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A TECHNICAL DETAILS OF SPECTRAL LEARNING WITH WILD DATA

Theorem A.1. (Recap of Theorem 3.1) Let fx =
√
wxf(x) for some function f . Recall ηu, ηl are

coefficients defined in Eq. 1. Then, the loss function Lmf(F,A) is equivalent to the following loss
function for f , which we term Spectral Learning with Wild Data (SLW):

LSLW(f) ≜ −2ηuL1(f)− 2ηlL2(f) + η2uL3(f) + 2ηuηlL4(f) + η2l L5(f), (14)

where

L1(f) =
∑
i∈Yl

E
x̄l∼Pli

,x̄′
l∼Pli

,

x∼T (·|x̄l),x
+∼T (·|x̄′

l)

[
f(x)⊤f

(
x+
)]

,

L2(f) = E
x̄u∼P,

x∼T (·|x̄u),x
+∼T (·|x̄u)

[
f(x)⊤f

(
x+
)]

,

L3(f) =
∑

i,j∈Yl

E
x̄l∼Pli

,x̄′
l∼Plj

,

x∼T (·|x̄l),x
−∼T (·|x̄′

l)

[(
f(x)⊤f

(
x−))2] ,

L4(f) =
∑
i∈Yl

E
x̄l∼Pli

,x̄u∼P,
x∼T (·|x̄l),x

−∼T (·|x̄u)

[(
f(x)⊤f

(
x−))2] ,

L5(f) = E
x̄u∼P,x̄′

u∼P,
x∼T (·|x̄u),x

−∼T (·|x̄′
u)

[(
f(x)⊤f

(
x−))2] .

Proof. We can expand Lmf(F,A) and obtain

Lmf(F,A) =
∑

x,x′∈X

(
wxx′

√
wxwx′

− f⊤
x fx′

)2

=const +
∑

x,x′∈X

(
−2wxx′f(x)⊤f (x′) + wxwx′

(
f(x)⊤f (x′)

)2)
,

where fx =
√
wxf(x) is a re-scaled version of f(x). At a high level, we follow the proof in

HaoChen et al. (2021), while the specific form of loss varies with the different definitions of posi-
tive/negative pairs. The form of LSLW(f) is derived from plugging wxx′ and wx.

Recall that wxx′ is defined by

wxx′ = ηu
∑
i∈Yl

Ex̄l∼Pli
Ex̄′

l∼Pli
T (x|x̄l)T (x′|x̄′

l) + ηlEx̄u∼PT (x|x̄u)T (x′|x̄u) ,

and wx is given by

wx =
∑
x′

wxx′

= ηu
∑
i∈Yl

Ex̄l∼Pli
Ex̄′

l∼Pli
T (x|x̄l)

∑
x′

T (x′|x̄′
l) + ηlEx̄u∼PT (x|x̄u)

∑
x′

T (x′|x̄u)

= ηu
∑
i∈Yl

Ex̄l∼Pli
T (x|x̄l) + ηlEx̄u∼PT (x|x̄u).

Plugging in wxx′ we have,
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− 2
∑

x,x′∈X
wxx′f(x)⊤f (x′)

=− 2
∑

x,x+∈X

wxx+f(x)⊤f
(
x+
)

=− 2ηu
∑
i∈Yl

Ex̄l∼Pli
Ex̄′

l∼Pli

∑
x,x′∈X

T (x|x̄l)T (x′|x̄′
l) f(x)

⊤f (x′)

− 2ηlEx̄u∼P
∑
x,x′

T (x|x̄u)T (x′|x̄u) f(x)
⊤f (x′)

=− 2ηu
∑
i∈Yl

E
x̄l∼Pli

,x̄′
l∼Pli

,

x∼T (·|x̄l),x
+∼T (·|x̄′

l)

[
f(x)⊤f

(
x+
)]

− 2ηl E
x̄u∼P,

x∼T (·|x̄u),x
+∼T (·|x̄u)

[
f(x)⊤f

(
x+
)]

=− 2ηuL1(f)− 2ηlL2(f).

Plugging wx and wx′ we have,

∑
x,x′∈X

wxwx′
(
f(x)⊤f (x′)

)2
=

∑
x,x−∈X

wxwx−
(
f(x)⊤f

(
x−))2

=
∑

x,x′∈X

(
ηu
∑
i∈Yl

Ex̄l∼Pli
T (x|x̄l) + ηlEx̄u∼PT (x|x̄u)

)

·

ηu
∑
j∈Yl

Ex̄′
l∼Plj

T (x−|x̄′
l) + ηlEx̄′

u∼PT (x−|x̄′
u)

(f(x)⊤f (x−))2
=η2u

∑
x,x−∈X

∑
i∈Yl

Ex̄l∼Pli
T (x|x̄l)

∑
j∈Yl

Ex̄′
l∼Plj

T (x−|x̄′
l)
(
f(x)⊤f

(
x−))2

+ 2ηuηl
∑

x,x−∈X

∑
i∈Yl

Ex̄l∼Pli
T (x|x̄l)Ex̄u∼PT (x−|x̄u)

(
f(x)⊤f

(
x−))2

+ η2l
∑

x,x−∈X

Ex̄u∼PT (x|x̄u)Ex̄′
u∼PT (x−|x̄′

u)
(
f(x)⊤f

(
x−))2

=η2u
∑
i∈Yl

∑
j∈Yl

E
x̄l∼Pli

,x̄′
l∼Plj

,

x∼T (·|x̄l),x
−∼T (·|x̄′

l)

[(
f(x)⊤f

(
x−))2]

+ 2ηuηl
∑
i∈Yl

E
x̄l∼Pli

,x̄u∼P,
x∼T (·|x̄l),x

−∼T (·|x̄u)

[(
f(x)⊤f

(
x−))2]

+ η2l E
x̄u∼P,x̄′

u∼P,
x∼T (·|x̄u),x

−∼T (·|x̄′
u)

[(
f(x)⊤f

(
x−))2]

=η2uL3(f) + 2ηuηlL4(f) + η2l L5(f).
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B IMPACT OF SEMANTIC OOD DATA
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Figure 5: Illustration of 5 nodes graph and the augmentation
probability defined by classes and domains. Figure (a) illus-
trates the scenario where semantic OOD data has a differ-
ent domain from covariate OOD. Figure (b) depicts the case
where semantic OOD and covariate OOD share the same
domain.

