
Appendix: How does a Neural Network’s Architecture Impact
its Robustness to Noisy Labels?

A Additional Experimental Results

In this section, we include additional experimental results for the predictive power in (a) representa-
tions from randomly initialized models (Appendix A.1), (b) representations learned under different
types off additive label noise (Appendix A.2) and (c) representations learned with a robust loss
function (Appendix A.3). We further demonstrates that the predictive power in well-aligned networks
could even outperform sophisticated methods that also utilize clean labels (Appendix A.4).

A.1 Predictive Power of Randomly Initialized Models

We first evaluate the predictive power of randomly initialized models (a.k.a., untrained models), and
we compare their results with GNNs trained on clean data (a.k.a., 0% noise ratio).

Table 3: Predictive power in representations from random and trained max-sum GNNs on the maximum degree
task (Section 3.2). Notice that lower test MAPE denotes better test performance.

Model Test MAPE

Random Trained

Max-sum GNN 12.74 ± 0.57 0.37 ± 0.08

Table 4: Predictive power in representations from various types of random and trained GNNs on the maximum
node feature task (Section 3.3). Notice that lower test MAPE denotes better test performance.

Model Test MAPE Test MAPE (log scale)

Random Trained Random Trained

DeepSet 5.14e-05 1.06e-05 -4.29 -4.97
Max-max GNN 0.794 0.0099 -0.10 -2.00
Max-sum GNN 54.28 3.08 1.73 0.488

A.2 Additive Label Noise on Graph Algorithmic Datasets

We conduct additional experiments on additive label noise drawn from distributions with larger mean
and larger variance. We consider four such distributions: Gaussian distributions N (10, 30) and

N (20, 15), a long-tailed Gamma distribution with mean equal to 10: Γ(2,
1

15
) − 20, and another

long-tailed t-distribution with mean equal to 10: T (ν = 1) + 10. Figure 9 demonstrates that for
a GNN well aligned to the target function, its representations are still very predictive even under
non-zero mean distributions with larger mean and large variance.
A.3 Training with a Robust Loss Function

We also train the models with a robust loss function–Mean Absolute Error (MAE), and we observe
similar trends in the representations’ predictive power as training the models using MSE (Figure 10).

loss =

n∑
i=1

|ytrue − ypred|. (13)

A.4 Comparing with Sophisticated Methods Using Clean Labels

In previous experiments (section 4.2), we have shown that the predictive power in well-aligned
models could further improve the test performance of SOTA methods on noisy label training. As we
use a small set of clean labels to measure the predictive power, we also wonder how the improvements
obtained by the predictive power compare with the sophisticated methods that also use clean labels.

17

0 20 40 60 80 100
Noise ratio (%)

0

20

40

60

80

Te
st

 M
A

PE
 (%

)

(20, 15)
(10, 30)

(2, 1/15) 20
(= 1) + 10

Figure 9: Additional experiments on simple noise drawn from non-zero mean distributions. On the maxi-
mum degree task, max-sum GNNs have large test errors (dotted lines) under additive label noise drawn from
non-zero-mean distributions. Yet, the predictive power in representations (solid lines) greatly reduces the test
errors with 10% clean labels.

0 20 40 60 80 100
Noise ratio (%)

0

10

20

30

40

Te
st

 M
A

PE
 (%

)

(0, 40)
(10, 15)

(2, 1/15) 30

(a) Test errors of max-sum GNNs on the max-
imum degree task with additive label noise

0 20 40 60 80 100
Noise ratio (%)

-5
-4
-3
-2
-1
0
1
2
3
4

Te
st

 M
A

PE
 (l

og
 sc

al
e)

DeepSet max-max GNN max-sum GNN

(b) Test errors of three different GNNs on the max-
imum node feature task with instance-dependent
label noise

Figure 10: Predictive power in representations trained with MAE. For GNNs trained with MAE, the pre-
dictive power in representations exhibits similar trends as models trained with MSE. The robust loss function,
MAE, is more helpful in learning more predictive representations under smaller noise ratios.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Mutual Information

