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This Appendix is organized as follows:

e Section A includes omitted proofs for theoretical conclusions in the main paper, as well as the
extension to fairness constrained setting (A.9) and multi-class classification (A.10).

e Section B presents more experimental details and results.

A Omitted Proofs

A.1 Proof for Theorem 1

Proof Let ¢° denote the noise-corrected loss with respect to true noise parameters e, e_:

eo(h(xn)v gn) = (1 - e—sgn(gn)) : E(h(‘rn)v gn) — Csgn(gn) g(h(in)v _gn) (AD)
It was established in [25] the unbiasedness of £°:
Lemma 11 (Unbiasedness of ¢°, [25]). —1— By y—, [¢°(h(2), Y)] = ¢(h(z),y).

ey—e_
A direct consequence of this lemma, via repeatedly applying to each (X, Y"), is its unbiasedness on
the population level:

1
l—e;r —e_

1

'ED|D[RE<>,D(h>] = Rep(h), T, —c.

Ry p(h) = Rep(h)

The following fact holds by subtracting £° from :

E(h(ln)v gn) = go(h(wn)v gn) + (efﬂn - é*?}n) ’ e(h(xn)a Zjn) + (é,@n - egn) : e(h(mn)v _gn)
Using the triangle inequality of | - | we establish that

|E(h(x0), Gu) = €2 (h(0), Gn)| < max{|&s —e],|e- —e_|}- L. (A2)
This further helps us bound the differences in the empirical risks:
|R; 5(h) = Ryo p(h)] < max{|éy —ey],|é- —e_[}-7 (A3)
Therefore
Ryo p(h% 5) < Ry p(h% ) + max{|éy —ey |6 —e_[}- €
< Ry p(hip) +max{|éy —ey|,6- —e [} £ (Opt. of A )
< Ryo p(hip) + 2max{|éy —eq],|é- —e [} £ (A4)



Calling the results in [25], [Rademacher bound for max risk deviation, Proof of Lemma 2 therein],
we know that for any § > 0, with probability at least 1 — §:

1 . 2L log 1/6
——— |Rpo p(h) — Ry 5 < —- A
$up o |Feep (M) = o p ()| < == - RO+ 5% (AS)
The above knowledge further helps us establish that
Ryp(h; ;) — Rep(hip)
1 -
= m(Rzoﬁ(hZﬁ) — Ryo 5(hip)) (Unbiasedness of ¢° on D)
1 R
= m(}%&ﬁ(h;{ﬁ) — RZO,D(hZf))) (Rademacher bound )
1 > * > *
+ m(RzO,D(hgﬁ) — Ry p(hip)) (Eqn. (A4))
1 .
+ m(R507D(hZD) — Ry 5(hi p)) (Rademacher bound )
4L flog1/6 _max{|é; —ey]|, |6 —e_|} -
< — R 2 2 -0
T l—ey—e_ ")+ 2N * l—ey —e_
4L log1/6 erry -
— R 2 2 L.
T l-ey—e_ (H)+ 2N + l—e; —e_
We complete the proof. |

A.2 Proof for Lemma 2

Proof Expanding P(h(X) # Y) using the law of total probability we have
PMX)#Y)=PhX)#Y,Y #Y)+P(h(X)#Y,Y =Y)
=PWX)#Y |V #Y)-PY #Y)+PQ(X) Y | Y =Y) - PY =Y).
In binary classification, h(X) # Y,Y # Y implies h(X) = Y, such that
Ph(X)#£Y | Y #Y)=Ph(X)=Y |Y #Y).
Due to the independence of Y and X given Y,

B = v | 7 2) - FOC SR EEN) FOZ VAN g x) -y
Similarly, we have o R
Ph(X)£Y |Y =Y)=P(h(X)#Y).
Combining all above we finished the proof when e < 0.5 by having:
P(h(X) # V) = P(h(X) = Y) e+ B(h(X) £ Y) - (1 - ¢)
= (1-2e)-Ph(X)#Y)+e
|

A.3 Proof for Theorem 3

Proof Again let £° denote the noise-corrected loss with respect to true noise parameters e, e_:

go(h(l'n)v gn) = (1 - e—sgn(gn)) . g(h(xn)v gn) - esgn(yn) : e(h(xn)a _gn) (A6)
First notice the following when /¢ is a symmetric loss:

Reo(h; )
1 .
= {9 Rw,b(hz ») (Unbiasedness of £° on D using symmetric e)
1—e N e N
= 1—2¢ ’ Rﬁ,ﬁ(hg7f)) - 1— 2% ' Ré,’ﬁ(_hgyﬁ) (A7)



The last equality uses the definition of £°, and is due to £ being symmetric. Then we show that

1 . )
=5 (Bt p) = Rt p))
1 R
T 12 (R’v’»@(hzﬁ) — By p(hy D)> (Rademacher bound )
1 A * s % ) ) . A
+ 1 — 26 (RK,D(h&ﬁ) - RE,ﬁ(hf,'D)) (S O Optlmahty of h&ﬁ on 67 D)
1 .
i 1—2e (ngf)(th) B Rfv@(th)) (Rademacher bound )
4L log1/6
ERC 2
- 1- 26R(H) + IN

The inequality is due to the Rademacher bound we invoked as in Eqn. (AS5) as well as the optimality
of hz pon £, D. That is we have proved with probability at least 1 — § that

1 1 4L log1/0
—— Ry p(h 5) < —— Ry p(hip) + —— 2 A8
g Heplhip) < 75 Bephip) T 75 R+ 2N (A%)
Repeating the same analysis and using the assumed condition that Rz, I (—hz ,j) - R& p(=h;p) >0
we have 7
1 1 4L log1/d
— R, p(—h' ) > —— R, p(—hip) — —— —2 Al
g0 Ten(hip) 2 7050 Rep(hi) = 75 R 2N (A9)

Combining above (Eqn. (A8) and (A9)), we have with probability at least 1 — ¢ (that both of the
above bounds will happen simultaneously)

* 1—e * € *
Rep(hyp) = 15 Renlhyp) = 775 Ren(=ly p)
1—e e 4L log1/6
< : s(hip) — ——— - s(—h; — 2
S 1% Ry »(hip) 11— 9% Ry p(=hip) + 1_26R(H)+ ON
4L log1/6
RE,D( g,D) + 1_ 2€R(H) + IN
The inequality uses Eqn. (A8) and (A9). Again the last equality is reusing Eqn. (A7). This completes
the proof. |
A.4 Proof for Lemma 4
Proof
8 P(h(X) = +1,Y = +1|Z =
P(A(X) = +1|¥ = 41,7 — q) = LX) =+LY = +1]Z = a) (A10)

P(Y = +1|Z = a)

Again we do the trick of sampling P(Y = +1|Z = a) to be 0.5, which allows us to focus on the
numerator.

(M(X)=+1Y =4+1,Z=a)- (1 —e,) - P(Y =+4+1|Z =a)
MX)=4+1Y =-1,Z=aqa) ¢, - P(Y =—-1|Z =a) )
(Independence of X and Y given Y))



That is

0.5- TPR,(h) = TPR4 () - (1 — €4) - P(Y = +1|Z = a) + FPR,(h) - €4 - P(Y = —1|Z = a)
(Al1)

Similarly for FPR we have

P(h(X)=+1,Y = —1|Z = a)

P(h(X)=+1]Y = -1,Z =a) = P = 1z = a)

(A12)

Following similar steps as above, the numerator further derives as

P(h(X)=+1,Y = +1|Z = a)
=Ph(X)=+1Y =-1,Z=0a)-(1 —e,)-P(Y = +1|Z = a)
+PWX)=+1Y =+1,Z =a)-e, - P(Y = —1|Z = a)

That is

0.5 - FPR,(h) = FPR,(h) - (1 — €4) - P(Y = +1|Z = a) + TPRy(h) - €, - P(Y = —1|Z = a)
(A13)

When P(Y = +1|Z = a) = P(Y = +1|Z = b) = 0.5, we will also have
05=P(Y =+11Z=0a)=P(Y =+1|Z =a)(1 —e,) + P(Y = —1|Z = a)e, (A14)

which returns us that P(Y = +1|Z = a) = Ol‘f% := p = 0.5. Using this knowledge and solving
the linear equations defined by Eqn. (A11) and (A13) we have

Ca - TPR,(h) — Cy.5 - FPR,(R)

TPR, (h) = p—— (A15)
w1 -FPRy(R) — C,o - TPR, (R

FPR, (h) = Z%:! (e)_g5’2 () (A16)

u

A.5 Proof for Theorem 5

Proof Combining Eqn. (5) and (6) we have
ITPR. (h) — TPRS (h)|

0.5-e. - TPR.(h) —0.5(1 —e.) - FPR.(h) _ 0.5-&, - TPR.(h) — 0.5(1 — &) - FPR.(h)
e.—05 . —0.5

|é. — e.| - TPR,(h)
(2e. — 1)(2¢. — 1)
err, - TPR.(h)