In our main analysis in Section 4, we
consider semantic OOD to be from a
different domain. Alternatively, in-
stances of semantic OOD data can
come from the same domain as co-
variate OOD data. In this section, we
provide a complete picture by con-
trasting these two cases.

Setup. In Figure 5, we illustrate two
scenarios where the semantic OOD
data has either a different or the same
domain label as covariate OOD data.
Other setups are the same as Sec. 4.3.

Adjacency matrix. The adjacency
matrix for scenario (a) has been de-
rived in Eq. 11. For the alternative
scenario (b) where semantic OOD
shares the same domain as the covari-
ate OOD, we can derive the analytic form of adjacency matrix A1.

ηuA
(u)
1 =

ρ2 + β2 + α2 + 2γ2 2ρβ + γ2 + 2γα 2ρα + 3γβ 2αβ + γβ + 2γρ αβ + 2γ(β + ρ)

2ρβ + γ2 + 2γα ρ2 + β2 + α2 + 2γ2 2αβ + γβ + 2γρ 2ρα + 3γβ αβ + 2γ(β + ρ)

2ρα + 3γβ 2αβ + γβ + 2γρ ρ2 + 2β2 + α2 + γ2 2ρβ + β2 + 2γα 2ρβ + β2 + γ2 + γα

2αβ + γβ + 2γρ 2αρ + 3γβ 2ρβ + β2 + 2γα ρ2 + 2β2 + α2 + γ2 2ρβ + β2 + γ2 + γα

αβ + 2γ(β + ρ) αβ + 2γ(β + ρ) 2ρβ + β2 + γ2 + γα 2ρβ + β2 + γ2 + γα ρ2 + 2β2 + 2γ2


(15)

A1 =
1

C1
(ηlA

(l)
1 + ηuA

(u)
1 ) =

1

C1
(

ρ2 + β2 2ρβ ρα + γβ αβ + γρ γ(β + ρ)

2ρβ ρ2 + β2 αβ + γρ ρα + γβ γ(β + ρ)

ρα + γβ αβ + γρ α2 + γ2 2γα γ(γ + α)

αβ + γρ ρα + γβ 2γα α2 + γ2 γ(γ + α)

γ(β + ρ) γ(β + ρ) γ(γ + α) γ(γ + α) 2γ2

+ ηuA
(u)
1 ),

(16)

where C1 is the normalization constant to ensure the summation of weights amounts to 1. Each
row or column encodes connectivity associated with a specific sample, ordered by: angel sketch,
tiger sketch, angel painting, tiger painting, and panda. We refer readers to the Appendix D.2 for the
detailed derivation.

Main analysis. Following the same assumption in Sec. 4.3, we are primarily interested in analyzing
the difference of the representation space derived from A and A1 and put analysis on the top-3
eigenvectors V̂1 ∈ R5×3.

Theorem B.1. Denote α′ = α
ρ and β′ = β

ρ and assume ηu = 5, ηl = 1, we have:

V̂1 =

 √
2

√
2 1 1 1

a(λ̂2) a(λ̂2) b(λ̂2) b(λ̂2) 1

c(λ̂3) −c(λ̂3) −1 1 0

⊤

·R, E(f1) = 0, if α > 0, β > 0. (17)

where a(λ) =
√
2(1−6β′−λ)

8β′ , b(λ) = 4β′−1+λ
4β′ , c(λ) =

√
2(1−3α′−6β′−λ)

3α′ . R is a diagonal matrix

that normalizes the eigenvectors to unit norm and λ̂2, λ̂3 are the 2nd and 3rd highest eigenvalues.

Interpretation. When semantic OOD shares the same domain as covariate OOD, the OOD gen-
eralization error E(f1) can be reduced to 0 as long as α and β are positive. This generalization
ability shows that semantic OOD and covariate OOD sharing the same domain could benefit OOD
generalization. We empirically verify our theory in Section E.4.

Theorem B.2. Denote α′ = α
ρ and β′ = β

ρ and assume ηu = 5, ηl = 1, we have:

S(f)− S(f1)
{

> 0 , if α′, β′ ∈ black area in Figure 6 (b);
< 0 , if α′, β′ ∈ white area in Figure 6 (b). (18)
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(a) Heatmap of S(f)− S(f1)
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(b) Heatmap of 1(S(f)− S(f1))

Figure 6: Visualization of the separability difference between two cases defined in Figure 5 (a) and
Figure 5 (b). Figure 6 (a) utilizes a heatmap to depict the distribution, while Figure 6 (a) uses the
indicator function.

Interpretation. If α′, β′ ∈ black area in Figure 6 (b) and semantic OOD comes from a different
domain, this would increase the separability between ID and semantic OOD, which benefits OOD
detection. If α′, β′ ∈ white area in Figure 6 (b) and semantic OOD comes from a different domain,
this would impair OOD detection.

C IMPACTS OF ID LABELS ON OOD GENERALIZATION AND DETECTION

Compared to spectral contrastive loss proposed by HaoChen et al. (2021), we utilize ID labels in
the pre-training. In this section, we analyze the impacts of ID labels on the OOD generalization and
detection performance.

Following the same assumption in Sec. 4.3, we are primarily interested in analyzing the difference
of the representation space derived from A and A(u) and put analysis on the top-3 eigenvectors
V̂ (u) ∈ R5×3. Detailed derivation can be found in the Appendix D.3.

Theorem C.1. Assume ηu = 5, ηl = 1, we have:

V̂ (u) =



1
2

[
1 1 1 1 0
0 0 0 0 2
−1 1 −1 1 0

]⊤
, if α > β;

1
2

[
1 1 1 1 0
0 0 0 0 2
−1 −1 1 1 0

]⊤
, if α < β.

, E(f (u)) =

{
0 , if α > β;
2 , if α < β.