20

40

60

80

100

Te
st

 a
cc

ur
ac

y
(%

)

CIFAR-EASY

MLP
CNN9

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Mutual Information

30

40

50

60

70

80

90

Te
st

 a
cc

ur
ac

y
(%

)

CIFAR-10

ResNet18
CNN9

1 2 3 4 5 6
Mutual Information

10

20

30

40

50

60

70

Te
st

 a
cc

ur
ac

y
(%

)

CIFAR-100

ResNet18
CNN9

Figure 11: The predictive in the representations grows as the mutual information between the noisy labels
and original clean labels increases for models well-aligned with the target function. The x-axis of each point
in the plots denotes the mutual information between a given noisy dataset and the original clean labels. The
corresponding y-axis denotes the representations’ predictive power for a model trained on this noisy dataset with
standard procedures (i.e., vanilla training).

A.4.1 Sophisticated Methods Using Clean Labels

In our experiments, we consider the following methods which use clean labels: L2R [89], Mentor-
Net [26], SELF [28], GLC [18], Meta-Weight-Net [90], and IEG [88]. Besides, as the SOTA method,
DivideMix, keeps dividing the training data into labeled and unlabeled sets during training, we also
compare with directly using clean labels in DivideMix: we mark the small set of clean data as labeled
data during the semi-supervised learning step in DivideMix. We denote this method as DivideMix w/
Clean Labels (DwC) and further measure the predictive power in representations learned by DwC.

A.4.2 Datasets

We conduct experiments on CIFAR-10/100 with synthetic noisy labels and on two large-scale datasets
with real-world noisy labels: Clothing1M and Webvision.

18

Table 5: Test accuracy (%) on CIFAR-10 with uniform label noise.

Method # clean
per class

Noise ratio

0% 20% 40% 50% 80% 90%

Cross-Entropy - 95.0± 0.1 84.4± 0.4 67.9± 1.1 58.5± 1.5 27.3± 0.4 17.2± 0.5
IEG [88] 10 94.4 92.9± 0.2 92.5± 0.5 - 85.6± 1.1 -
L2R [89] 100 96.1 90.0± 0.4 86.9± 0.2 - 73.0± 0.8 -
MentorNet [26] 500 96.0 92.0 89.0 - 49.0 -
DivideMix [49] - 95.0± 0.1 95.7 94.4± 0.1 94.4 92.9 75.4
DivideMix w/ Clean Labels (DwC) 500 95.0± 0.1 95.9± 0.1 94.3± 0.1 94.8± 0.1 92.9± 0.2 81.5± 0.4

DivideMix’s Predictive Power 10 95.0± 0.1 96.0± 0.1 94.5± 0.1 94.7± 0.0 93.2± 0.1 74.6± 0.4
DivideMix’s Predictive Power 100 95.0± 0.1 96.1± 0.1 94.5± 0.1 94.8± 0.1 93.4± 0.1 76.7± 0.4
DivideMix’s Predictive Power 500 95.0± 0.1 96.1± 0.1 94.6± 0.1 94.9± 0.1 93.6± 0.1 80.4± 0.4
DwC’s Predictive Power 500 95.0± 0.1 95.9± 0.1 94.7± 0.1 95.0± 0.1 93.5± 0.1 87.4± 0.2

Table 6: Test accuracy (%) on CIFAR-10 with flipped label noise.

Method # clean
per class

Noise ratio

20% 40% 80%

Cross-Entropy - 86.1 ± 0.5 76.9 ± 1.0 54.7 ± 0.7
IEG [88] 10 92.7 ± 0.2 90.2 ± 0.5 78.9 ± 3.5
SELF [28] 100 92.8 89.1 -
GLC [18] 100 89.7 ± 0.3 88.9 ± 0.2 -
Meta-Weight-Net [90] 100 90.3 ± 0.6 87.5 ± 0.2 -
DivideMix [49] - 94.0 ± 0.3 92.1 56.2 ± 0.1
DivideMix w/ Clean Labels (DwC) 500 94.2 ± 0.2 91.7 ± 0.3 56.9 ± 0.4

