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A Notation, Detailed Assumptions, and Technical Lemmas

. . _ K . _
For notational convenience, we denote by @; = & >_;_, u} the averaged estimates of Viy 9(Z, y7)
y e _ K - K
over uy’s within the network. We denote by 7, ; = 7= >, vf; € RW*% 5, = £ 37" | sF', and

hy = & Zszl hk. We denote by z;, = Zszl 2F. We denote by ||a|| = ||a||2 for a vector a and
denote by || A|| = || A|2 for a matrix A. We denote by || A||r the Frobenius norm for a matrix A and
denote by (4, B) . = 3, ; A;; B;; the Frobenius inner product for two matrices A and B. For any

7; € R%, we denote by y; = y*(Z;). For notational convenience, we drop the sub-scripts &¥, ¢¥
within the expectations E¢« [-] and E¢x [-].

A.1 Notation and Detailed Assumptions

In this paper, we denote by L, = —— > py * and observe that ||[V2, g(z,y)] |3 < py? < L2

for all z € R% and y € R%. For notational convenience, we use 04,05 > 0 to represent the upper
bounds of standard deviations such that

E[| Vo /" (2, y:¢") = Vaf (@, 9)I”) < o1, B[V f* (2, 5:¢") = Vy oz, 9)]%] < oF,
and
E[[|V, 9" (2, y:€") — V9" (2, 9)|%] < o7,

E[|V2,9"(x,y:€") = Vi,9" (@, 9)|7] < 03, Bl V3, 9" (,4:6") = V,6" (@, 9)[7] < o7
We also adopt constants Lg, L, > 0 to quantify the Lipschitz properties, specified in Sec-
tion A.2. Given (z,y), we use V. f*(x,y; C*), V, f*(x,y; ¢F), V,g*(z,y; €F), Viygk(x,y;fk),
and Viy g"(x,y; €¥) to represent the independent stochastic information sampled in round ¢ by agent
k. Such independent samples can be obtained by querying the SO at (x, y) for three times.

A.2 Technical Lemmas for Lipschitz Properties and Hessian Inverse Estimation

We first restate Lemmas 2.2 of (Ghadimi and Wang, 2018) to characterize the smoothness properties
of y*(z) and VF'(z).

Lemma A.1 Suppose Assumptions 3.3 and 3.4 hold. Then there exist constants Ly, L, > 0 depen-

dent on the constants within Assumptions 3.3 and 3.4 such that for any x1, o € R%, the followings
hold.

IVE(z1) = VE(zo)|| < Lp|zy — 22| and [ly* (z1) — y* (z2)|| < Lyllz1 — z2].

In this supplementary material, we adopt L and L, to quantity the Lipschitz properties of the above
functions.
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Lemma A.2 Let A be a positive definite matrix such that §I = A = 0 for some 0 < § < 1,
and Ay,- -+ , Ay, be k matrices such that E[|| Hf:j Ail|3] € 20t for1 < j < k. Let Q) =
I+ Ap +Ap_ 1A+ -+ + A1 As - - - Ay, then the following holds.

B -4 - @il < (3 IElA; - AR +

, (1
1<j<k+1

5k+1
_ 5)3'

Proof: Recall that for any positive definite matrix A such that 67 > A > 0 for some 0 < 6 < 1, we

have
oo

(T-A)'=> A =T+A+A+.-.
i=0
Letting Q = (I — A)~%, we have
1
(1—-4)*
We define an auxiliary sequence Q1 = [ + A1, Q2 =1+ AsQ1,---,and Qx—1 = I + Ap_1Qx_o,

and note that Qy, = I + A,Qy_1. Consider (I — A)~! — Q, by utilizing the above sequence, we
obtain

Q=1+AQand Q3 =[(1 - A)7[I5 <

(I—A)7"—Qr=AQ — AxQp-1 = (A — Ap)Q + Ai(Q — Qi—1) + AFQ.

We note that Q — Qr_1 = AQ — Ax_1Qk_2 = (A — Akfl)Q + Akfl(Q - Qkfg). By using such
induction relationship, we can quantify the estimation error by

(1= A)~" = Qill2 < 1A = Axll2]|Ql2 + [ Arll2lA = Ak 12| Qll2 + - --
+ | A Ar—1 - Aol2[|A = Ar]l2|Qll2 + | A*F1 Q2.
Letting a; = ||A — A;||2 and b; = ||Aix1 - - - Ak||2]|@Q||2, and taking expectations on both sides of
the above inequality, we obtain E[||b;]|3] < 2%~ ||Q||2 and E[||A¥*1||3] < §2(*+1), By using the
fact that || AB||2 < ||All2||Bll2 < % + @, we further have that
B[ - 4) - Z4J3)
k
<D Elbiasl3l + Y 2E[bibjasazlle] + Y 2E[laibiAMQ) + E[| A Q3]

1<i<j<k 1<i<k

=1
k
<> ElbilBENailz] + Y ElllbibslloEllal3 + llas|’]
i=1 1<i<j<k

+ 3 28R Qs llaslle] + 87FHVQY3

1<i<k
<> EEE il + > 6% IR asllf + flas ]
i=1 1<i<j<k
+ 30 FITEQU + lail3) + 62V Q
1<i<k
= (Y e (D R 3]) + (2 4 YD Q)
1<i<k 1<j<k 1<i<k
1 i 6kr+1
< ( X O Ella,lB) + T IQI3,
1<j<k

where the last inequality uses the fact that Y.~ 5 = 1—3. The desired inequality can be acquired
by using | Q13 < 7252
O

We provide the following result to characterize the estimation error ||[V2, g(Z¢, %))~ —¢f |3 induced
by Algorithm 1.
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Lemma A.3 Suppose Assumptions 3.1, 3.2, 3.3, and 3.4 hold, then we have

_ _ 1 (1-—k )b+1
E[[V3,9(0 vl " =g 13 < 7= (0 (o) VEIIVE, g0 y1)—okillF]) + i —
979 1<<b 979

Proof: Recall that each vt ; is the convex combination of y4/ and sampled hessian Vyy g* (2, y; EF),

underAssumpt10n34(v)thatE[||I—— 295 (@, y; EMI3) < (1—ky)? wehaveE[HI——U“H |1 <
(1 —ky)?. By applying Lemma A.2 with A = I — —Vyyg(xt,yt) Ai=1- Ut toand 6 =1 — Ky,
we obtain that
E[l|Lg[V3,9(Ze y9)] ™" = QFyll3]
| (1= rp)~d . (1= )t
< L0 B gy gt ) — of 1) + B
9 T1<i<h g g
1 (1= kg)t _ (1 — k)"
< —( X TEE BNV g ) — ok I3]) + e
9 1< Y Y

