
A Appendix392

A.1 Datasheet393

Table 4 shows the datasheet of RealCity3D. The current RealCity3D contains more than 1,000,000394

geo-referenced objects of New York City and Zurich. The four different representations are provided395

for each object, including polygon meshes, triangle meshes, point clouds, and voxel grids. These data396

are avaliable at: https://github.com/ai4ce/RealCity3D397

Table 4: RealCity3D Datasheet

City Country Continent Raw Meshes Voxel Triangulated Meshes Point Cloud
New York City United States North America download download download download

Zurich Switzerland Europe download download download download

A.2 Author statement398

The authors of this paper bear all responsibility in case of violation of rights, including the necessary399

resolution of such violations. The dataset contains no personally identifiable information or offensive400

content. The RealCity3D dataset is permitted for use under the Creative Commons Attribution 4.0401

International license. The existing CityGML datasets which RealCity3D is based on are licensed402

under: 1) New York City - NYC Open Data Policies, and 2) Zurich - CC0 1.0 Universal (CC0 1.0)403

Public Domain Dedication.404

A.3 Hosting, licensing, and maintenance plan405

The authors are committed to ensuring the RealCity3D dataset remain accessible to public through406

the RealCity3D GitHub repository and strive to provide the necessary maintenance including manual407

edits and batch updates. Dataset maintenance will be rigorously logged in human-readable and408

searchable log files. Public use of the RealCity3D dataset is managed under the Creative Commons409

Attribution 4.0 International license.410

A.4 Auto-encoding Tree411

The AETree model is a custom tree-shaped auto-encoder network that uses hierarchically-constructed412

areal spatial data (Section A.4.1) to encode, decode, and generate city layouts and buildings (Section413

A.4.2). Figure 10 gives an overview of the method by taking 2D parcels data as an example.414

A.4.1 Discovering Spatial Hierarchy in Data415

Let us first consider a set of spatial data {Pi} |i=1,...,N , where Pi represents a single object instance416

in the set and N is the number of objects. As explained, we focus on 3D cuboids such as buildings,417

so P = (x, y, l, w, h, a) ∈ R6, where x and y denote the center coordinates of a cuboid, and l, w, h418

and a denote the length, width, height and orientation angle of the cuboid.419

To organize the data hierarchically in a binary tree T , we apply hierarchical clustering [14] by420

introducingN−1 intermediate nodes so that all the original objects stay on the leaf nodes. Concretely,421

the binary tree is built by recursively merging two closest nodes into a parent node until we obtain a422

single root node.423

The tree is homogeneous, so the intermediate nodes also represent 3D cuboids. For any intermediate424

node produced, its parameters x and y are obtained as the mean value of corresponding children425

nodes, and l, w, h and a are defined as the minimum bounding rectangle of its children nodes. Note426

that before feeding the data into our model, we choose to represent all node parameters relative to427

12

https://github.com/ai4ce/RealCity3D
https://drive.google.com/drive/folders/1e11MGq9BYS8fFdbDUWBtaL3cLRZ2aFNT?usp=sharing
https://drive.google.com/file/d/1wAGWK9M-jMlNbXsurosXjRqbj6Hmfk7N/view?usp=sharing
https://drive.google.com/drive/folders/1v0ZiqweL3mX82Qa7OEPKY8DRwCS5mj87?usp=sharing
https://drive.google.com/open?id=1b1edO0_zgSlwnnDfH7S9dcuNvsFHtM1A
https://drive.google.com/drive/folders/17OJtbjm3sJxIIaZSdc_UEVnUC8PuxSuy?usp=sharing
https://github.com/ai4ce/RealCity3D
https://drive.google.com/drive/folders/17IRpVipV9Y7l3v8YGATem6juTmQkDABq?usp=sharing
http://www.overleaf.com


Root LevelLevel 0 (Raw Data) Level 1 Level 2 Level 3

0
1 2

3 4

Relative Frame
Hierarchical Encoding

fe

fe

Hierarchical Decoding

MLP

MLP
fd Inference

Training
Aggregation 
(Sum)
Duplication

L1 Loss
Gr

ou
nd

 T
ru

th
BCE Loss

ℱ𝑙𝑙

ℱ𝑟𝑟

𝒫𝒫𝑙𝑙

𝒫𝒫𝑟𝑟 ℱ𝑓𝑓′

𝒫𝒫𝑓𝑓

ℒ𝑙𝑙

ℒ𝑟𝑟

𝒫𝒫𝑙𝑙

𝒫𝒫𝑟𝑟

ℒ𝑙𝑙′ ℱ𝑙𝑙′

𝒫𝒫𝑙𝑙′

ℒ𝑟𝑟′
𝒫𝒫𝑟𝑟′

ℱ𝑟𝑟′

𝒫𝒫𝑓𝑓

𝒫𝒫𝑓𝑓′ℱ𝑓𝑓′

Figure 10: Illustration of the AETree model on 2D city parcels data. The top row in the figure
displays an example of pre-calculated tree structure from raw data level to root level. The orange
boxes at the each level represent new boxes obtained by merging children boxes form the last level
(for example, box 2 in level 1 is generated based on box 0 and 1 from level 0). The bottom row
presents our encoding and decoding modules. Based on the tree structure, we first hierarchically
encode children nodes to acquire the features of their parent nodes until getting the root node features.
Then starting from the root level, we hierarchically decode parent nodes to children nodes and finally
obtain the parameter of raw nodes.

their parent nodes (except the root node) as follows (subscript c/f means child/parent),428

xrc =
xc − xf
lf

, yrc =
yc − yf
wf

,

lrc =
lc
lf
, wr

c =
wc

wf
,

hrc =
hc
hf
, arc = ac − af .