DivideMix’s Predictive Power 10 93.68 ± 0.34 92.14 ± 0.50 88.71 ± 0.46
DivideMix’s Predictive Power 100 94.63 ± 0.09 93.59 ± 0.12 92.68 ± 0.11
DivideMix’s Predictive Power 500 95.00 ± 0.10 94.25 ± 0.11 93.87 ± 0.09
DwC’s Predictive Power 500 94.89 ± 0.11 93.53 ± 0.12 92.84 ± 0.12

Clothing1M [58] has real-world noisy labels with an estimated 38.5% noise ratio. The dataset has a
small human-verified training data, which we use as clean data. Following recent method [49], we
use 1000 mini-batches in each epoch to train models on Clothing1M.

WebVision [93] also has real-world noisy labels with an estimated 20% noise ratio. It shares the same
1000 classes as ImageNet [94]. For a fair comparison, we follow [26] to create a mini WebVision
dataset with the top 50 classes from the Google image subset of WebVision. We train all models on
mini WebVision dataset and evaluate on both the WebVision and ImageNet validation sets. We select
100 images per class from ImageNet training data as clean data.

A.4.3 Experimental Settings

We use the same architectures and hyperparameters as DivideMix: an 18-layer PreAct Resnet [85]
for CIFAR-10/100, a ResNet-50 pre-trained on ImageNet for Clothing1M, and Inception-ResNet-

Table 7: Test accuracy (%) on CIFAR-100 with uniform label noise.

Method # clean
per class

Noise ratio

0% 20% 40% 50% 80% 90%

Cross-Entropy - 77.1± 0.1 63.2± 0.2 49.8± 0.3 40.2± 0.2 11.5± 0.1 3.9± 0.1
IEG [88] 10 72.1 69.3± 0.5 67.0± 0.8 - 60.7± 1.0 -
L2R [89] 10 81.2 67.1± 0.1 61.3± 2.0 - 35.1± 1.2 -
MentorNet [26] 50 79.0 73.0 68.0 - 35.0 -
DivideMix [49] - 77.1± 0.1 76.9 74.8± 0.2 74.2 59.6 31.0
DivideMix w/ Clean Labels (DwC) 50 77.1± 0.1 76.8± 0.2 75.0± 0.2 74.0± 0.2 60.4± 0.2 39.8± 0.1

DivideMix’s Predictive Power 10 77.1± 0.1 76.3± 0.2 74.0± 0.1 73.6± 0.2 58.5± 0.2 32.6± 0.4
DivideMix’s Predictive Power 50 77.1± 0.1 77.2± 0.2 75.1± 0.1 74.7± 0.2 61.1± 0.1 37.6± 0.3
DwC’s Predictive Power 50 77.1± 0.1 76.4± 0.2 74.6± 0.1 73.7± 0.2 61.5± 0.1 45.1± 0.2

19

Table 8: Test accuracy (%) on CIFAR-100 with flipped label noise.

Method # clean
per class

Noise ratio

20% 40% 80%

Cross-Entropy - 63.6 ± 0.5 45.2 ± 0.3 7.4 ± 0.2
GLC [18] 10 63.1 ± 0.5 62.2 ± 0.6 -
Meta-Weight-Net [90] 10 64.2 ± 0.3 58.6 ± 0.5 -
DivideMix [49] - 77.0 ± 0.2 55.2 ± 0.7 0.2 ± 0.0
DivideMix w/ Clean Labels (DwC) 50 76.9 ± 0.2 55.4 ± 0.8 0.2 ± 0.0

DivideMix’s Predictive Power 10 74.31 ± 0.16 72.09 ± 0.24 73.75 ± 0.31
DivideMix’s Predictive Power 50 76.74 ± 0.18 74.91 ± 0.22 76.13 ± 0.21
DwC’s Predictive Power 50 76.35 ± 0.18 74.46 ± 0.23 75.55 ± 0.22

Table 9: Comparison with state-of-the-art methods in test accuracy (%) on Clothing1M.

