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A Proof of Theorem 1: Analysis of the diversity-preserving UCB policy

The lnT bound of Theorem 1 is proved in Appendix A.1 by showing, in view of (2), that suboptimal
distributions p ∈ Ext(P) are unlikely to be played more than lnT times. The analysis mimics and adapts
the proof scheme corresponding to UCB run on Ext(P), with three new ingredients specifically underlined.

The proof of the constant regret bound of Theorem 1 may be found in Appendix A.2 and follows a completely
different logic. We first show that optimal distributions are typically played at least half of the time. This
entails, because p⋆

min(ν) > 0, that each pure action a ∈ [K] is played linearly many times. Therefore, all
estimates are sharp, and little regret is suffered.

A.1 Proof of the lnT bound in Theorem 1

We want to control the E
[
Np(t)

]
by lnT , however, the favorable events at round t ⩾ 1 hold rather for

quantities based on how often the pure actions were pulled:

E(t) =
{

∀a ∈ [K],
∣∣µa − µ̂a(t)

∣∣ ⩽√ 8σ2 ln t
max

{
Na(t), 1

}} and E ′(t) =
{

∀a ∈ [K],
√

8σ2 ln t
max

{
Na(t), 1

} < ∆
2

}

We also introduce the following events, for any p ∈ P, though we will use them only for p ∈ Ext(P)\Opt(ν,P)
in the sequel:

E ′′(p, t) =
{

K∑
a=1

pa

√
8σ2 ln t

max
{
Na(t), 1

} < ∆
2

}
.

A first new ingredient consists of the following inequalities, obtained by distinguishing whether pa = 0 or
pa > 0 and by Jensen’s equality for the square root: for all p ∈ P, all t ⩽ T , and all n ⩾ (65Kσ2/∆2) lnT ,

2
√

8σ2 ln t
∑

a∈[K]

pa
1√

max
{
npa/2, 1

} ⩽
8
√
σ2 ln t√
n

∑
a∈[K]

√
pa ⩽

8
√
σ2 ln t√
n

√
K < ∆ ,

thus the following inclusion:⋂
a∈[K]

{
Na(t) ⩾ npa/2

}
=

⋂
a:pa>0

{
Na(t) ⩾ npa/2

}
⊆ E ′′(p, t) . (6)

Note also the inclusion E ′(t) ⊆ E ′′(p, t), valid for all p ∈ P.

Now, the second new ingredient, consisting of the lemma below, is the key to relate the numbers of times
Np(t) a suboptimal distribution p ∈ Ext(P) is picked to the numbers of draws Na(t) of pure actions a ∈ [K].

Lemma 1. Fix p ∈ Ext(P), and denote by pmin>0 = min
{
pa : a ∈ [K] s.t. pa > 0

}
> 0 its minimal positive

component. Then, for all t ⩾ 1, all n ⩾ (10/pmin>0) lnT , and all a ∈ [K],

P
({
Np(t) ⩾ n

}
∩
{
Na(t) < npa/2

})
⩽

1
T
.

Proof. We only need to show the inequality for a ∈ [K] such that pa > 0. We note that

Na(t) ⩾
t∑

s=1
1{p

s
=p} 1{As=a} ; (7)

thus, by optional skipping2 (see Theorem 5.2 of Doob, 1953, Chapter III, p. 145, see also Chow & Teicher,
1988, Section 5.3), the distribution of Na(t) on the event

{
Np(t) ⩾ n

}
is larger than the distribution of a

2Sometimes called optional sampling.
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random variable Bn,a with binomial distribution of parameters n and pa. In particular,

P
({
Np(t) ⩾ n

}
∩
{
Na(t) < npa/2

})
⩽ P

(
Bn,a < npa/2

)
= P

(
Bn,a − npa < −npa/2

)
⩽ exp

(
− ε2

2(v + bε/3)

)
⩽ exp

(
− npa

8(1 + 1/6)

)
,

where, for the final inequality, we applied Bernstein’s inequality (see, e.g., Boucheron et al., 2013, end of
Section 2.7, Equation 2.10) with variance v = n pa(1 − pa), upper bound b = 1 on the range, and deviation
ε = npa/2. Substituting the bound on n concludes the proof.

The rest of the analysis is essentially standard. The aim is to control each of the following expectations, for
p ∈ Ext(P) \ Opt(ν,P) and where np ⩾ 1 is defined later:

E
[
Np(T )

]
⩽ np +

T −1∑
t=np

P
{
p

t+1 = p and Np(t) ⩾ np

}
. (8)

We first note that for t ⩾ 1, for all p ∈ Ext(P) \ Opt(ν,P),{
p

t+1 = p
}

⊆ E(t) ∪ E ′′(p, t) ⊆ E(t) ∪ E ′(t) ; (9)

indeed, on E(t) ∩ E ′′(p, t), for p⋆ ∈ Opt(ν,P), by definitions of these sets and of U(t),

⟨p, U(t)⟩ = ⟨p, µ̂(t)⟩ +
K∑

a=1
pa

√
8σ2 ln t

max
{
Na(t), 1

} ⩽ ⟨p, µ⟩ + 2
K∑

a=1
pa

√
8σ2 ln t

max
{
Na(t), 1

}
< ⟨p, µ⟩ + ∆ ⩽ ⟨p, µ⟩ + ∆(p) = ⟨p⋆, µ⟩ ⩽ ⟨p⋆, µ̂(t)⟩ +

K∑
a=1

p⋆
a

√
8σ2 ln t

max
{
Na(t), 1

} = ⟨p⋆, U(t)⟩ ,

while
{
p

t+1 = p
}

requires ⟨p, U(t)⟩ ⩾ ⟨p⋆, U(t)⟩. Let

np = max
{

65K
∆2 lnT, 10

pmin>0
lnT, 1 + 1

8σ2 max
a∈[K]

(µa − u0)2
}

; (10)

the third element in the maximum will turn useful in the application of Lemma 2 below. For each distribution
p ∈ Ext(P) \ Opt(ν,P), the inclusions (9) and then (6) entail{
p

t+1 = p
}

∩
{
Np(t) ⩾ np

}
⊆ E(t)∪

(
E ′′(p, t)∩

{
Np(t) ⩾ np

})
⊆ E(t)∪

⋃
a∈[K]

{
Np(t) ⩾ np

}
∩
{
Na(t) < nppa/2

}
.