(19)

Interpretation. By comparing the eigenvectors V̂ in the supervised case (Theorem 4.1) and the
eigenvectors V̂ (u) in the self-supervised case, we find that adding ID label information transforms
the performance condition from α = β to 9

8α = β. In particular, the discussion can be divided
into two cases: (1) α > β. (2) α < β. In the first case when the connection between the class is
stronger than the domain, the model could learn a perfect ID classifier based on features in the first
two rows in V̂ (u) and effectively generalize to the covariate-shifted domain (the third and fourth
row in V̂ (u)), achieving perfect OOD generalization with E(f (u)) = 0. In the second case when the
connection between the domain is stronger than the connection between the class, the embeddings
of covariate-shifted OOD data are identical, resulting in high OOD generalization error.

Theorem C.2. Assume ηu = 5, ηl = 1, we have:

S(f)− S(f (u)) > 0, if α > 0, β > 0 (20)

Interpretation. After incorporating ID label information, the separability between ID and semantic
OOD in the learned embedding space increases as long as α and β are positive. This suggests that
ID label information indeed helps OOD detection. We empirically verify our theory in Section E.4.
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D TECHNICAL DETAILS OF DERIVATION

D.1 DETAILS FOR FIGURE 5 (A)

Augmentation Transformation Probability. Recall the augmentation transformation probability,
which encodes the probability of augmenting an original image x̄ to the augmented view x:

T (x | x̄) =


ρ if y(x̄) = y(x), d(x̄) = d(x);
α if y(x̄) = y(x), d(x̄) ̸= d(x);
β if y(x̄) ̸= y(x), d(x̄) = d(x);
γ if y(x̄) ̸= y(x), d(x̄) ̸= d(x).

Thus, the augmentation matrix T of the toy example shown in Figure 5 (a) can be given by:

T =


ρ β α γ γ
β ρ γ α γ
α γ ρ β γ
γ α β ρ γ
γ γ γ γ ρ


Each row or column encodes augmentation connectivity associated with a specific sample, ordered
by: angel sketch, tiger sketch, angel painting, tiger painting, and panda.

Details for A(u) and A(l). Recall that the self-supervised connectivity is defined in Eq. 1. Since we
have a 5-nodes graph, A(u) would be 1

5T T ⊤. If we assume ηu = 5, we can derive the closed-form
self-supervised adjacency matrix:

ηuA
(u) =

ρ2 + β2 + α2 + 2γ2 2ρβ + γ2 + 2γα 2ρα + γ2 + 2γβ 2αβ + γ2 + 2γρ γ(γ + α + β + 2ρ)

2ρβ + γ2 + 2γα ρ2 + β2 + α2 + 2γ2 2αβ + γ2 + 2γρ 2ρα + γ2 + 2γβ γ(γ + α + β + 2ρ)

2ρα + γ2 + 2γβ 2αβ + γ2 + 2γρ ρ2 + β2 + α2 + 2γ2 2ρβ + γ2 + 2γα γ(γ + α + β + 2ρ)

2αβ + γ2 + 2γρ 2ρα + γ2 + 2γβ 2ρβ + γ2 + 2γα ρ2 + β2 + α2 + 2γ2 γ(γ + α + β + 2ρ)

γ(γ + α + β + 2ρ) γ(γ + α + β + 2ρ) γ(γ + α + β + 2ρ) γ(γ + α + β + 2ρ) ρ2 + 4γ2


Then, according to the supervised connectivity defined in Eq. 2, we only compute ID-labeled data.
Since we have two known classes and each class contains one sample, A(l) = T:,1T ⊤

:,1 + T:,2T ⊤
:,2.

Then if we let ηl = 1, we can have the closed-form supervised adjacency matrix:

ηlA
(l) =


ρ2 + β2 2ρβ ρα+ γβ αβ + γρ γ(ρ+ β)
2ρβ ρ2 + β2 αβ + γρ ρα+ γβ γ(ρ+ β)

ρα+ γβ αβ + γρ α2 + γ2 2γα γ(α+ γ)
αβ + γρ ρα+ γβ 2γα α2 + γ2 γ(α+ γ)
γ(ρ+ β) γ(ρ+ β) γ(α+ γ) γ(α+ γ) 2γ2


Details of eigenvectors V̂ . We assume ρ ≫ max(α, β) ≥ min(α, β) ≫ γ ≥ 0, and denote
α′ = α

ρ , β
′ = β

ρ . A can be approximately given by:

A ≈ Â =
1

Ĉ


2 4β′ 3α′ 0 0
4β′ 2 0 3α′ 0
3α′ 0 1 2β′ 0
0 3α′ 2β′ 1 0
0 0 0 0 1

 ,

where Ĉ is the normalization term and equals to 7 + 12β′ + 12α′. The squares of the minimal term
(e.g., αβ

ρ2 ,
α2

ρ2 ,
β2

ρ2 ,
γ
ρ = γ

α · α
ρ ,

αγ
ρ2 , etc) are approximated to 0.

D̂ =
1

Ĉ
diag[2 + 4β′ + 3α′, 2 + 4β′ + 3α′, 1 + 2β′ + 3α′, 1 + 2β′ + 3α′, 1]

D̂− 1
2 =

√
Ĉdiag[

1√
2
(1− β′ − 3

4
α′),

1√
2
(1− β′ − 3

4
α′), 1− β′ − 3

2
α′, 1− β′ − 3

2
α′, 1]

D− 1
2AD− 1

2 ≈ D̂− 1
2 ÂD̂− 1

2 =


1− 2β′ − 3

2
α′ 2β′ 3√

2
α′ 0 0

2β′ 1− 2β′ − 3
2
α′ 0 3√

2
α′ 0

3√
2
α′ 0 1− 2β′ − 3α′ 2β′ 0

0 3√
2
α′ 2β′ 1− 2β′ − 3α′ 0

0 0 0 0 1
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Let λ1,...,5 and v1,...,5 be the eigenvalues and their corresponding eigenvectors of D− 1
2AD− 1