T Be-@e -1 (A7

Recall err, = |é. — e,|. The second equality is algebraic - we simply unify the denominator of both
quantities and rearrange terms. Then equalizing TPR that TPRS (h) = TPR(h) returns us

ITPR, (h) — TPRy(h)|
=|TPR,(h) — TPRS (h) + TPR;(h) — TPRy(h)]
> [[TPR, () — TPRS ()] — [TPR§(h) — TPR, (k)|

err, - TPR,(h) err;, - TPR,(h)

(2¢0 —1)(26, — 1) (265 — 1)(26, — 1) |’




where the last equality is an application of Eqn. (A17). Then
err, - "Flsﬁa(h) erry - "Flsﬁb(h)

(2¢, — 1)(26, — 1) (2ep — 1)(26, — 1)

orr TPR, (h) _erry TPR, (h)

T (26 — 1)(264 — 1) erry (2e, — 1)(26, — 1)
TPR,(h) err,  TPR,(h)

> . _

SO e —1)(26, — 1) ety (265 — 1)(26, — 1)

Similarly
[FPR; (h) — FPRZ(h)|
0.5 ¢, - FPR.(h) — 0.5(1 —e.) - TPR.(h) _ 0.5-€ - FPR.(h) — 0.5(1 — &.) - TPR,(h)
e, — 0.5 e, —0.5

22 — ez - FPR. (h)
(2e. — 1)(26. — 1)’
err. - FPR.(h)
2. — )2 — 1)’
Then equalizing FPR that FPRS (h) = FPR}(h) we have
[FPR, () — FPRy (h)|
=[FPR, (h) — FPRE (h) + FPR{(h) — FPR,(h)]
> ||FPRq(h) — FPRG (h)| — [FPR}(h) — FPR,(h)|
err, - I*:I\DIJQQ(h) erry - IEISJRb(h)

(2e0 — 1)(26, — 1) (2ep — 1)(26, — 1)

FPR, (h) err, FPR, (h)

(2e, — 1)(26, — 1)  err, (2e, —1)(2¢&, — 1)

>erry -

A.6 Proof for Theorem 6

Proof Easy to show that when e, = ey, C,1 = C 1 and C, o = Cp 2. Therefore, from Eqn. (5) we
know equalizing

TPR,(h) = TPR,(h), FPR,(h) = FPR,(h) (A18)

will also return us
TPR,(h) = TPRy(h), FPR,(h) = FPR,(h) (A19)
[ |

A.7 Proof for Theorem 9

Proof We start with deriving PApo.

\ \/ < P?:i}:?:_‘_l
PADOZP(Y2:Y3=+1|Y1:—|—1):(1 2 =1 )

P(Y; = +1)
Due to the sampling step, we have ]P’(f/l = +1) = 0.5 - this allows us to focus on the denominator:
3 3
P, = Ve = Yy = +1) L B(Y = +1) [[ B(V: = +1]Y = +1) + B(Y = —1) [[ B(Y; = +1]Y = —1)
i=1 i=1

Py =+1) 1 —e P +P(Y = -1) - &



where in above, (1) uses the 2-NN clusterability of D, and (2) uses the conditional independence
between the noisy labels. Similarly for NApo. we have:

PV = ¥ = ¥ = 1)

P(Yo=Ys=—1|V; = —1) =

P(Y; = —1)
Again we have that P(Y; = —1) = 0.5, and the numerator derives as
3
P(Yi =Y, =Y3=—1)=P(Y = +1) HIP’ V= -1y =+1) + P(Y = -1) [[P(Y; = 1]y = -1)

=P = +1)-e++]P>(Y: ~1)-(1—e_)?
Taking the difference (and normalize by 0.5) we have
0.5 - (PApe — NApo)
= P(Yo = Y3 = +1|Y1 = +1) = P(Yo = Y3 = —1|V; = —1)
=PY =+1) (1 —eq)® —€}) +P(Y = —1) (e — (1 —e_)?) (A20)
Notice two facts: first we can derive that
(1—ep)’—etl =(1—2eq)(el —er+1), & —(1—e_)>=—(1—2e_)(e? —e_+1)
Second, we will use the following fact:
05=PY =+1) =P(Y = +1)(1 —ey) + P(Y = —1)e_ (A21)

0.5—e_ . 0.5—
1784,%67' Symmetrlcally, P(Y = —1> = mif;.

from which we solve that P(Y = +1) =
Return the above two facts back into Eqn. (A20), we have
B(Y = +1)((1 - e4)° — &%) + B(Y = —1)(€® — (1 —c_)?)

