate of 0.002 and a mini-batch size of 64 are used. We
have used three random seeds in each experiment and reported the mean performance with standard
deviation averaged across random seeds.

24



Table S2: Architecture details. BS: batch size, T: length of time series, i_dim: input dimension,
z_dim: latent dimension, LeakyReLU: Leaky Rectified Linear Unit.

Configuration Description Output

1. MLP-Encoder Encoder for Synthetic Data
Input: x1:T Observed time series BS ⇥ T ⇥ i_dim
Dense 128 neurons, LeakyReLU BS ⇥ T ⇥ 128
Dense 128 neurons, LeakyReLU BS ⇥ T ⇥ 128
Dense 128 neurons, LeakyReLU BS ⇥ T ⇥ 128
Dense Temporal embeddings BS ⇥ T ⇥ z_dim

2. MLP-Decoder Decoder for Synthetic Data
Input: ẑ1:T Sampled latent variables BS ⇥ T ⇥ z_dim
Dense 128 neurons, LeakyReLU BS ⇥ T ⇥ 128
Dense 128 neurons, LeakyReLU BS ⇥ T ⇥ 128
Dense i_dim neurons, reconstructed x̂1:T BS ⇥ T ⇥ i_dim

5. Factorized Inference Network Bidirectional Inference Network
Input Sequential embeddings BS ⇥ T ⇥ z_dim
Bottleneck Compute mean and variance of posterior µ1:T ,�1:T

Reparameterization Sequential sampling ẑ1:T

6. Modular Prior Nonlinear Transition Prior Network
Input Sampled latent variable sequence ẑ1:T BS ⇥ T ⇥ z_dim
InverseTransition Compute estimated residuals ✏̂it BS ⇥ T ⇥ z_dim
JacobianCompute Compute log (|det (J)|) BS

Computing Hardware We used a machine with the following CPU specifications: Intel(R)
Core(TM) i7-7700K CPU @ 4.20GHz; 8 CPUs, four physical cores per CPU, a total of 32 logical
CPU units. The machine has two GeForce GTX 1080 Ti GPUs with 11GB GPU memory.

Reproducibility We’ve included the code for the framework and all experiments in the supplement.
We plan to release our code under the MIT License after the paper review period.

S4 Additional Experiment Results

Figure S2: Results for three synthetic datasets: in each block, the left shows the MCC for causally-
related and the left are scatterplots between estimated and true factors.
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Table S3: Architecture details on CNN encoder and decoder. BS: batch size, T: length of time series,
h_dim: hidden dimension, z_dim: latent dimension, F: number of filters, (Leaky)ReLU: (Leaky)
Rectified Linear Unit.

Configuration Description Output

3.1.1 CNN-Encoder Feature Extractor
Input: x1:T RGB video frames BS ⇥ T ⇥ 3 ⇥ 64 ⇥ 64
Conv2D F: 32, BatchNorm2D, LeakyReLU BS ⇥ T ⇥ 32 ⇥ 64 ⇥ 64
Conv2D F: 32, BatchNorm2D, LeakyReLU BS ⇥ T ⇥ 32 ⇥ 32 ⇥ 32
Conv2D F: 32, BatchNorm2D, LeakyReLU BS ⇥ T ⇥ 32 ⇥ 16 ⇥ 16
Conv2D F: 64, BatchNorm2D, LeakyReLU BS ⇥ T ⇥ 64 ⇥ 8 ⇥ 8
Conv2D F: 64, BatchNorm2D, LeakyReLU BS ⇥ T ⇥ 64 ⇥ 4 ⇥ 4
Conv2D F: 128, BatchNorm2D, LeakyReLU BS ⇥ T ⇥ 128 ⇥ 1 ⇥ 1
Dense F: 2 * z_dim = dimension of hidden embedding BS ⇥ T ⇥ 2 * z_dim

4.1 CNN-Decoder Video Reconstruction
Input: z1:T Sampled latent variable sequence BS ⇥ T ⇥ z_dim
Dense F: 128 , LeakyReLU BS ⇥ T ⇥ 128 ⇥ 1 ⇥ 1
ConvTranspose2D F: 64, BatchNorm2D, LeakyReLU BS ⇥ T ⇥ 64 ⇥ 4 ⇥ 4
ConvTranspose2D F: 64, BatchNorm2D, LeakyReLU BS ⇥ T ⇥ 64 ⇥ 8 ⇥ 8
ConvTranspose2D F: 32, BatchNorm2D, LeakyReLU BS ⇥ T ⇥ 32 ⇥ 16 ⇥ 16
ConvTranspose2D F: 32, BatchNorm2D, LeakyReLU BS ⇥ T ⇥ 32 ⇥ 32 ⇥ 32
ConvTranspose2D F: 32, BatchNorm2D, LeakyReLU BS ⇥ T ⇥ 32 ⇥ 64 ⇥ 64
ConvTranspose2D F: 3, estimated scene x̂1:T BS ⇥ T ⇥ 3 ⇥ 64 ⇥ 64
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