Method # clean Test Accuracy

Cross-Entropy - 69.21
DivideMix [49] - 74.76
IEG [88] 50k 77.21
CleanNet [91] 50k 79.9
F-correction [20] 50k 80.38
Self-learning [92] 50k 81.16

DivideMix+Ours 50k 80.47

V2 [95] for WebVision. We use the test accuracy reported in the original papers whenever possible,
and the accuracy for L2R [89] are from [88]. For IEG, we use the reported test accuracy obtained by
ResNet-29 rather than WRN28-10, because ResNet-29 has a comparable number of parameters as
the PreAct ResNet-18 we use.

As CIFAR-10/100 do not have a validation set, we follow previous works to report the averaged test
accuracy over the last 10 epochs: we measure the predictive power in representations for models
from these epochs and report the averaged test accuracy. For Clothing1M and Webvision, we
use the associated validation set to select the best model and measure the predictive power in its
representations.

A.4.4 Results

Tables 5-8 show the results on CIFAR-10 and CIFAR-100 with uniform and flipped label noise,
where boldfaced numbers denote test accuracies better than all methods we compared with. We see
that across different noise ratios on CIFAR-10/100 with flipped label noise, the predictive power in
representations remains roughly the same as the test performance of the model trained on clean data
for a network well-aligned with the target function, which matches with Lemma 4. For CIFAR-10
with uniform label noise, the predictive power in representations achieves better test performance
using only 10 clean labels per class on most noise ratios; for CIFAR-100 with uniform label noise,
the predictive power in representations could achieve better test performance using only 50 labels per
class.

Moreover, we observe that adding clean data to the labeled set in DivideMix (DwC) may barely
improve the model’s test performance when the noise ratio is small and under flipped label noise. At
90% uniform label noise, DwC can greatly improve the model’s test performance, and the predictive
power in representations can achieve a even higher test accuracy with the same set of clean data used
to train DwC.

On Clothing1M, we compare the predictive power in representations learned by DivideMix with
existing methods that use the small set of human-verified data: CleanNet [91], F-correction [20] and
Self-learning [92]. As these methods also use the clean subset to fine-tune the whole model, we
follow similar procedures to fine-tune the model (trained by DivideMix) for 10 epochs and then select
the best model based on the validation accuracy to measure the predictive power in its representations.

20

Table 10: Comparison with state-of-the-art methods trained on (mini) WebVision dataset. Numbers denote top-1
(top-5) accuracy (%) on the WebVision and the ImageNet validation sets.

Method WebVision ILSVRC12

top1 top5 top1 top5

MentorNet [26] 63.00 81.40 57.80 79.92
IEG [88] - - 80.0 94.9
DivideMix [49] 77.32 91.64 75.20 90.84

DivideMix+Ours 77.70 ± 0.23 90.68 75.99 ± 0.09 91.30

The predictive power in representations could further improve the test accuracy of DivideMix by
around 6% and outperform IEG, CleanNet, and F-correction (Table 9). The improved test accuracy is
also competitive to [92], which uses a much more complicated learning framework.

On Webvision, the predictive power also improves the model’s test performance (Table 10). The
improvement is less significant than on Clothing1M as the estimated noise ratio on Webvision (20%)
is smaller than Clothing1M (38.5%).

B Experimental Details

B.1 Computing Resources

We conduct all the experiments on one NVIDIA RTX 2080 Ti GPU, except for the experiment on the
WebVision dataset [93] (Table 10), which uses 4 GPUs concurrently.

B.2 Measuring the Predictive Power

We use linear regression to train the linear model when measuring the predictive power in repre-
sentations. For representations from all models except MLPs, we use ordinary least squares linear
regression (OLS). When the learned representations are from MLPs, we e use ridge regression with
penalty = 1 since we find the linear models trained by OLS may easily overfit to the small set of clean
labels.

B.3 Experimental Details on GNNs

Common settings. In the generated datasets, each graph G is sampled from Erdős-Rényi random
graphs with an edge probability uniformly chosen from {0.1, 0.2, · · · , 0.9}. This sampling procedure
generates diverse graph structures. The training and validation sets contain 10,000 and 2,000 graphs
respectively, and the number of nodes in each graph is randomly picked from {20, 21, · · · , 40}. The
test set contains 10,000 graphs, and the number of nodes in each graph is randomly picked from
{50, 51, · · · , 70}.