2 . Then
the concrete form of λ1,...,5 and v1,...,5 can be approximately given by:

v̂1 = 1√
6
[
√
2,
√
2, 1, 1, 0]⊤ λ̂1 = 1

v̂2 = [0, 0, 0, 0, 1]⊤ λ̂2 = 1

v̂3 = 1√
6
[−

√
2,
√
2,−1, 1, 0]⊤ λ̂3 = 1− 4β′

v̂4 = 1√
6
[−1,−1,

√
2,
√
2, 0]⊤ λ̂4 = 1− 9

2α
′

v̂5 = 1√
6
[1,−1,−

√
2,
√
2, 0]⊤ λ̂5 = 1− 4β′ − 9

2α
′

Since α′, β′ > 0, we can always have λ̂1 = λ̂2 > λ̂3 > λ̂5 and λ̂1 = λ̂2 > λ̂4 > λ̂5. Then, we let
k = 3 and V̂ ∈ R5×3 is given by:

V̂ =



 1√
3

1√
3

1√
6

1√
6

0

0 0 0 0 1
− 1√

3

1√
3

− 1√
6

1√
6

0

⊤

, if 9
8α

′ > β′;

 1√
3

1√
3

1√
6

1√
6

0

0 0 0 0 1
− 1√

6
− 1√

6

1√
3

1√
3

0

⊤

, if 9
8α

′ < β′.

Details of linear probing and separability evaluation. Recall that the closed-form embedding
Z = [D]−

1
2Vk

√
Σk. Based on the derivation above, closed-form features for ID sample Zin ∈ R2×3

can be approximately given by:

Ẑin =


(1−β′−0.75α′)

√
Ĉ√

6

[
1 0 −

√
1− 4β′

1 0
√
1− 4β′

]
, if 9

8α
′ > β′.

(1−β′−0.75α′)
√

Ĉ

2
√
3

√2 0 −
√
1− 9

2α
′

√
2 0 −

√
1− 9

2α
′

 , if 9
8α

′ < β′.

Based on the least error method, we can derive the weights of the linear classifier M ∈ R3×2,

M̂ = (Ẑ⊤
in Ẑin)

†ẐT
in yin

where (·)† is the Moore-Penrose inverse and yin is the one-hot encoded ground truth class labels. So
when 9

8α > β, the predicted probability ŷcovariate can be given by:

ŷcovariate
out = Ẑcovariate

out · M̂ =
(1− β′ − 3

2α
′)

1− β′ − 3
4α

′ · I

where I ∈ R2×2 is an identity matrix. We notice that when 9
8α < β, the closed-form features for

ID samples are identical, indicating the impossibility of learning a clear boundary to classify classes
angel and tiger. Eventually, we can derive the linear probing error:

E(f) =

 0 , if 9
8α > β;

2 , if 9
8α < β.

The separability between ID data and semantic OOD data can be computed based on the closed-form
embeddings Ẑin and Ẑsemantic

out :

Ẑsemantic
out =

√
Ĉ · [0, 1, 0]

S(f) =

{
(7 + 12β′ + 12α′)( 1−2β′

3 (1− β′ − 3
4α

′)2 + 1) , if 9
8α > β;

(7 + 12β′ + 12α′)( 2−3α′

8 (1− β′ − 3
4α

′)2 + 1) , if 9
8α < β.
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D.2 DETAILS FOR FIGURE 5 (B)

Augmentation Transformation Probability. Illustrated in Figure 5 (b), when semantic OOD and
covariate OOD share the same domain, the augmentation matrix can be slightly different from the
previous case:

T =


ρ β α γ γ
β ρ γ α γ
α γ ρ β β
γ α β ρ β
γ γ β β ρ


Each row or column represents augmentation connectivity of a specific sample, ordered by: angel
sketch, tiger sketch, angel painting, tiger painting, and panda.

Details for A
(u)
1 and A

(l)
1 . After the assumption ηu = 5, ηl = 1, we can have ηuA

(u)
1 = T T ⊤:

ηuA
(u)
1 =

ρ2 + β2 + α2 + 2γ2 2ρβ + γ2 + 2γα 2ρα + 3γβ 2αβ + γβ + 2γρ αβ + 2γ(β + ρ)

2ρβ + γ2 + 2γα ρ2 + β2 + α2 + 2γ2 2αβ + γβ + 2γρ 2ρα + 3γβ αβ + 2γ(β + ρ)

2ρα + 3γβ 2αβ + γβ + 2γρ ρ2 + 2β2 + α2 + γ2 2ρβ + β2 + 2γα 2ρβ + β2 + γ2 + γα

2αβ + γβ + 2γρ 2αρ + 3γβ 2ρβ + β2 + 2γα ρ2 + 2β2 + α2 + γ2 2ρβ + β2 + γ2 + γα

αβ + 2γ(β + ρ) αβ + 2γ(β + ρ) 2ρβ + β2 + γ2 + γα 2ρβ + β2 + γ2 + γα ρ2 + 2β2 + 2γ2


And the supervised adjacency matrix A

(l)
1 = T:,1T ⊤

:,1 + T:,2T ⊤
:,2 can be given by:

ηlA
(l)
1 =


ρ2 + β2 2ρβ ρα+ γβ αβ + γρ γ(β + ρ)
2ρβ ρ2 + β2 αβ + γρ ρα+ γβ γ(β + ρ)

ρα+ γβ αβ + γρ α2 + γ2 2γα γ(γ + α)
αβ + γρ ρα+ γβ 2γα α2 + γ2 γ(γ + α)
γ(β + ρ) γ(β + ρ) γ(γ + α) γ(γ + α) 2γ2


Details for V̂1. Following the same assumption, the adjacency matrix can be approximately given
by:

A1 ≈ Â1 =
1

Ĉ1


2 4β′ 3α′ 0 0
4β′ 2 0 3α′ 0
3α′ 0 1 2β′ 2β′

0 3α′ 2β′ 1 2β′

0 0 2β′ 2β′ 1


D̂1 =

1

Ĉ1

· diag[2 + 4β′ + 3α′, 2 + 4β′ + 3α′, 1 + 4β′ + 3α′, 1 + 4β′ + 3α′, 1 + 4β′]

̂
D

− 1
2

1 =

√
Ĉ1 ·diag[

1√
2
(1−β′− 3

4
α′),

1√
2
(1−β′− 3

4
α′), 1−2β′− 3

2
α′, 1−2β′− 3

2
α′, 1−2β′]