We obtain the desired result through dividing both sides of the above inequality by Lg and using the
fact that gf = Qf’b/Lg.
O

B Proof of Results for Nonconvex Objectives

Throughout this section, we assume Assumptions 3.1, 3.2, 3.3, and 3.4 hold and the step-sizes
follow (5) that

%7 Bt:’Yt:\/%, andb:3[10gﬁTW,forallt:0,17~-~,T,

where C > 0 is a small constant and the number of iterations 7 is large such that 3;,~; < 1 and

CoL ~ 3msL2C2
Y(Co,T) = 1 — =222 — 4C3 (L3 (my +ma) + L2 (ms +ma))(1 + L2) - 2= >0,
VT Il
with
my =4, my =12L7L7, ms = 12C7L, -
m4—120f —2 ;2, andm5:6(Lf(m1+m2)+z_3(m3+m4))

B.1 Lemma B.1 and Its Proof

Lemma B.1 Suppose Assumptions 3.1, 3.2, 3.3, and 3.4 hold, then we have the followings.
E[|ls;|”] < CF, ElIAF]%) < CF, Elllur|®] < Ly, Elllef|I*) < L7,

®)
Ellvy; 5] < L2,V1 < j <b, and E[||z||”] < 2C7 +2CL2L2.

Proof: We first observe that sf, by, uf, v} ;

mation V. f*(zf, yf; ¢F), Vo F5 (2, yps CF)s Vo, 0" (F, uls €F), Vi, 0" (2, yp's €F), respectively.
Therefore, under Assumption 3.3, for all ¢ < 7', forall 1 < j < b, we have

Elluf?) < Ly, Ellvf;1%) < L3, Ellls |°] < CF, and E[||R¢|*] < CF.

are convex combinations of past sampled stochastic infor-

k
Recall that ¢F = L% S LI j=1(I = 7). we further obtain that

Bl - > 3 B (T[S [Tu-4

9 0<i<b j=1 0<s<b j=1 9)
1 1—kgy)? 1
<2 ( ) 272 Lg
Lg 0Siey Kg /{gL
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By using the conditional independence of the sampled stochastic information, we have
Ellluy gt hf||?] < CFLZ L7, further implying that

E[l|=¢1”] = Elllst — uyar hi|*] < 2CF + 2CFLL3.
This completes the proof. O

B.2 Lemma B.2 and Its Proof

We quantify the convergence behavior of consensus errors under the choices of step-sizes (5) and (6)
as follows.

Lemma B.2 Suppose Assumptions 3.1, 3.2, 3.3, and 3.4 hold and the step-sizes satisfy f; < 1 and
one of the followings:

(i) o = g, By = Po, and v = o, for 0 <t < T.

(i) limy oo (ot + B+ 1) = 0, limy 0 252 =1, limy 00 2522 = 1, and lim,_, o Tt o

Then we have for all 1 < j < b,

> il -l < 0 (s Koy ) Sl - ) < ((K”;)Q),

ke kek
]

_ _ z _ KB}
and 3 B [Isf = s+ 1k = wl? + 10 = Rl + Dok = g 12) < 0 (s ).
perd (1-p)
Proof: Recall the update rule that
Xt+1 = XtW — OétZt and Xt+1 = Xt — OétZt7
by using the fact that X; = X; W, we have
Xt+1 — Xt+1 = Xt(W — Woo) — at(Zt — Zt)
Under Assumption 3.2 that ||[IW — W||; = /p, we have
1XeW = Xillp = (X = X)W = W) |p = (W = W) (X, — X)) ||
< W =W Xe = Xillp < /ol Xe — Xellp,
where the first equality uses the fact that X;W = X; = X;W°. Consequently, by using the fact that
[A+ Bl% < (L+m)[AllF + (1 + )l B[ for n > 0, we have
HXt+1 XerilF < (U +m)pllXe = XellF + (1 + 1)ai | Ze = Zil| %

By setting n = , we obtain

(1 +p)af
17t|\Zt Zi|| %

Taking expectations on both sides of the above inequality and using Lemma B.1 that || Z; — Z||% <
AK(CF 4 C7L2C7) and 1 + p < 2, we further have

_ 1+ _
1Xeis = Xenlp < 201X - XillF +

= 1+4+p - 202 =
Bl X1 = Xealz] < =5 PBIX - Xllf) + Bl 20— Zi)3]
1+ _ 802K (C? + C3L2L2)
< —PRIX, - X, |3 + ——F S0

1—p
We then use an induction argument to prove the result. Suppose E[||X; — X,[|%2] < CKa? ,, then
we have

(1+p)CKa?_, N 8afK(C? + C3L2L2)
2 1—0p
<(1 +p)CKa?, 8K(C?+ C§L3L3)>
202 1—p '

E[[| Xet1 — Xeal7] <

_ 2
=y
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1 2
We observe that (F2 %=1

= izp under condition (i). Under condition (ii) where lim;_, o =% =1,

204% Qi
1 2 . . . .
we can see that % < 3# for ¢ sufficiently large. Combining both scenarios, we observe that
t
14p)Ca? 8(C2+C2L%L2 A s 32(C34+C3L2L2 .
(1+e) o= ( f+7f oLy) < (CforC = w We then obtain that
203 1-p (1-p)
Kao?
S llet - ol <0 (o ).
Pt (1—p)

The analysis for >_, ., E[||yf — 7:||*] is similar. To quantify Y, o E[||sf — 5.]|%], we observe that
aweight 1 — 3; < 1is assigned to the prior value sf, yielding that

A+p)(1-B)? | ABEKCE
D Elllsfir = 8]’ < D Ellst -5’ + ——+
kek kek p
We acquire the desired result by following the analysis of quantifying >_, . E[||zf — Z4[|%]. O

B.3 Lemma B.3 and Its Proof

We recall Algorithm 1 Step 4 that zy', ; = >~ - w, ;] — oy (s — ufgfhl) and express 7,41 as
follows.