Substituting this bound into (8), resorting to unions bounds and to Lemma 1, yields

E
[
Np(T )

]
⩽ np +K +

T −1∑
t=np

P
(

E(t)
)
⩽ np +K +K

T −1∑
t=np

(2t t−4) ⩽ np + 2K , (11)

where we applied Lemma 2 below for each a ∈ [K] and with δ = t−4, which satisfies the condition required
therein given that t ⩾ np. The proof is concluded by resorting to the decomposition (2), to obtain

RT ⩽
∑

p∈Ext(P)\Opt(ν,P)

∆p(np + 2K) , (12)

which is of the claimed form Cν lnT + cν . In the derivation of this regret bound, we targeted simplicity and
did not try to improve the constants Cν and cν .

Lemma 2 is an essentially standard concentration result for stochastic bandits; the only adaptation therein
(the third new ingredient) is handling the case where Na(t) = 0.
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Lemma 2. Consider a model Dσ2 with σ2–sub-Gaussian distributions, and fix a bandit problem ν in Dσ2 .
For t ⩾ 1, if the actions A1, . . . , At and rewards Y1, . . . , Yt were generated according to the protocol of Box A,
then, for all a ∈ [K], for all δ > 0 with 2 ln(1/δ) > (µa − u0)2/σ2,

P

{∣∣µa − µ̂a(t)
∣∣ ⩾√ 2σ2 ln(1/δ)

max
{
Na(t), 1

}} ⩽ 2tδ .

Proof. Again by optional skipping (see the proof of Lemma 1), by denoting by µ̂a,n an empirical average of
n ⩾ 1 i.i.d. random variables with distribution νa, and by using the convention µ̂a,0 = u0, we have

P

{∣∣µa − µ̂a(t)
∣∣ ⩾√ 2σ2 ln(1/δ)

max
{
Na(t), 1

}} ⩽ P

{
∃n ∈ {0, 1, . . . , t} :

∣∣µa − µ̂a,n

∣∣ ⩾√2σ2 ln(1/δ)
max{n, 1}

}

⩽ 0 +
t∑

n=1
P

{∣∣µa − µ̂a,n

∣∣ ⩾√2σ2 ln(1/δ)
n

}
⩽

t∑
n=1

2δ = 2tδ ,

where the case n = 0 was dropped in the union bound because |µa −u0| <
√

2σ2 ln(1/δ) by assumption, and
where the final inequalities follow from the Cramér–Chernoff inequality (see, e.g., Lattimore & Szepesvári,
2020, Corollary 5.1).

A.2 Proof of the constant regret bound in Theorem 1

As indicated at the beginning of Appendix A, the proof of the constant regret bound of Theorem 1 follows
a completely different logic. For instance, in Appendix A.1, the sets E ′(t) were instrumental in the proof
but we had not controlled their probabilities—which constitutes the core of the analysis here. To do so, we
show that optimal distributions are typically played at least half of the time; this is the main contribution
of this proof. Then, because p⋆

min(ν) > 0, we know that each pure action a ∈ [K] is played linearly many
times, which cannot happen on the events E ′(t), where at least one action is only played logarithmically
many times. This proof strategy for bounded regret was used in Lattimore & Munos (2014). We face
the additional technical challenge here that we do not control with certainty the number of pulls of every
pure arm because of the randomness in generating the At from the pt; we handle this by carefully applying
Bernstein’s inequality.

Step 1: Preparation. We fix a threshold t0 ⩾ 8 + max
a∈[K]

(µa − u0)2/(8σ2) such that

∀t ⩾ t0,
t

2 p
⋆
min(ν) − 32σ2 ln t

∆2 ⩾
√
t ln t and ∆t

4 −
√

8σ2 ln t
(
1 + 2

√
t− 1

)
>
√

8σ2t ln2 t . (13)

For example, with the convention that the ln ln x = −∞ if x ⩽ 1, the constraints above are satisfied with
the threshold t0 such that

ln t0 = max
{

2 + 1
8σ2 , ln σ2

∆2 p⋆
min(ν)2 + 3 ln ln 18 432σ2

∆2 p⋆
min(ν)2 + 10

}
. (14)

(Note to reviewers: for the sake of concision, we decided to omit the half-page of calculations that lead to
this bound. We could of course add it if deemed necessary.)

By (9), we first note that

RT ⩽ Rt0 + max
a∈[K]

µa

T −1∑
t=t0

(
P
(

E(t)
)

+ P
(

E ′(t)
))

⩽ Rt0 + max
a∈[K]

µa

(
K +

T −1∑
t=t0

P
(

E ′(t)
))

,

where the final inequality follows from a bound proved in (11), given the first condition on t0. The key step
is the decomposition

E ′(t) ⊆
{
N⋆(t) < t/2

}
∪
(

E ′(t) ∩
{
N⋆(t) ⩾ t/2

})
, where N⋆(t) =

t∑
s=1

∑
p∈Opt(ν,P)

1{p
s
=p}
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