We find this relative representation performs better in reconstruction, and it is only possible in this429

tree-based (instead of set/sequence) structure (more analysis in supplementary).430

The distance metric is also important for hierarchical clustering. The one we use is defined as:431

D(i, j) =λ1Dcenter(i, j) + λ2Darea(i, j) + λ3Dshape(i, j)

+λ4Dangle(i, j) + λ5Dmerge(i, j),
(2)

where D(i, j) represents the distance between cuboid i and j, λ represents the weight of each432

distance. Specifically, Dcenter measures the Euclidean distance between the center points of two433

cuboids; Darea, Dshape and Dangle separately measure the difference between the area, the aspect ratio,434

and the orientation of two cuboids; and Dmerge measures the difference between the sum of the two435

cuboids area and their minimum bounding rectangle area.436

We present a simple example to explain our data structure. As shown in Figure 11, three trees are all437

produced based on four leaf nodes, but through different merging patterns. We introduce an index438

matrix Il to store the merging rules at each level l, where in each row, the first two columns denote439

the indices of children nodes and the last column is the index of the parent node. In this way, we can440

gather node features of all trees at the same level effectively, and put them in a mini-batch for training441

and inference.442

A.4.2 Tree-shaped Auto-encoder Network443

With the data constructed hierarchically, we can naturally develop an auto-encoding neural network444

with a tree shape to encode, decode and generate the cuboid sets. Our encoder learns a latent445

13



I0 =

1 2 5
3 4 6
8 9 12
16 17 19

1

2

3

4

8

9

10

11

15

16

17

18

5

6

7

12

13

14

19

20

21

I1 =
5 6 7
10 12 13
15 19 20

I2 =
11 13 14
18 20 21

Level0 node

Level1 node

Level2 node

Level3 node

Index Matrix

I= I0 I1 I2

Figure 11: An example of our data structure. The blue nodes at level 0 store raw objects and we build
a hierarchical clustering tree according to their pairwise distances. For efficient mini-batch training,
we design an index matrix for each level storing the indexes of children and parents.

representation Froot of the root node by encoding each node from bottom to top. Conversely, our446

decoder decodes the root node from top to bottom and reconstructs the original data. Each node in447

the tree is represented by its geometric parameters P and a feature representation F .448

Encoding. To obtain the root node feature Froot, the encoder encodes all intermediate nodes from449

bottom to top level by level. Given the the parameters and features of a left child and a right child,450

the feature of a parent node is computed as:451

F ′f = fe([Pl,Fl]) + fe([Pr,Fr]), (3)

where fe represents an encoding function that encodes children parameters and features. In the452

experiments, we tried both MLP and LSTM cell as the fe function. And it can be seen that453

our encoding function is symmetric, meaning the encoded parent feature does not contain order454

information. Note that the parameters of parent nodes Pf are pre-computed during data construction,455

and the feature values of the leaf nodes are initialized as zeros.456

Decoding. The decoder aims to reconstruct the original data from the root features Froot produced457

by the encoder. At each level, we decode from a parent node into two children nodes, which can be458

formulated as459

[P ′l ,F ′l ,L′l,P ′r,F ′r,L′r] = fd([P ′f ,F ′f ]) (4)

where fd denotes the decoding function, P ′, F ′ and L′ indicate a node’s decoded parameters, features,460

and indicator of being leaf nodes or not. We add this indicator judgement to determine whether the461

current node should be further decoded or not at inference time. Whenever all the nodes are identified462

as leaf nodes, the decoding process will stop.463

During training, following the idea of teacher forcing, we use the ground-truth (pre-calculated)464

parameters Pf of the parent node as the decoder input, which renders the model training faster and465

more efficient. L1 loss and Binary Cross-Entropy (BCE) loss are used to minimize the errors of466

predicted parameters and indicators, respectively.467

As introduced in above paragraphs, we employ both MLP and LSTM cell as the fe function to468

hierarchically encode features from bottom to top. The details of two different encoding modules469

can be found in Figure 12. For the encoding module of AETree(MLP) (Figure 12 left), we adopted a470

shared MLP to learn features of the left and right nodes. And then the features of the father nodes471