B _ _ _ 1
41 = Ty — 0 Z¢, Where Zy = e Z (sl’tC — uquhf) . (10)
kek

Lemma B.3 Suppose Assumptions 3.1, 3.2, 3.3, and 3.4 hold. We have that

E[|VF(z:)|?]
S Q%(E[F (z.)] - E[F <fft+1)]) — (1= o4 Lp)E[|Z)|%] + 4E[| Vo f (Ze, y7) — 5:]1%)
+ 1265 LGBV, £ (@e, i) = hel’] + 12CFLEEII V2, 9@, 57) — 7] (n
12C3 ) 8
qu 1;[) ]' -k )b JE[”vyyg(xta yt) vt,i)”%‘] + O <(1—p)2) .

Proof: We start from the L p-smoothness of F'(x) provided by Lemma A.1:

a?l
F@i1) = F(@) < (VF(@), Trr1 = 3) + ~0 &2
a?l
<~y (VF(20),2) + =5 |12
By using the fact that —2 (a, b) = —|a||* — ||b]|? 2, we further obtain
F(Z41) — F(Z)
2 12)

Qg _ Qg (o7 _ _ « LF B (

< ~SVE@EIP ~ Sz + S IVE@) — 2 + S .

Consider the term |V F(Z;) — %|?, we denote by y; = y*(Z;) and obtain

_ _ _ 1
IVE(z:) = 2% = |VF(z,) — 7 >
kek

< 23 (IVaf o) = sHI7 4 192,000 )V 00w o f o) — ok o] HEP)
kex
2
< =3 (192 o) = sE12 + 319, 0 @0, PNV, 9 5] 1219290 u7) — b )
ke
6
2 > (P19 @y PNV, 9@ w0 = ok )
kex
6
22 D (Iuf I 0af 1219, e wi) = BEI)-

kex
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Taking expectations on both sides of the above inequality and applying Lemma B.1, we have that
E[|VF(z:) — 2|

2 -

< = > (EIIVas @erui) = sEI12) + 3CHLIELVE g e, y7) — uf ]

keK

6 — * — — *

+ = > (L2CHEINIVE, g0yl = ab 1] + LALZENIV, £ @1 7) — hEI?)

kek
Taking expectations on both sides of (12), combining with the above inequality, dividing both sides
by 4, and rearranging the terms, we obtain

E[|VF(z,)]]
< Q%(E[F(fm)] - IE[F(:Et)]) — (1= oy Lp)E[||Z]?]
Z ( IVef(@e,y7) — sy || |+ 3CfL2 [“VLyg(xt,yt) _ ufHZD (13)
kG)C
K Z (ch E[|[V2,9(Ze,y0)] " = afl]*] + L2LZE[||V , f (2, y7) — hf\m),
ke

By applying Lemma A.3 with (1 — ry)"™! < O(F5) for b = 3[log_1_(T')], we conclude
E[|VF(@:)|]

< o%(IE[F(ift)] —E[F(zm)]) = (L= auLp)EllIz ") + & > ElIVaS (@) - stl)

kex
o S (BB, o) — WEIP)+ ORIV 0(a,u7) — 7))
kEIC
L2C3 - PR 1
F o S [EI(S (- s BNV 00 u) — b I3) + O (5 )] (14)

kek Ltig 1<5<b
= O%(E[F(ft)] *E[F(ftﬂ)]) = (1= ou Lp)E[||Z]1] + 4E[|| Vo f (2, 57 ) — 5¢I°]
+ 120 LIE(V,f (20, y7) — hal ] + 12CFLE(| V3,9 (21, 47) — 7]
2
120 Z — Ky b JIE[HVyyg(sct,yt) ﬁm)H%] +0 ((1 ftzpp) ’
9 Fa 1S5z

where the last inequality uses the facts that ||a + b|| < 2||a||* + 2||b]|? and || 4|2 < ||A||F for any
matrix A, and applies the convergence of consensus errors characterized by Lemma B.2 that

_ K 32
SO Bk 52+l — el o+ ek — 7% + 0 Rel?) < O( 2,
kek (1-p)

This completes the proof. ]

B.4 Lemma B.4 and Its Proof
Recall Algorithm 1 Step 5 that gy = >, n, Yl — Vg (xk, yl; €F), we may express 711 as
_ _ Tt
Y1 =0 = 5 Z Vyf@fﬂf%ﬁf)-
ke
Lemma B.4 Suppose Assumptions 3.1, 3.2, 3.3, and 3.4 hold and T is sufficiently large, we have
Ell|Fer1 — y* (Ze41)|I°]

< (1= Yoy )E[l|ge — y* (@) |) + © ((1Wf>>2

2v202  3L2a? (15)
+ CA— A A
)+ 2 + S g
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Proof: We first decompose the estimation error ||7; — y*(Z4)]|? as

_ _ YVibg \ |- = 2 - ‘(m
||yt+1—y*(30t+1)||2 < (1 + Q) 1Ge+1—y (l“t)H2+ (1 + ’Yt#) ly*(Zt) —y ($t+1)H2~ (16)
g

2
Recall that §t+1 = Y — lézke;gvygk(xf7yf;gf). Letting 0; = V,9(%,0:) —
%Zke)c y9 (xmyt,é}) we obtain

[Ge1 — v (@) = 15e — % Vyg(Ze, Ge) — y*(Te) + 7e0e ]

=15t — % Vyg(@e, 5e) — v (@) +ve G — % Vy9(Ze, Ue) — v (24), 6¢) + 7716

We then provide bounds for the above terms. First, consider ||§: — vV, 9(Z+, ) — y*(Z¢)||%, by
using the pg-strong convexity of g(Z¢,y) in y under Assumption 3.4 (i), we have

19 =%V yg(Ze, 5t) — v (T |
< g = y*(@)1? = 29 (G — y* (Z0), Vg (@, 50)) + 72 IV 49 (20, 50) 1P (18)
< (1= 2y |7 — v (2 |I* + 47 C5.
Next, consider (g — V¢ Vyg(Z¢, 7)) — y*(Z+), d¢), we can see that
E [(9: — % Vyg(Ze, §t) — y"(T1), 61)]

=E l(yt — 7 Vyg(Ze, Ut) — Zl/*(ft))T (Vyg Tt, Yt) Z Vyg" (@}, yf )1 (19)