D
− 1

2
1 A1D

− 1
2

1 ≈
̂
D

− 1
2

1 Â1
̂
D

− 1
2

1 =


1 − 2β′ − 3

2
α′ 2β′ 3√

2
α′ 0 0

2β′ 1 − 2β′ − 3
2
α′ 0 3√

2
α′ 0

3√
2
α′ 0 1 − 4β′ − 3α′ 2β′ 2β′

0 3√
2
α′ 2β′ 1 − 4β′ − 3α′ 2β′

0 0 2β′ 2β′ 1 − 4β′


where Ĉ1 is the normalization term and Ĉ1 = 7 + 20β′ + 12α′. After eigendecomposition, we can
derive ordered eigenvalues and their corresponding eigenvectors:

v̂1 = 1√
7
[
√
2,
√
2, 1, 1, 1]⊤ λ̂1 = 1

v̂2 = 1√
2a(λ̂2)2+2b(λ̂2)2+1

[a(λ̂2), a(λ̂2), b(λ̂2), b(λ̂2), 1]
⊤ λ̂2 = 1− 3b+

√
3
√

(27a2−40ab+48b2)−9a

4

v̂3 = 1√
2c(λ̂3)2+2

[c(λ̂3),−c(λ̂3),−1, 1, 0]⊤ λ̂3 = 1− 5b+
√
81a2+24ab+16b2−9a

4

v̂4 = 1√
2a(λ̂4)2+2b(λ̂4)2+1

[a(λ̂4), a(λ̂4), b(λ̂4), b(λ̂4), 1]
⊤ λ̂4 = 1− 3b−

√
3
√

(27a2−40ab+48b2)+9a

4

v̂5 = 1√
2c(λ̂5)2+2

[c(λ̂5),−c(λ̂5),−1, 1, 0]⊤, λ̂5 = 1− 5b−
√
81a2+24ab+16b2+9a

4
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where λ̂1 > λ̂2 > λ̂3 > λ̂4 > λ̂5 and a(λ) =
√
2(1−6β′−λ)

8β′ , b(λ) = 4β′−1+λ
4β′ , c(λ) =

√
2(1−3α′−6β′−λ)

3α′ . We can get closed-form eigenvectors:

V̂1 =

 √
2

√
2 1 1 1

a(λ̂2) a(λ̂2) b(λ̂2) b(λ̂2) 1

c(λ̂3) −c(λ̂3) −1 1 0

⊤

· diag[
1√
7
,

1√
2a(λ̂2)2 + 2b(λ̂2)2 + 1

,
1√

2c(λ̂3)2 + 2
]

Details for linear probing and separability evaluation. Following the same derivation, we can

derive closed-form embedding for ID samples Ẑin =
̂
D

− 1
2

in V̂in

√
Σ̂in and the linear layer weights

M̂ = (Ẑ⊤
in Ẑin)

†ẐT
in yin. Eventually, we can derive the approximately predicted probability ŷcovariate

out :

ŷcovariate
out =

[
a1 + b1 a1 − b1
a1 − b1 a1 + b1

]
where a1, b1 ∈ R and b1 > 0. This indicates that linear probing error E(f1) = 0 as long as α and β
are positive.

Having obtained closed-form representation Zin and Zsemantic
out , we can compute separability S(f1)

and then prove:

Ẑin =
(1− β′ − 3

4α
′)

√
Ĉ1√

2


√
2√
7

a(λ̂2)
√

λ̂2√
2a(λ̂2)2+2b(λ̂2)2+1

− c(λ̂3)
√

λ̂3√
2c(λ̂3)2+2

√
2√
7

a(λ̂2)
√

λ̂2√
2a(λ̂2)2+2b(λ̂2)2+1

c(λ̂3)
√

λ̂3√
2c(λ̂3)2+2



Ẑsemantic
out = (1− 2β′)

√
Ĉ1[

1√
7
,

√
λ̂2√

2a(λ̂2)2 + 2b(λ̂2)2 + 1
, 0]

S(f)− S(f1)
{

> 0 , if α′, β′ ∈ black area in Figure 6 (b);
< 0 , if α′, β′ ∈ white area in Figure 6 (b).

D.3 CALCULATION DETAILS FOR SELF-SUPERVISED CASE

Our analysis for the self-supervised case is based on Figure 5 (a), the adjacency matrix is exactly the
same as Eq. 10. After approximation, we can derive:

A(u) ≈ Â(u) =
1

Ĉ(u)


1 2β′ 2α′ 0 0
2β′ 1 0 2α′ 0
2α′ 0 1 2β′ 0
0 2α′ 2β′ 1 0
0 0 0 0 1


D̂(u)

− 1
2

=
√
5 + 8β′ + 8α′ · diag[1− β′ − α′, 1− β′ − α′, 1− β′ − α′, 1− β′ − α′, 1]

D̂(u)
− 1

2

Â(u)D̂(u)
− 1

2

=


1− 2β′ − 2α′ 2β′ 2α′ 0 0

2β′ 1− 2β′ − 2α′ 0 2α′ 0
2α′ 0 1− 2β′ − 2α′ 2β′ 0
0 2α′ 2β′ 1− 2β′ − 2α′ 0
0 0 0 0 1


v̂1 = 1

2 [1, 1, 1, 1, 0]
⊤ λ̂1 = 1

v̂2 = [0, 0, 0, 0, 1]⊤ λ̂2 = 1

v̂3 = 1
2 [−1, 1,−1, 1, 0]⊤ λ̂3 = 1− 4β′

v̂4 = 1
2 [−1,−1, 1, 1, 0]⊤ λ̂4 = 1− 4α′

v̂5 = 1
2 [1,−1,−1, 1, 0]⊤ λ̂5 = 1− 4α′ − 4β′

Following the same procedure presented above, we can prove Theorem C.1 and C.2.
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E MORE EXPERIMENTS

E.1 DATASET STATISTICS

We provide a detailed description of the datasets used in this work below:

CIFAR-10 (Krizhevsky et al., 2009) contains 60, 000 color images with 10 classes. The training set
has 50, 000 images and the test set has 10, 000 images.