B.3.1 Additive Label Noise

Dataset Details. In each graph, the node feature xu is a scalar randomly drawn from
{1, 2, · · · , 100} for all u ∈ G.

Model and hyperparameter settings. We consider a 2-layer GNN with max-aggregation and
sum-readout (max-sum GNN):

hG = MLP(2)
(

maxu∈G
∑

v∈N (u)

MLP(1)
(
hu,hv

))
,hu =

∑
v∈N (u)

MLP(0)
(
xu,xv

)
.

The width of all MLP modules are set to 128. The number of layers are set to 3 for MLP(0) and
MLP(1). The number of layers are set to 1 for MLP(2). We train the max-sum GNNs with loss
function MSE or MAE for 200 epochs. We use the Adam optimizer with default parameters, zero
weight decay, and initial learning rate set to 0.001. The batch size is set to 64. We early-stop based
on a noisy validation set.

21

B.3.2 Instance-Dependent Label Noise.

Dataset Details. Since the task is to predict the maximum node feature and we use the maximum
degree as the noisy label, the correlation between true labels and noisy labels are very high on large
and dense graphs if the node features are uniformly sampled from {1, 2, · · · , 100}. To avoid this, we
use a two-step method to sample the node features. For each graph G, we first sample a constant
upper-bound MG uniformly from {20, 21, · · · , 100}. For each node u ∈ G, the node feature xu is
then drawn from {1, 2, · · · ,MG}.

Model and hyperparameter settings. We consider a 2-layer GNN with max-aggregation and
sum-readout (max-sum GNN), a 2-layer GNN with max-aggregation and max-readout (max-max
GNN), and a special GNN (DeepSet) that does not use edge information:

hG = MLP(1)
(

maxu∈G MLP(0)
(
xu

))
.

The width of all MLP modules are set to 128. The number of layers is set to 3 for MLP(0),MLP(1)

in max-max and max-sum GNNs and for MLP(0) in DeepSet. The number of layers is set to 1 for
MLP(2) in max-max and max-sum GNNs and for MLP(1) in DeepSet. We train these GNNs with
MSE or MAE as the loss function for 600 epochs. We use the Adam optimizer with zero weight decay.
We set the initial learning rate to 0.005 for DeepSet and 0.001 for max-max GNNs and max-sum
GNNs. The models are selected from the last epoch so that they can overfit the noisy labels more.

B.4 Experimental Details on Vision Datasets

Neural Network Architectures. Table 11 describes the 9-layer CNN [96] used on CIFAR-Easy
and CIFAR-10/100, which contains 9 convolutional layers and 19 trainable layers in total. Table 12
describes the 4-layer MLP used on CIFAR-Easy and CIFAR-10/100, which has 4 linear layers and
ReLU as the activation function.

Table 11: 9-layer CNN on CIFAR-Easy and
CIFAR-10/100.

Input 32×32 Color Image

Block 1

Conv(3×3, 128)-BN-LReLU
Conv(3×3, 128)-BN-LReLU
Conv(3×3, 128)-BN-LReLU

MaxPool(2×2, stride = 2)
Dropout(p = 0.25)

Block 2

Conv(3×3, 256)-BN-LReLU
Conv(3×3, 256)-BN-LReLU
Conv(3×3, 256)-BN-LReLU

MaxPool(2×2, stride = 2)
Dropout(p = 0.25)

Block 3

Conv(3×3, 512)-BN-LReLU
Conv(3×3, 256)-BN-LReLU
Conv(3×3, 128)-BN-LReLU

GlobalAvgPool(128)

Score Linear(128, 10 or 100)

Table 12: 4-layer FC on CIFAR-Easy and
CIFAR-10/100.