A
2pg’
where A, = E[||V,9(Z4, 1) — %+ > pexc Vyg® (@F, yF)||?] and the last inequality comes from the

a7

7 B o _
< JEl5 = Vg3 5) = y* (@)1°] +

fact that (a, b) < ”“”2 + ”b“2. Further, for ||6F ||2, we have
2
BIIE) = || 2 32 (Vg @50 - Vo kol 60)|
1 ke i - (20)
. g
<2E || = 3 (Vugt (et ub) - Vugt(at ubseh) || + 28k < S22k
k

ex

where the last inequality uses the fact that {V, g" (zF, yF) — V,g" (z}, yF; £¥)}’s are conditionally
mean-zero and independent such that for k # s,

E [(Vyg" (@0, 50) = Vyg" (2, 45560), Vg (Z, 50) — Vyg® (27,455 €5))] = 0.
Taking expectations on both sides of (17) and combining with (18), (19), and (20), we have
B[ g1 — y* ()]

2v202
< (1+ 229) (1= 291 B — 5 (@0)|] +22C2) + (52 + 297 ) Ay + 22
2 24t K
3yip o 2n
< (1= =5 Ellg —y* (@)|P) 4+ (1 + 7097 C;
2 2
Vi 2\ 1 2 k=2 ko2 . 2%
_E 19 — L°E — -
+@%+@K§jm%xmw%mm+Kv
where the second inequality uses the L -smoothness of V,g(z,y) in both z and y such that
2
o 1
Ay =E ||Vyg(xt,yt) K Z vygk(vayf)
kek
1 _
SEZHWMm%%WﬁW%W} -
kek
< 2 3 L2(Ellat - 7)) + Ellf - 5l7).
keKZ
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Moreover, by using the L, -smoothness of y*(e) characterized by Lemma A.1, we have

Ellly* () = y* (@e1)|P] < LYE[|Z: — T[] (23)

Finally, by substituting (21) and (23) into (16) and applying the bounds of the consensus errors
provided by Lemma B.2, we conclude that

E|| g1 — y* (Zes1) 7]
< (1= veng)Bl17e — v (@) 1] + (14 Yerg/2) (1 + yepg) i C

Tk 1 _ _
+ {5+ 297 ) = D0 L2(E[ll=f — 2% + Ellyf — 5:/%])
2M9 K ke

27202 2
+— g+<1+7

) L2E[|2: - 20 ]]

K thg
2 o2 3Lo}
_ . Ve Vi o _
< (1= oo )E[|3 — v (@) + O(§) + O ((1 . ;)2) =t Bl
g9

where the last inequality uses the facts that 7,1 = T; — o2 and ;g < 1 for large T'. This
completes the proof.

O

B.5 Lemma B.5 and Its Proof

By recalling Algorithm 1 Step 6 that sy, ; = (1 = 8) 3", ps, wijs + BV fF(xF, ylF; k), we
express the update rule of 5; = % D okek sk as

Sg41 = (1—5t)5t+%l;cvxfk(vayf;ff)- (24)

Lemma B.5 Suppose Assumptions 3.1, 3.2, 3.3, and 3.4 hold and T is sufficiently large, then we
have

E[|8141 — Vo f (Zea1, ¥ (Ze41))]|]
< (1 - BE[I5 — VI (@, y)|I?] +

Bi(af + B7)
+O< (1-p)?

2870% N 407 L3(1+ L)
K B

ER 0s)

) + 68, L2E[|g: — yr 2.

Proof: We denote by y; = y*(Z;) for notational convenience. Consider the update rule of 5;41, we
have

Si41 — Vo f (Zev1,yi01) = (1= B8 — Ve f (Zer1,y501)] + Bely,

where

1
Apy = I Z Va5 (@), yf s CF) = Vo f (Ber1,Yig)-
kek
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‘We can see that

Elll5t11 = Vo f (@41, 9541 1°]

= (1= B)°Ell|5: — Vaf (Zer1, v )] + BPE[A g2 ]I°]
+2(1 = B)BE [(8t — Vaf Fes1,¥541)) Ay

= (1= B)’Elll5: — Vaf (Zr41, 970 1] + BPE[| Af %)

+2(1 - B1)BE

ke
<(1- 5t)2]E[H§t - sz(ft+17yZ+1)|‘2] + 6t2E[HAft||2]
(1 —B)Bs
ESS ALY

(5¢ — sz(ft+1ayt*+1))T (% Z Vot (@), yf) — sz(ft+1ayt*+1))]

15t = Vo f (@esr, v )1 + 4Bl Y Vo (af, uf) - fo(it+1,yi+1)||2]>

ke
<= (1= 3 ) Bl Vo @) ]+ ElIA ]
26:(1
+

fft )L? .
LN (Bllaf - a2+ Bl - v )
ke

(26)

where the first equality uses the conditional independence between {Vf*(xF yF:(F)

2
Vo f¥(xF, yF)} and Zy41, Get1, 51 the first inequality uses the fact that 2 (a, b) < 125 4+ 2||p||2, and
the last inequality applies similar analysis as (22) under the L ¢-smoothness of V. f*. We observe
that

A
- Hll( Z (V fk(xt’yt’gt) mek(xf,yf)) + % Z(mek(vayf) - vsz(jt+1ay;+1))H2
keK =
= 2H[1( S O (Vaf @yl ¢F) = Vo £ (@F, ) H
kek
+2HI1(Z(V fEk gk v, f (xtﬂ’ytﬂ))HQ
keK

By noting that V, f*(z¥, y¥; ¢F) — V. f*(z¥, yF) is conditionally mean-zero and

E|(Vaf @yt )=Vl (b)) (Vs D)=V (why) | = 0, for 1 <i £ < K

and taking expectations on both sides of the above inequality, we obtain

El A < 2 2 S RV b ol ) — Ve k)]
kel
2 = *
+ E;Emvﬁk(ﬁ’y’?) —fok(xt+1,yt+1)\\2] (27)
S
2
20f 2L

Z [l = Zesa ] + Elllyd — w2 1%1)

keKx

where the last inequality uses the L s-smoothness of V,, f k(x,7) in both 2 and vy, similar as (22)
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Further, we have
Hgt -V f(i't+17y:+1)||2

s( 5t)||st Vo f@nyh)l? + (
s( ﬂt)nst Vo S ()2 + (1+§

= (14 5 ) st = Vs + (14 2 ) o323+ 2,

where the first inequality uses the L y-smoothness of V, f(x, y) and the second inequality uses the
L,-Lipschitz continuity of y*(x) such that ||y*(Z;) — y*(Z¢41)|| < Ly||Z: — Z¢41|| and the fact that
arl|Zel| = 120 — Zrga -

1+ IVaf (@ y7) — Vo f (@1, yi 1) |1

3
( 5)
( )L (2 = Zeaal? + I — vial®)

By substituting the above inequality and (27) into (26), we obtain

E[|8111 — Ve (Zrs1, ) |I]
28203 TaiL3(1+ L2)

< (1= BIEls: = Vo @y + — o5 Bl
26, L7 i,
+ = D (k= @ P+ gk — v )
ke

where the last inequality uses the fact that (1 — %)(1 + %) <land(1-23)(1- %)(1 + %) < T
when 7' is sufficiently large.