ImageNet-100 consists of a subset of 100 categories from ImageNet-1K (Deng et al., 2009). This
dataset contains the following classes: n01498041, n01514859, n01582220, n01608432, n01616318,
n01687978, n01776313, n01806567, n01833805, n01882714, n01910747, n01944390, n01985128,
n02007558, n02071294, n02085620, n02114855, n02123045, n02128385, n02129165, n02129604,
n02165456, n02190166, n02219486, n02226429, n02279972, n02317335, n02326432, n02342885,
n02363005, n02391049, n02395406, n02403003, n02422699, n02442845, n02444819, n02480855,
n02510455, n02640242, n02672831, n02687172, n02701002, n02730930, n02769748, n02782093,
n02787622, n02793495, n02799071, n02802426, n02814860, n02840245, n02906734, n02948072,
n02980441, n02999410, n03014705, n03028079, n03032252, n03125729, n03160309, n03179701,
n03220513, n03249569, n03291819, n03384352, n03388043, n03450230, n03481172, n03594734,
n03594945, n03627232, n03642806, n03649909, n03661043, n03676483, n03724870, n03733281,
n03759954, n03761084, n03773504, n03804744, n03916031, n03938244, n04004767, n04026417,
n04090263, n04133789, n04153751, n04296562, n04330267, n04371774, n04404412, n04465501,
n04485082, n04507155, n04536866, n04579432, n04606251, n07714990, n07745940.

CIFAR-10-C is generated based on Hendrycks & Dietterich (2018), applying different corruptions
on CIFAR-10 including gaussian noise, defocus blur, glass blur, impulse noise, shot noise, snow,
and zoom blur.

ImageNet-100-C is generated with Gaussian noise added to ImageNet-100 dataset (Deng et al.,
2009).

SVHN (Netzer et al., 2011) is a real-world image dataset obtained from house numbers in Google
Street View images. This dataset 73, 257 samples for training, and 26, 032 samples for testing with
10 classes.

Places365 (Zhou et al., 2017) contains scene photographs and diverse types of environments encoun-
tered in the world. The scene semantic categories consist of three macro-classes: Indoor, Nature,
and Urban.

LSUN-C (Yu et al., 2015) and LSUN-R (Yu et al., 2015) are large-scale image datasets that are
annotated using deep learning with humans in the loop. LSUN-C is a cropped version of LSUN and
LSUN-R is a resized version of the LSUN dataset.

Textures (Cimpoi et al., 2014) refers to the Describable Textures Dataset, which contains a large
dataset of visual attributes including patterns and textures. The subset we used has no overlap
categories with the CIFAR dataset (Krizhevsky et al., 2009).

iNaturalist (Horn et al., 2018) is a challenging real-world dataset with iNaturalist species, captured
in a wide variety of situations. It has 13 super-categories and 5,089 sub-categories. We use the subset
from Huang & Li (2021) that contains 110 plant classes that no category overlaps with IMAGENET-
1K (Deng et al., 2009).

Office-Home (Venkateswara et al., 2017) is a challenging dataset, which consists of 15500 images
from 65 categories. It is made up of 4 domains: Artistic (Ar), Clip-Art (Cl), Product (Pr), and
Real-World (Rw).

Details of data split for OOD datasets. For datasets with standard train-test split (e.g., SVHN),
we use the original test split for evaluation. For other OOD datasets (e.g., LSUN-C), we use 70% of
the data for creating the wild mixture training data as well as the mixture validation dataset. We use
the remaining examples for test-time evaluation. For splitting training/validation, we use 30% for
validation and the remaining for training. During validation, we could only access unlabeled wild
data and labeled clean ID data, which means hyper-parameters are chosen based on the performance
of ID Acc. on the ID validation set (more in Section F).
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Model
Places365 Psemantic

out , CIFAR-10-C Pcovariate
out LSUN-R Psemantic

out , CIFAR-10-C Pcovariate
out

OOD Acc.↑ ID Acc.↑ FPR↓ AUROC↑ OOD Acc.↑ ID Acc.↑ FPR↓ AUROC↑
OOD detection
MSP 75.05 94.84 57.40 84.49 75.05 94.84 52.15 91.37
ODIN 75.05 94.84 57.40 84.49 75.05 94.84 26.62 94.57
Energy 75.05 94.84 40.14 89.89 75.05 94.84 27.58 94.24
Mahalanobis 75.05 94.84 68.57 84.61 75.05 94.84 42.62 93.23
ViM 75.05 94.84 21.95 95.48 75.05 94.84 36.80 93.37
KNN 75.05 94.84 42.67 91.07 75.05 94.84 29.75 94.60
ASH 75.05 94.84 44.07 88.84 75.05 94.84 22.07 95.61

OOD generalization
IRM 77.92 90.85 53.79 88.15 77.92 90.85 34.50 94.54
GroupDRO 77.27 94.97 32.81 91.85 77.27 94.97 14.60 97.04
Mixup 79.17 93.30 58.24 75.70 79.17 93.30 32.73 88.86
VREx 76.90 91.35 56.13 87.45 76.90 91.35 44.20 92.55
EQRM 75.71 92.93 51.00 88.61 75.71 92.93 31.23 94.94
SharpDRO 79.03 94.91 34.64 91.96 79.03 94.91 13.27 97.44

Learning w. Pwild
OE 35.98 94.75 27.02 94.57 46.89 94.07 0.70 99.78
Energy (w/ outlier) 19.86 90.55 23.89 93.60 32.91 93.01 0.27 99.94
Woods 54.58 94.88 30.48 93.28 78.75 95.01 0.60 99.87
Scone 85.21 94.59 37.56 90.90 80.31 94.97 0.87 99.79
SLW (Ours) 87.04±0.3 93.40±0.3 40.97±1.1 91.82±0.0 79.38±0.8 92.44±0.1 0.06±0.0 99.99±0.0

Table 2: Additional results: comparison with competitive OOD generalization and OOD detection
methods on CIFAR-10. To facilitate a fair comparison, we include results from Bai et al. (2023)
and set πc = 0.5, πs = 0.1 by default for the mixture distribution Pwild := (1 − πs − πc)Pin +
πsPsemantic

out + πcPcovariate
out . Bold=best. (*Since all the OOD detection methods use the same model

trained with the CE loss on Pin, they display the same ID and OOD accuracy on CIFAR-10-C.)