Input 32×32 Color Image

Block 1
Linear(32×32×3, 512)-ReLU

Linear(512, 512)-ReLU
Linear(512, 512-ReLU

Score Linear(512, 10 or 100)

Vanilla Training. For models trained with standard procedures, we use SGD with a momentum of
0.9, a weight decay of 0.0005, and a batch size of 128. For ResNets and CNNs, the initial learning
rate is set to 0.1 on CIFAR-10/100 and 0.01 on CIFAR-Easy. For MLPs, the initial learning rate is
set to 0.01 on CIFAR-10/100 and 0.001 on CIFAR-Easy. The initial learning rate is multiplied by
0.99 per epoch on CIFAR-10/100, and it is decayed by 10 after 150 and 225 epochs on CIFAR-Easy.

Train Models with SOTA Methods. We use the same set of hyperparameter settings from Di-
videMix [49] to obtain corresponding trained models and measure the predictive power in representa-
tions from these models.

22

On CIFAR-10/100 with flipped noise, we only use the small set of clean labels to train the linear model
in our method, and the clean subset is randomly selected from the training data. On CIFAR-10/100
with uniform noise, the clean labels we use are from examples with highest model uncertainty [97].
Besides the clean set, we also use randomly-sampled training examples labeled with the model’s
original predictions to train the linear model. We use 5,000 such samples under 20%, 40%, 50%, and
80% noise ratios, and we use 500 such samples under 90% noise ratio.

C Theoretical Results

We first provide a formal version of Theorem 1 based on [55]. Theorem 1 connects a network’s
architectural alignment with the target function to its learned representations’ predictive power when
trained on clean data.

Theorem 3. (Better alignment implies better predictive power on clean training data; [55]). Fix
ε and δ. Given a target function f : X → Y that can be decomposed into functions f1, ..., fn and
given a network N , where N1, ...,Nn are N ’s modules in sequential order, suppose the training
dataset S := {xj , yj}Mj=1 contains M i.i.d. samples drawn from a distribution with clean labels
yj := f(xj). Then under the following assumptions, Alignment(N , f, ε, δ) ≤M if and only if there
exists a learning algorithm A such that the network’s last module Nn’s representations learned by A
on the training data S have predictive power Pn(f,N ,S) ≤ ε with probability 1− δ.
Assumptions:
(a) We train each module Ni’s sequentially: for each Ni, the input samples are
{h(i−1)(xj), fi(h

(i−1)(xj))}Mj=1 with h(0)(x) = x. Notice that each input h(i−1)(xj) is the output
from the previous modules, but its label is generated by the function fi on h(i−1)(xj).
(b) For the clean training set S, let S ′ := {x̂j , yj}Mj=1 denote the perturbed training data (x̂j and
xj share the same label yj). Let fN ,A and f ′N ,A denote the functions obtained by the learning
algorithm A operating on S and S ′ respectively. Then for any x ∈ X , ‖fN ,A(x) − f ′N ,A(x)‖ ≤
L0 ·maxxj∈S ‖xj − x̂j‖, for some constant L0.
(c) For each module Ni, let f̂i denotes its corresponding function learned by the algorithm A. Then
for any x, x̂ ∈ X , ‖f̂j(x)− f̂j(x̂)‖ ≤ L1‖x− x̂‖, for some constant L1.

We have empirically shown that Theorem 3 also hold when we train the models on noisy data.
Meanwhile, we prove Theorem 3 for a simplified noisy setting where the target function and noise
function share a common feature space, but have different prediction rules. For example, the target
function and noise function share the same feature space under flipped label noise (in classification
setting). Yet, their mappings from the learned features to the associated labels are different.

Theorem 4. (Better alignment implies better predictive power on noisy training data). Fix ε and δ.
Let {xj}Mj=1 be i.i.d. samples drawn from a distribution. Given a target function f : X → Y and a
noise function g : X → Y , let y := f(x) denote the true label for an input x, and ŷ := g(x) denote
the noisy label of x. Let Ŝ := {(xj , yj)}Nj=1

⋃
{(xj , ŷj)}Mj=N+1 denote a noisy training set with

M −N noisy samples for some N ∈ {1, 2, · · · ,M}. Given a network N with modules Ni, suppose
N is well-aligned with the target function f (i.e., the alignment between N and f is less than M
— Alignment(N , f, ε, δ) ≤M). Then under the same assumptions in Theorem 3 and the additional
assumptions below, there exists a learning algorithm A and a module Ni such that when training
the network N on the noisy data Ŝ with algorithm A, the representations from its i-th module have
predictive power Pi(f,N , C) ≤ ε with probability 1− δ, where C is a small set of clean data with a
size greater than the number of dimensions in the output of module Ni.