Further, we can see

> (Elllzf — 2o IP] + Elllyf — yial?))

ke
< STE 2l — Tl + 207 — e P+ 3F — 5ol + 305 — 21 + 3l — v ]
kel (28)

ao? + B? _ _ *

<o (KON L ow( s 2Bz - 202+ 3 S Ellg — 1)
1)

ke

(at Jrﬂt)

<0 (Kot ok + )aZEllal + 3KE g - 71
implying that
Elll5t11 = Vo (Zrs1, 4500 1]
< (1= BE[lI5: — V(@ 47)IIP] +

Bi(af + B7)
+O( (1—p)?

This completes the proof.

20} defLi(1+ L)
K Bi

) 68, L3E]|5: — w7 2]

E[]|z]|*)

B.6 Lemmas B.6 and Its Proof

Lemma B.6 Suppose Assumptions 3.1, 3.2, 3.3, and 3.4 hold and T is sufficiently large, then we
have

(a) -
Elllhis1 — Vo f (Ze1, " (Z41)) ]

< (1= BE[lhe = Vi f (Ze,y* (20))17] +

25?‘7]20 615(0415 + Bt)
O S S Sl
K ( (1—p)?

A02L3(1+L2)
— LR )

. ) 68 LEE]|5: — y* (w012
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(b)

E[l|ti41 — Va,9(Zi1, v (Ze11)) | 7]
40 L2(1 + L2)

< (1= Bo)E[[|ar — V3,9(@e, y* (x0)) | ] + T E[l|z1%) (30)
Bt g /Bt(at + ﬂt) 2 )12
4o (US4 6Bl - vt o)

(c)

E[l|t41 — V2,9(Zer1,y* (1) [|3]
402 L2(1+ L2)

< (1= ByE[|o, — V3, 9(Z,y* (z) 7] + TE[HE’EHQ] (31)
2ﬂt Bi(og + Bi) _ *
n Kg+o(a_m>+w¢2[m—yu»%

Proof: Part (a) can be derived by following the analysis of Lemma B.5. The key difference between
parts (b)-(c) and Lemma B.5 is that here we establish stochastic recursions in terms of the Frobenius
norm of the estimation error matrices V2, g(Z, 7:) — iy € R%*% and V2, g(Z¢, §s) —0r,i € R4* %,
while Lemma B.5 considers the Euclidean norm of the estimation error vector V. f (T, 4:) — ¢ €
R4,

(b) Here we provide the detailed proof of part (b) for completeness. By recalling Algorithm 1
Step 8 that uf, , = (1 — f;) > jen;, Wrjui + BiV2, 9" (xF, yf; &), we express the update rule of

Uy = % D perc UF as
U1 = (1 - B) ut—ﬁ-*zvlyg xuyf;ff)-
ke

Equivalently, we have

U1 — Voo g(Zep1, yin) = (1= Bo)[ae — Va,0(Zea1, yi)] + Bl
where

Z vymg Ty ’yic’ gf) - vgz;mg(ft-‘rla y;—i—l)'
kEIC

Following (26), we can see that

E(|tes1 — Va,9(Zer1, i) 1 F)
= (1= Be)’Elllte — V2,9(Zrr1,y5)IIF] + BPE]Ag eI F]

+ %E [<§t - vmf(i't+1ay:+l)7 Z mek($f,yf) - sz(ft+17y;+1)> ]
F

ke

§ﬂ50<1&)EWEV@M@HWEDMJ+ﬁEW%¢§

+2(1 = B)BE[ & > Vaf (@, uf) — Vo f (Tesr, yi)|1F]
ke

(32)

<(1=5) (1 - &) Ella — Viy9(@eer, yiy )l E] + BE Ag.ell7]

28:(1 = B) L

Bi)L _ x
+ S (Bl — @ 7]+l - i)
kek
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where (-, -) - is the Frobenius inner product. By following (27), we may obtain

Elll A, ]3] < 7 2 SE[IVE, gt (2, 5t €5) — V2, gF (kb))
ke)C
+ = Z E[ Hvxyg xt,yf) - Viygk(£t+1,yz+1)|\%] (33)
keIC

Z [t = Zeral®) + Ellyf — yirall?]) -
kex

Using the fact that || A+ B||% < (1+ B')HAHF +(1 %)HBH% and Lemma A.1 that [|yf, ; — 7| <
Ly||xi41 — x|, we have

e~ V2,001, P
Be\ - -~ 3 -
< (14 %) Io- Vgl + ”E V2,900, 7) — V2,900 u7)
< (1 B\ w2 2 i Lz _ 2 _
< (14 5 ) lae= Vgl P+ (14 ) Bl - zenl? + i~ vialP)
— (14 2) b - Vgt + (1 + 2 ) B2+ )
t

By substituting the above inequality and (33) into (32), we obtain

E(l|tir1 — V2,9(Zer1, v )]
2p707 N To7L2(14L3)

< (1= BE[lla - V2,9 y)lF] + — 2%, R[] 2]
28,13
K — Z ||517t *It—kl” + ||yt — Yl )
kek

The desired result can be acquired by applying (28). This completes the proof.