E.2 RESULTS ON IMAGENET-100

In this section, we present results on the large-scale dataset ImageNet-100 to further demonstrate our
empirical competitive performance. We employ ImageNet-100 as Pin, ImageNet-100-C as Pcovariate

out ,
and iNaturalist (Horn et al., 2018) as Psemantic

out . Similar to our CIFAR experiment, we divide the
ImageNet-100 training set into 50% labeled as ID and 50% unlabeled. Then we mix unlabeled
ImageNet-100, ImageNet-100-C, and iNaturalist to generate the wild dataset. We include results
from Bai et al. (2023) and set πc = 0.5, πs = 0.1 for consistency. We pre-train the backbone
ResNet-34 (He et al., 2016) with SLW and then use ID data to fine-tune the model. We set the
pre-training epoch as 100, batch size as 512, and learning rate as 0.01. For fine-tuning, we set
the learning rate to 0.01, batch size to 128, and train for 10 epochs. Empirical results in Table 3
indicate that our method effectively balances OOD generalization and detection while achieving
strong performance in both aspects. While Wood (Katz-Samuels et al., 2022) displays strong OOD
detection performance, the OOD generation performance (44.46%) is significantly worse than ours
(72.58%). More detailed implementation can be found in Appendix F.

Method OOD Acc.↑ ID Acc.↑ FPR↓ AUROC↑
Woods 44.46 86.49 10.50 98.22
Scone 65.34 87.64 27.13 95.66
SLW (Ours) 72.58 86.68 21.00 96.52

Table 3: Results on ImageNet-100. We employ ImageNet-100 as Pin, ImageNet-100-C with Gaus-
sian noise as Pcovariate

out , and iNaturalist as Psemantic
out . Bold=Best.

E.3 RESULTS ON OFFICE-HOME

In this section, we present empirical results on the Office-Home (Venkateswara et al., 2017), a
dataset comprising 65 object classes distributed across 4 different domains: Artistic (Ar), Clipart
(Cl), Product (Pr), and Real-World (Rw). Following Saito et al. (2018), we separate 65 object classes
into the first 25 classes in alphabetic order as ID classes and the remainder of classes as semantic
OOD classes. Subsequently, we construct the ID data from one domain (e.g., Ar) across 25 classes,
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and the covariate OOD from another domain (e.g., Cl) to carry out the OOD generalization task
(e.g., Ar → Cl). The semantic OOD data are from the remainder of classes, in the same domain as
covariate OOD data. We consider the following wild data, where Pwild = πcPcovariate

out + πsPsemantic
out

and πc+πs = 1. This setting is also known as open-set domain adaptation (Panareda Busto & Gall,
2017), which can be viewed as a special case of ours.

For a fair empirical comparison, we include results from Li et al. (2023), containing comprehen-
sive baselines like STA (Liu et al., 2019), OSBP (Saito et al., 2018), DAOD (Fang et al., 2021),
OSLPP (Wang et al., 2021b), ROS (Bucci et al., 2020), and Anna (Li et al., 2023). Following pre-
vious literature, we use OOD Acc. to denote the average class accuracy over known classes only in
this section. We employ ResNet-50 (He et al., 2016) as the default backbone. As shown in Table 4,
our approach strikes a balance between OOD generalization and detection, even outperforming the
state-of-the-art method Anna in terms of FPR by 11.3% on average. This demonstrates the effec-
tiveness of our method in handling the complex OOD scenarios present in the Office-Home dataset.
More detailed implementation can be found in Appendix F.

Method Ar → Cl Ar → Pr Ar → Rw Cl → Ar Cl → Pr Cl → Rw Pr → Ar
OOD Acc.↑ FPR↓ OOD Acc.↑ FPR↓ OOD Acc.↑ FPR↓ OOD Acc.↑ FPR↓ OOD Acc.↑ FPR↓ OOD Acc.↑ FPR↓ OOD Acc.↑ FPR↓

STAsum 50.8 36.6 68.7 40.3 81.1 49.5 53.0 36.1 61.4 36.5 69.8 36.8 55.4 26.3
STAmax 46.0 27.7 68.0 51.6 78.6 39.6 51.4 35.0 61.8 40.9 67.0 33.3 54.2 27.6
OSBP 50.2 38.9 71.8 40.2 79.3 32.5 59.4 29.7 67.0 37.3 72.0 30.8 59.1 31.9
DAOD 72.6 48.2 55.3 42.1 78.2 37.4 59.1 38.3 70.8 47.4 77.8 43.0 71.3 49.5
OSLPP 55.9 32.9 72.5 26.9 80.1 30.6 49.6 21.0 61.6 26.7 67.2 26.1 54.6 23.8
ROS 50.6 25.9 68.4 29.7 75.8 22.8 53.6 34.5 59.8 28.4 65.3 27.8 57.3 35.7
Anna 61.4 21.3 68.3 20.1 74.1 20.3 58.0 26.9 64.2 26.4 66.9 19.8 63.0 29.7

SLW (Ours) 54.2 14.1 68.7 12.7 78.6 15.8 51.1 14.8 61.0 8.8 68.0 10.5 58.3 9.2

Method Pr → Cl Pr → Rw Rw → Ar Rw → Cl Rw → Pr Average
OOD Acc.↑ FPR↓ OOD Acc.↑ FPR↓ OOD Acc.↑ FPR↓ OOD Acc.↑ FPR↓ OOD Acc.↑ FPR↓ OOD Acc.↑ FPR↓

STAsum 44.7 28.5 78.1 36.7 67.9 37.7 51.4 42.1 77.9 42.0 63.4 37.4
STAmax 44.2 32.9 76.2 35.7 67.5 33.3 49.9 38.9 77.1 44.6 61.8 36.7
OSBP 44.5 33.7 76.2 28.3 66.1 32.7 48.0 37.0 76.3 31.4 64.1 33.7
DAOD 58.4 57.2 81.8 49.4 66.7 56.7 60.0 63.4 84.1 65.3 69.6 49.8
OSLPP 53.1 32.9 77.0 28.8 60.8 25.0 54.4 35.7 78.4 29.2 63.8 28.3
ROS 46.5 28.8 70.8 21.6 67.0 29.2 51.5 27.0 72.0 20.0 61.6 27.6
Anna 54.6 25.2 74.3 21.1 66.1 22.7 59.7 26.9 76.4 19.0 65.6 23.3

SLW (Ours) 48.1 13.4 76.9 8.00 64.8 9.5 56.1 11.8 80.9 14.5 63.9 12.0

Table 4: Results on Office-Home. Bold=Best.