Additional assumptions (a simplified noisy setting):
(a) There exists a function h on the input domain X such that the target function f : X → Y and the
noise function g : X → Y can be decomposed as: f(x) = fr(h(x)) with fr being a linear function
and g(x) = gr(h(x)) for some function gr.
(b) fr is a linear map from a high-dimensional space to a low-dimensional space.
(c) The loss function used in measuring the predictive power is mean squared error (denoted as ‖ · ‖) .

23

Remark. Theorem 4 suggests that the representations’ predictive power for models well aligned with
the target function should remain roughly similar across different noise ratios under flipped label
noise. Empirically, we observe similar phenomenons in Figures 7-8, and in Tables 6 and 8. Some
discrepancy between the experimental and theoretical results could exist under vanilla training as
Theorem 4 assumes sequential training, which is different from standard training procedures.

Proof of Theorem 4. According to the definition of alignment in Definition 2, since
Alignment(N , f, ε, δ) ≤ M and f(x) = fr(h(x)), we can find a sub-structure (denoted as Nsub)
in the network N with sequential modules {N1, · · · ,Ni} such that Nsub can efficiently learn the
function h (i.e., the sample complexity for Nsub to learn h is no larger than M). According to
Theorem 3, applying sequential learning to train Nsub with labels h(x), the representations of Nsub

will have predictive power Pi(h,Nsub, C) ≤ ε with probability 1− δ.

Since for each input x in the noisy training data Ŝ, its label can be written as fr(h(x)) (if it is
clean) or gr(h(x)) (if it is noisy), when the network N is trained on Ŝ using sequential learning,
its sub-structure Nsub can still learn h efficiently (i.e.,MA(h,Nsub, ε, δ) ≤ M for some learning
algorithm A). Thus, the representations learned from the noisy training data Ŝ can still be very
predictive (i.e., Pi(h,Nsub, C) ≤ ε with probability 1− δ).

Since fr is a linear map from a high-dimensional space to a low-dimensional space, and the clean data
C has enough samples to learn fr (|C| is larger than the input dimension of fr), the linear model L
learned by linear regression can also generalize fr (since linear regression has a closed form solution
in this case as the problem is over-complete). Therefore, as Pi(h,Nsub, C) ≤ ε, Pi(f,Nsub, C) ≤ ε
also holds. Notice that Pi(f,Nsub, C) = Pi(f,N , C) as Ni is also the i-th module in N . Hence, we
have shown that there exist some module Ni such that Pi(f,N , C) ≤ ε with probability 1− δ.

24

	Introduction
	Related Work

	Theoretical Framework
	Problem Settings
	Predictive Power in Representations
	Formalization of Alignment
	Better Alignment Implies Better Robustness (Better Predictive Power)

	Experiments on Graph Neural Networks
	Background: Graph Neural Networks
	Additive Label Noise
	Instance-Dependent Label Noise

	Experiments on Vision Datasets
	MLPs vs. CNN-based networks
	Predictive Power in Representations for Models Trained with SOTA Methods

	Concluding Remarks
	Additional Experimental Results
	Predictive Power of Randomly Initialized Models
	Additive Label Noise on Graph Algorithmic Datasets
	Training with a Robust Loss Function
	Comparing with Sophisticated Methods Using Clean Labels
	Sophisticated Methods Using Clean Labels
	Datasets
	Experimental Settings
	Results

	Experimental Details
	Computing Resources
	Measuring the Predictive Power
	Experimental Details on GNNs
	Additive Label Noise
	Instance-Dependent Label Noise.

	Experimental Details on Vision Datasets

	Theoretical Results