B.7 Proof of Theorem 5.1

Proof: We start our analysis by considering the term ||y — 3*(Z4)||%. By rearranging (15), we have

_ . 1 _ _ _ _
E(ll7: — y*(z:)|I”] < W]E (l5e = y* @) = 1Ge+1 — v* (@) IP)
g

o2 Myo?  3L2a2 )
(=02 " hy e
Letting my = 4,mg = 12L2L2,mg = 120312, ma; = 12C3(1 — kg)* I L%k, and ms =

6(L%(my +mg) + L2(m3 +my)) be the constants defined within (7), we deﬁne a random variable
Py = 2 F(2) + 515 = Vo f (@0, 471 + B2 [1he — Vo (20,57 (20)) ]2

b
+ i llae = V2,000 v @) E + D 5 00 = V5,000 y" (@) 15
j=1

Here we observe that Py < O (,/ K) and P, > 2 F(z*) = 24/ L F(z*). By multiplying m1 Bt
Mo ﬁt , M3 ﬁt ,and my, ; ﬁt to both sides of (25), (29), (30), and (31), respectively, and combining
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with (11), we obtain that

E[|VF(z¢)]*] + E[Pes1]

a? + B} :
<E[P]+0 <(1t_ p)g) +6(LF(my +ma) + L2 (ms + Y ma ;) Elllge — v7 %]
j=1
2(72 T2 b ) 2
N O(%) B (1 Ly - 4a; (Lf(ml + m2) + L(](Z;?) + ijl m47]))(1 + Ly)> ]E[Hztng]

Letting m4 = 12013L;QH;2, we note that my > 22:1 my, ;, and express the above inequality as

E[|VF(20)|°] + E[Prs1]

af + 52 2 T2 _ *1|2
<E[P]+0O e + 6(L(my +ma) + L2 (ms +ma))E[||5: — y7 |?]
2(712 T2 2
+0(2) - (1 agpp - 20 Om ) Lt 4 )0 B ) g
K Bi

By multiplying ms to both sides of (34), combining the above inequality with (34), and recalling that

ay = Cyy/ % and By =y = %, we further obtain
N ms [T - * 12
E[|VE(@)[I"] + E[Pesa] + ™ EE[HytH = Y ll7]
g

<E[P] + Z”\/?E[Ilyt -4’1+ 0 <T<1K_p)z) + 0(%)

o _ 3msL2C2 _
— (1= 222 - 4R 4+ ma) + T2 (ma + ma))(1+ £2) — 0 ) B2,
VT Ho

T (Co,T)

We then observe that for large 7', there exists a small constant C’o > 0 such that Y(Cy,T") > 0 for all

Cy < Cy. In such scenario, we sum the above inequality overt = 0,1, --- ;T — 1 and conclude that
T—-1 ms || * |2

1 Po+ 27190 — y5 lI” — E[Pr] 1 1

- ]E F — 2 < YtHg ( )

z g IVE@)I?) < - +0(A=)+0 (7t

1 K
co A yro( ),
VvVI'K T(1—p)?

where the last inequality applies the facts P+ 4/ Llgo—yg|? < O(y/ %) and Pr > 24/ LF(z*).
g9
This completes the proof. ]

C Proof of Results for ;-PL Objectives

Throughout this subsection, we assume Assumptions 3.1, 3.2, 3.3, 3.4, and 5.2 hold. We set
b = 3[log 1 T, consider the scenario where step-sizes follow (6) such that

2 C
=—— andfi=pn=———, forl1 <t<T,
M(C1 +t) Be =1 Cr+t

where C; > 0 is a large constant making

Qi

B(Cy) = 1 2Ly Bay(L}(z1 + 23) + L2(23 + 24)) (1 + L2) 62512
VT2 uG pCi pgtCi
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with

4 121212 120312
Z - b == - 9
() u(Cr — 2) TG —2) )
1202 6C: (L2(21 + 22) + L2(23 +
24 = ! and z5 = 1( f(21 #2) 9(23 24)).

w(Cr = 2)L2KZ f1g(C1 — 2/ )

C.1 Lemma C.1 and Its Proof

Lemma C.1 Suppose Assumptions 3.1, 3.2, 3.3, 3.4, and 5.2 hold and the objective F satisfies yi-PL
Assumption 5.2 in addition. We have

BlF(241)] — F*
< (1 - ap)E[F () — F*] - %(1 — oy Lp)E[| 2% + 20, E[[| Vo f (20, y7) — 5¢|°]
+ 60%L2L2E[Hvyf(ft,yt) hel|*] + 60, CFLIE(V2,9(Z0, y7 ) — e 7]

b _ 2 Oétﬁt
L%g Z (1= ko) (V5 9(Zt, 47) — a5l 7] + O ((10)2> '

Proof: Suppose the objective function F’ satisfies the p-PL condition (5.2), by combining it with (13),
we have

E[F(Z11)] — E[F(z)]
< —auE[F(z4) — F*] — %(1 — o Lp)E[||7]%]

K
o = *
+ }t Z (E[Ilvmf(xt,yt) — sFI|P] + 3C3L2E[|| V2, 9(Ze, y7) — uf||2])

(L2CEEIIVE, o y)] ™ = af 1] + C2L2ENIY, f (21, 7) — BEIP)).
k=1

By following (14) and applying the convergence of consensus errors in Lemma B.2, we further
express the above inequality as

E[F(Z¢41)] — E[F(Z4)]
< —oaquE[F(zy) — F*] — C;t (1 — ar Lp)E[||Z)1*] + 20:E[|| Vo f (Z4, y7 ) — 5]
+ 60 LILYE[||V, f (Z4, y7 ) — hell?] + 600 CFLIE[(| V2, 9(Ze, yr ) — el 7]

66? b h— _ 2 at/Bt
+ 1o D (1= 1) RV, 0(T0 u) — BrgllE] + O ((1_p)2>

We acquire the desired result by substracting F™* on both sides of the above inequality.

C.2 Proof of Theorem 5.3

Before establishing the convergence rate for p-PL function, we provide a result (Ghadimi and Lan,
2016, Lemma 1) to characterize the convergence behavior for a random sequence satisfying a special
form of stochastic recursion as follows.

Lemma C.2 Letting by, = k—il and Ty, = ﬁ for k > 1 be two nonnegative sequences. For any
nonnegative sequences { Ay} and { By} satisfying

Ap < (1 —=by)Ap—1 + By, fork>1,
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we have I'y, =T H?:erl(l - bj) and

r I'.B;
Ay < =FA,+ > k20

We then derive the convergence rate of {Z;} for u-PL objectives as follows.

Proof of Theorem 5.3: First of all, under the choice of step-sizes that o, = m and B, =y =

c?—lpt’ we have lim;_, o oy = 0, limy_, o, 5; = 0, and lim;_,, ¢ = 0. By following the analysis of

Lemmas B.4, B.5, and B.6 and applying the convergence rates of consensus errors in Lemma B.2 (ii),
we observe that (15), (25), (29), (30), and (31) still hold under this choice of step-sizes.