E.4 ABLATION STUDY

Impacts of ID labels. As shown in Table 5, we contrast performance by pre-training with and with-
out ID labels. The wild data follows the same setting as our main paper, which is a composition of
CIFAR-10, CIFAR-10-C, and one of the five semantic OOD datasets. By comparing OOD accuracy
and FPR, we find that the use of ID labels during pre-training significantly improves both OOD
generalization and OOD detection, which aligns with our theoretical analysis.

Psemantic
out ID labels OOD Acc.↑ ID Acc.↑ FPR↓ AUROC↑

SVHN % 62.02 80.26 20.64 96.44
! 86.62 93.10 0.13 99.98

LSUN-C % 67.59 83.35 57.70 88.83
! 85.88 92.61 1.76 99.75

TEXTURES
% 64.47 76.78 75.66 78.32
! 81.40 92.50 12.05 98.25

PLACES365 % 70.76 81.48 66.40 83.15
! 87.04 93.40 40.97 91.82

LSUN-R % 63.09 74.25 40.50 90.24
! 79.68 92.44 0.06 99.99

Table 5: Impact of ID labels during pre-training. We employ CIFAR-10 as Pin and CIFAR-10-C
with Gaussian noise as Pcovariate

out . Bold=Best.
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Impact of semantic OOD data. Table 6 empirically verifies the theoretical analysis in Section B.
We follow Cao et al. (2022) and separate classes in CIFAR-10 into 50% known and 50% unknown
classes. To demonstrate the impacts of semantic OOD data on generalization, we simulate scenar-
ios when semantic OOD shares the same or different domain as covariate OOD. Empirical results
in Table 6 indicate that when semantic OOD shares the same domain as covariate OOD, it could
significantly improve the performance of OOD generalization.

Corruption Type of Pcovariate
out Psemantic

out OOD Acc.↑
Gaussian noise SVHN 85.48
Gaussian noise LSUN-C 85.88
Gaussian noise Places365 83.28
Gaussian noise Textures 86.84
Gaussian noise LSUN-R 80.08

Gaussian noise Gaussian noise 88.18

Table 6: The impact of semantic OOD data on generalization. Classes in CIFAR-10 are divided
into 50% known and 50% unknown classes. The experiment in the last line uses known classes in
CIFAR-10-C with Gaussian noise as Pcovariate

out and novel classes in CIFAR-10-C with Gaussian noise
as Psemantic

out . Bold=best.

F IMPLEMENTATION DETAILS

Training settings. We conduct all the experiments in Pytorch, using NVIDIA GeForce RTX 2080Ti.
We use SGD optimizer with weight decay 5e-4 and momentum 0.9 for all the experiments. In
CIFAR-10 experiments, we pre-train Wide ResNet with SLW loss for 1000 epochs. The learning
rate (lr) is 0.030, batch size (bs) is 512. Then we use ID-labeled data to fine-tune for 20 epochs with
lr 0.005 and bs 512. In ImageNet-100 experiments, we train ImageNet pre-trained ResNet-34 with
SLW loss for 100 epochs. The lr is 0.01, bs is 512. Then we fine-tune for 10 epochs with lr 0.01
and bs 128. In Office-Home experiments, we use ImageNet pre-trained ResNet-50 with lr 0.001 and
bs 64. We use the same data augmentation strategies as SimSiam (Chen & He, 2021). We set K in
KNN as 50 in CIFAR-10 experiments and 100 in ImageNet-100 experiments, which is consistent
with Sun et al. (2022). And ηu is selected within {1.00, 2.00} and ηl is within {0.02, 0.10, 0.50,
1.00}. In Office-Home experiments, we set K as 5, ηu as 3, and ηl within {0.01, 0.05}. ηu, ηl are
summarized in Table 7.

ID/Covariate OOD Semantics OOD ηl ηu

CIFAR-10/CIFAR-10-C SVHN 0.50 2.00
CIFAR-10/CIFAR-10-C LSUN-C 0.50 2.00
CIFAR-10/CIFAR-10-C Textures 0.50 1.00
CIFAR-10/CIFAR-10-C Places365 0.50 2.00
CIFAR-10/CIFAR-10-C LSUN-R 0.10 2.00

ImageNet-100/ImageNet-100-C iNaturalist 0.10 2.00

Office-Home Ar/Cl, Pr, Rw Cl, Pr, Rw 0.01 3.00
Office-Home Cl/Ar, Pr, Rw Ar, Pr, Rw 0.01 3.00
Office-Home Pr/Ar, Cl, Rw Ar, Cl, Rw 0.05 3.00
Office-Home Rw/Ar, Cl, Pr Ar, Cl, Pr 0.05 3.00

Table 7: Selection of hyper-parameters ηl, ηu

Validation strategy. For validation, we could only access to unlabeled mixture of validation wild
data and clean validation ID data, which is rigorously adhered to Bai et al. (2023). Hyper-parameters
are chosen based on the performance of ID Acc. on the ID validation set. We present the sweeping
results in Table 8.
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ηl ηu ID Acc. (validation)↑ ID Acc.↑ OOD Acc.↑ FPR↓ AUROC↑
0.02 2.00 88.52 87.12 70.31 52.16 90.03
0.10 2.00 95.36 91.72 77.98 20.20 96.85
0.50 2.00 95.72 91.79 78.23 17.66 97.26
1.00 2.00 94.96 90.91 81.92 24.99 94.82
0.02 1.00 89.04 87.44 60.60 46.01 92.01
0.10 1.00 93.92 90.70 74.58 21.50 96.83
0.50 1.00 96.76 92.50 81.40 12.05 98.25
1.00 1.00 94.24 90.77 65.58 14.00 97.27

Table 8: Sensitivity analysis of hyper-parameters ηl, ηu. We employ CIFAR-10 as Pin, CIFAR-10-C
as Pcovariate

out , and Textures as Psemantic
out . Bold=best.
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