(F ′f ) are obtained by using a summation aggregation function on learned features. Moreover, for472

encoding module of AETree(LSTM) (Figure 12 right), we first split the features of children nodes473

to hidden states(h) and cell states(c), which are input into a LSTM Cell along with the parameters474

of nodes(P). The output of the LSTM Cell are concatenated at each node and then summarized to475

obtain the features of the father nodes(F ′f ).476

Similarly, we illustrate the decoding module of AETree(MLP) and AETree(LSTM) in Figure 13.477

For AETree(MLP) model, the learned features and parameters of nodes are input to its decoding478

14



MLP MLP

Left Node Right Node

Father Node

LSTM Cell LSTM Cell

Left Node Right Node

Father Node

Encoding module of AETree (MLP) Encoding module of AETree (LSTM)

concat concat

𝒫𝒫𝑙𝑙ℱ𝑙𝑙 ℱ𝑟𝑟𝒫𝒫𝑟𝑟

𝒫𝒫𝑓𝑓 ℱ𝑓𝑓′
ℱ𝑓𝑓′

𝒫𝒫𝑙𝑙

ℱ𝑙𝑙 ℱ𝑟𝑟

𝒫𝒫𝑟𝑟

ℎ𝑙𝑙 ℎ𝑟𝑟𝑐𝑐𝑙𝑙 𝑐𝑐𝑟𝑟

𝒫𝒫𝑓𝑓

Figure 12: Illustration of the encoding module of AETree(MLP) and AETree(LSTM).

InferenceTraining

ℒ𝑟𝑟′ 𝒫𝒫𝑟𝑟′ ℱ𝑟𝑟′

𝒫𝒫𝑓𝑓
𝒫𝒫𝑓𝑓′

Left Node Right Node

Father Node

Decoding module of AETree (MLP)

ℱ𝑓𝑓′

MLP

MLP MLP

ℒ𝑙𝑙′ℱ𝑙𝑙′ 𝒫𝒫𝑙𝑙′

InferenceTraining

ℒ𝑟𝑟′ 𝒫𝒫𝑟𝑟′ ℱ𝑟𝑟′

𝒫𝒫𝑓𝑓
𝒫𝒫𝑓𝑓′

Left Node Right Node

Father Node

ℱ𝑓𝑓′

LSTM Cell

ℒ𝑙𝑙′ℱ𝑙𝑙′ 𝒫𝒫𝑙𝑙′

Linear Layer 

MLP MLP

ℎ𝑓𝑓′ 𝑐𝑐𝑓𝑓′

ℎ𝑙𝑙′ 𝑐𝑐𝑙𝑙′ ℎ𝑟𝑟′ 𝑐𝑐𝑟𝑟′concat concat

Decoding module of AETree (LSTM)

Figure 13: Illustration of the decoding module of AETree(MLP) and AETree(LSTM).

module. The inputs first pass through a MLP layer to enlarge the feature dimensions and then go479

through another MLP layer to acquire the parameters, features, and indicators of children nodes.480

And for AETree(LSTM)’s decoding module, we also implement a linear layer to enlarge the feature481

dimensions and then split features to hidden states(h) and cell states(c). By inputting hidden states,482

cell states and the parameters to a LSTM Cell, we divide the output of hidden states and cell states into483

two parts, where one part of hidden states(h′l) and cell states(c′l) are concatenated as the intermediate484

features of the left nodes, and the other part of these two states are concatenated as the intermediate485

features of the right node. The parameters, features, and the indicator of each node are finally acquired486

by employing the MLP on the corresponding intermediate features.487

Generation. To empower the model with data generation capability, we fit a Gaussian Mixture488

Model (GMM) on the root feature representation. Specifically, we obtain the root features of all the489

15



training data by passing into our encoder, and then estimate this distribution with a GMM. During the490

data generation process, we sample a new root feature Fg from the fitted GMM distribution, and a491

new data is generated going through our decoder.492

Latent Space Interpolation. Given latent representations of two box sets, we can obtain the493

intermediate box set by applying the decoder to the linear interpolation between these two latent494

spaces. Figure 14 shows the reconstructed box sets from the interpolated latent vectors. Interestingly,495

we produce a gradually varied sequence of box set from box set S to box set T, which demonstrates the496

smoothness of our latent space. More importantly, this indicates that our learned latent representations497

are generative instead of simply memorizing the training sets.498

S

T

Figure 14: Latent space interpolation between two box sets, S and T, using AETree.

A.5 Results of Building Shape Generation499

Figure 15: Some shape generation results of Latent-GAN [3] trained on RealCity3D. It can be seen
that the reconstructions lost many important geometric details and variations of the 3D building
shapes. This suggests again that the RealCity3D dataset is non-trivial.

16



Figure 16: Some testing results of FoldingNet [30] trained on RealCity3D. For each pair of shapes,
the first one is the input point cloud and the second one is the auto-encoder’s reconstructed point
cloud. It can be seen that the reconstructions lost many important geometric details of the 3D building
shapes. This suggests that the RealCity3D is a non-trivial 3D shape dataset.

17