Next, we define a random variable
Jp = F(Z1) — F* + 21|V f (B, 57) — 5lI” + 22V f (Ze, 47) — ha)?
+23)|V2,0(T0ul) — Wl + Y 245l Vay 9@ ut) — vl F

1<j<b
where
o2 4 22::6atL§L§ _12L3L]
Br—aup p(Cr—2) Be—awp p(Cr—2)
Z_mpﬂ?_m@@ - 6 LyCF(1 = k)T 120507 (1 — kg)*
3 and 24,5 =

B 1(Cr —2)’ (Be — OétM)Léf‘ig a w(Cr — 2)%"9 7
are all constants defined in (35). By multiplying 21, 22, 23, and z4 ; to both sides of (25), (29), (30),
and (31), respectively, and combining them with Lemma C.1, we obtain

E[Ji41] < (1 — arp)E[J] + O(ﬂf) +0 (ts(l>

K 1—p)?
1—oyLp 7oy (L?(Zl + 23) + LE(ZS + Zl<j<b Z4J))(1 + L§> =12
o . SE Ef|z
2 284
+ 65, (Lfc(z1 +20) + Lz(zs + Z Z4,j))EH|?7t —yilP].
1<5<b

-2

- —4
By noting that » 0, ;o 24,5 < Lk

= z4 in (35), we further express the above inequality as

E[Ji41] < (1 — v p)E[ ] + O<[it2) O <t3(1>

K 1—p)?
W l—aLp 4oy (L?c(21 + 23) + Lg(zg +24)) (1 + Lf,) E[| |
! 2 By !

+ 60 (L (21 + 22) + Ly (23 + 20) ) E[[17: — v7 |1%]-
By recalling that a; = m and B; = v = %, we have o /B = /v = % Further,
letting
. 6,6,5 (L?c(zl + 2’2) + Lg(z;; + 2’4)) _ 601 (L?c(zl + Zg) + Lg(z;g + Z4))

25 = )
pg (v — ) 1g(Cr =2/ 1)
by multiplying z5 to both sides of (15) and combining with the above inequality, we have

B[] + 25E[[1Fe1 — v ]
2
< (1= o) (BU + =Bl —il1%) +0(22) + 0 (M)

1 2Lp 8(Lj(z1+23) + Li(23+21))(1+ L)  6z5L2 .
PV - AT
2 pCy nCi frgC

v(C1)
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We note that U(C) is increasing in C; with lime, o0 U(Cy) = % Clearly, there exists a constant
C; > 0 such that ¥ (Cy) > 0for Cy > C;. Finally, we conclude that for ¢ > 0,

E[Jis1) + 25E (|11 — yrsa 7]

(1= ) (B0 + o8l i 171) + 0 () +0 (Gt )

Cr+t

FC1+t[J + 25lld0 — w21 ZO(B Cl+t) §10 Ft+c1
7FC 0 5(Y0 — Yo )QF

IN

IA

1

GG+ 1) 9 Cr+t j+1 Ci+t )
() (S N R (e ro A j;o( )+ ZO( p))

Cl(Cl + 1)J0 t 21H(Cl + t)
< @i olereror) O (@ s ae)

<0 (i) O (i)

where the second inequality uses Lemma C.2. This completes the proof.

C.3 Application to Distributed Risk-Averse Optimization

Letting U*(x,£%) be a random utility function for agent k¥ € K, we denote by U(x) =

+ Y vex Eer[UF (2, €7)] the expected utility function averaged over all agents, and consider the
following distributed regularized mean-deviation risk-averse optimization problem that

H%EX{U(”‘“[E@ el - e DU }l/p‘A”;”Q}'

keKx

Here, all agents are connected by a decentralized network and work together to solve a shared
risk-averse mean-deviation optimization problem (Ruszczynski and Shapiro, 2006). This problem
can be reformulated as a three-level optimization problem that

T 2
e o ). 3 0) = w3 (5) = i 0) " = 25

* M 1 2
sit. 97 () = argminEg1 ... ¢x (y1 K E Uk(ffyfk)) )
y1ER
kek

y5(z) = argmin B¢ ... ¢ (y2 _ Z Uk ( gk )

v2&R L.

where p > 1 is a constant. The above problem is A-strongly concave for any « € (0,1] and
A > 0 (Ruszczynski and Shapiro, 2006).

D Result for Single-center-multi-user-federated Stochastic Bilevel
Optimization

We first provide the following Federated Sochastic Bilevel Optimization algorithm to tackle federated
SBO over a Single-center-multi-user star network. Our algorithm utilizes the star network structure
that a central server connects all agents and synchronously passes the same solution (¢, y) to all
agents within each learning round. Then, each agent would query the stochastic information from
its own data and pass it to the central server. After collecting all stochastic information, the central
server would employ a similar stochastic approximation scheme as DSBO to update its estimation of
the gradients and hessians within (3). The details are provided in Algorithm 2.
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Algorithm 2 Federated Stochastic Bilevel Optimization over Star Network

input: Step-sizes {ay}, {Bt}, {7}, total iterations 7.
bk =0,95=0,ul=0,0f =p,Lsk=0,nk=0

1: fort=0,1,--- , T —1do

2:  Communication: Pass (x,y;) to each agent k € K.

3 fork=1,---,Kdo

4 Local sampling: Query SO at (z,y;) to obtain V f* (x4, yi; CF), Vy f* (24, ye5 CF),

V2,95 (e, ye; €F), and V2, g% (x4, ye: EF).

5:  end for
6:  Communication: Receive stochastic samples from each agent k € cK.
7: Outer loop update: z441 = &y — ay (s¢ — ug[ve] *hy).
8:  Inner loop update: y;41 =3 — % > pexc Vog" (@F, yr: F).
9: Estimate Vrf(xt7yt): St+1 = (1 — Bt)st + % ZkG]C szk(l't,yt; Ctk)
10: Bstimate V, f (21, 40): hepr = (1= B + 55 Y cie Vo (@0, s ¢F).
11:  Estimate ngg(xt, ye): ugrr = (1 — Brus + % Zkelc Viygk(xt,yt;é“f).
12 Estimate [V2,g(x¢,y:)] s Set Qpy1 = L.
132 for i=1,--- bdo

14: Vet = (1= Br)vei + % Zke)c vgz;ygk(xf, yf% ffﬂ)a
15: Qi1 =T+ T - [%gvt+1,i)Qt+1,i71

16:  end for

17: Set qi+1 = %th-i—l,b

18: end for

output: {z;}7 1.

Theorem D.1 (Single-center-multi-user-federated SBO) Suppose 3.1, 3.3, and 3.4 hold. Letting
{x;} be the sequence generated by Algorithm 2 over a star network with step-sizes defined in (7), we
have

Proof: We observe that the key difference between Alg. 2 and Alg. 1 is that Alg. 2 considers an
environment where each agent synchronously receives a common solution (x4, y;) from the central
agent so that the effect of consensus disappears. Consequently, with a slight abuse of notation that
(z¢,yt) = (Z¢, Y ). Further, we observe that all consensus error terms within (11), (15), (25), (29),
(30), and (31) would disappear, leading to tightened characterizations of the overall estimation errors
under the star-network. For instance, (11) could be tightened as

E[|VF(z:)|?
2 . )
<& (E[F(a‘st)] - E[F(fm)]) — (1 — auLp)E[||Z)|?] + 4B[||Va f (Ze, y}) — 5%
+ 2L L2E[|Vy f (20, y7) — hell?] + 12CFL2E[|| V2, g (21, y7) — ]| 7]
12C2 _
+ o S0 (1= ) IRV, u7) — o) 3
979 1<5<b

By following the analysis of Theorem 5.1 and employing the step-sizes in (7), we obtain that

1= 1
=S IVFG)P <0 (m) .

t=0
This completes the proof.

E Additional Numerical Experiments

E.1 Hyper-parameter Optimization

The baseline algorithm DBSA conducts the followings. At the outer solution xF, DBSA obtains
an estimator y¥ of y*(zy) via conducting ¢ gossip stochastic gradient descent steps gfl =
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Figure 4: Performances of Algorithm 1 and DSBA over a uniform fully connected network: (a)
Empirical averaged training loss against total samples for DSBO K = 5, 10, 20,100 and DSGD
K = 5 (b) Empirical averaged validation loss against iteration for DSBO K = 5,10, 20, 100. All
figures are generated through 10 independent simulations over australia handwriting dataset.
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Figure 5: Performances of Algorithm 1 and DSBA over a connected random network: (a) Empirical
averaged training loss against total samples for DSBO K = 5,10,20 and DBSA K = 5. (b)
Empirical averaged validation loss against iteration for DSBO K = 5,10,20. All figures are
generated through 10 independent simulations over australia handwriting dataset.

ZjeNk whjgi’i - ntyivyg(:zzf, gfl, 5{“) fori =0,1,---,t with yf = gﬁt, and then update the main
solution a7y by one stochastic gradient descent step that ., = > . Wi ;7 — 4t Va f(2f, y7'5 ¢F).
We summarize the details in Algorithm 3.

We test our algorithm over various networks to further investigate its performance. Specifically, we
test our algorithm over fully connected networks with K = 5, 10, 20, 100 and randomly generated
connected networks with K = 5, 10, 20. We summarize the details in Figures 4 and 5, respectively.
These numerical results suggest the efficiency and robustness of our algorithm over networks of large

size and various topologies.

E.2 Distributed Policy Evaluation for Reinforcement Learning

Simulation environment: In our experiments, for each state s € S, we generate its feature ¢, ~
Unif[0, 1]™; we uniformly generate the transition probabilities p, o+ and standardize them such that
> yesPs,s = 1; we sample the mean of rewards 7 _, ~ Unif[0, 1] for all s € S and each agent

ke [K]. We set the regularizer parameter A = 1.
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Algorithm 3 Decentralized Bilevel Stochastic Approximation

input: Step-sizes {c }, {n:,; }, number of total iterations T'.
kE_ k_
g =0,y5 =0

1. fort=0,1,--- , T —1do

2:  Inner loop update:

3: for :=0,1,--- ,tdo

4: fork=1,2,--- ,Kdo

5: Local sampling: Query SO at (zf, §f ;) to obtain Vg (xf, §f ;; &F ;).
6: Estimate: gjf;iH = Zje/\/k wk,jﬂii - nt,ivyg(-va ﬂfw ffz)
7: end for

8: end for )

9:  Outer loop update: :z:f'+1 = ZjeNk wa;L’i — Oétvxf(l“fa yf% Ctk)
10:

11: end for

e o 1 k
output: T = = ;. x Tp.

Algorithm 4 Decentralized Stochastic Gradient Desecent

input: Step-sizes {« }, weights {n,;}, number of total iterations T".
z§=0,y5=0
0 =YY =

1: fort=0,1,--- , T —1do

2:  Inner value update: Set gjf 0o=0.

3: for i =0,1,---,t—1do

4: fork=1,---,Kdo

5: Local sampling: Query SO at x¥ to obtain g* (z; ffl)

6: Estimate: §f; 1 = (1= 1t.4) D jens, Whjtq + Neig™ (25 EF,)-
7: end for

8:  end forSet y = §f,.

9: Outer loop update: xf = Y-, n, Wkt — :Vg(af; EF)V f(yf; CF).
10:
11: end for

| k
output: Iy = = >, Tp.

In each simulation, we set |S| = 100 and update the solution (z*, y*) for each agent in a parallel
manner as follows: At iteration ¢, for each state s € S, we simulate a random transition to another
state s’ € S using the transition probability ps s/’s, generate a random reward rf g~ N (T_f 1),

and update x} using step-sizes oy, = min{0.01, &} and 8; = v, = min{0.5, 22 }.
We provide the details of the baseline algorithm DSGD in Algorithm 4.

To further study the linear speedup effect under various accuracy levels, we compute the total
generated samples for finding an e-optimal solution ||Z; — 2*||? < ¢ and plot the 75% confidence
region of log-sample against number of agents K = 5, 10, 20 for various €’s in Figure 6. Similar as
in Figure 2, we observe for all accuracy levels e = 0.8 x 107%,1.5 x 1076,2 x 1075, the required
samples for finding an e-optimal solution by K agents are roughly the same, further demonstrating
the linear speedup effect.
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Figure 6: 75% confidence region of log- total samples for achieving ||Z; — 2*||? < e with varying

network sizes K = 5,10, 20 fore = 0.8 x 1076,1.5 x 1076,2 x 1075,
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