(05 1—_e+)((i5 T (@ — ey 1)~ (¢ — e+ 1)
€4 €_

=2-(05—-e4) - (0.5—e_) (e —eq)
completing the proof when ey, e_ < 0.5. ]

A.8 Proof for Proposition 10

Proof Expanding P(Y = —1|Y = +1) using the law of total probability we have

=P(Y = -1]Y = +1)
(ff:—1,17=+1|Y:+1)+P(f/:—1,f/:—1|Y=+1)
=P(Y = -1V = +1,Y = +1) - P(Y = +1|Y = +1)

P(Y = 1Y = -1,V = +1) - P(Y = —1]Y = +1)
=e-(l—ep)+1-ey (Independence between Y and Y given V)
=(1—-eq)-etes
Similarly,
o =P(Y = +1|Y = —1)
=P(Y =+1,Y = +1[Y = -1) + P(Y = +1,Y = —1]Y = —1)
=PY =+1|Y = +1,Y = —1) - P(Y = +1]Y = 1)
+P(Y =+1|Y = -1,V = —1) - P(Y = —1]Y = —1)
=(1—-¢€)-e_

The last equality is again due to the independence between Y and Y given Y, as well as the fact that
we do not flip the Y = —1 labels so P(Y = +1]Y = —1,Y = —1) = 0. Taking the difference we
finish the proof. |



A.9 Balancing noise for fairness constrained case

Define
PApo o = Pyo(Ya = Y3 = +1]Y; = +1) (A22)
PApe =Py (Yo = Y3 = +1[Y; = +1) (A23)

We now claim that sgn(PApe o — PApo ) = —sgn(eq, — ep). We start with deriving PApe 4.

Py (Yi =Y =Yy = +1)

PApe o = Py_o(Yo = Y3 = +1]Y; = +1 -
(Ya 3 Y1 ) T

Due to the sampling step, we have P Z:a,(fﬁ = +1) = 0.5 - this allows us to focus on the denomina-
tor:

3
Doy (v = +1) [[ Pra(¥i = +1]Y = +1)

i=1

Py—o(Y1 = Yo = Y3 = +1)

3
+Pz_0(Y = —1) szza(ig = +1]Yy = —1)
=1
Db, (V= 41)- (1= ea)® + Pyoa(Y = —1)- &

where in above, (1) uses the 2-NN clusterability of D, and (2) uses the conditional independence
between the noisy labels. Similarly for PApe j, we have:

Prop(Y = +1)- (1 —¢y)* + Pop(Y = —1) - ¢}
0.5

PApe y = (A24)

Firstly, we will use the following fact for z € {a, b}:
0.5 =Pz_.(Y = +1)

=Py (Y = 41V = +1) - Py (Y = +1) + Py, (Y = +1|Y = —1) - Pz (Y = —1)
=Py (Y =41)- (1 —e,) + Py, (Y = —1) - ¢,

from which we solve that Pz—.(Y = +1) = 327% = 0.5. Therefore

PADe o —PApep = (1= e0)’ = (1 —e)" + ¢ — €
=(ep—€a) (1—ea)? + (1 =€)+ (1 —ea)(1— ) — €2 — € — eaey)
=(ep—e€q)(1—2e,+1—2ep+1—e,—ep) (A25)

Note that 1 — 2e, +1 —2e, + 1 — e, — e, > 0 when e, e, < 0.5. This implies that we can use the
2-NN positive agreements PApo , — PApe 3 across groups to compare e, with ep.

A.10 Extension to multi-class

As explained at the beginning, our algorithm can largely extend to the multi-class/group setting.
The primary requirement of the extension is to extend the definition of PAp., NApo to each label
class/group. Consider a multi-class classification problem with K label classes, and the noise rates
follow a uniform diagonal model:

PY =klY =k)=1—e, PV =K|Y =k) = Ke’“ o VK # k. (A26)
Define KApo j, := ]P’(f/g =Y = k|1~/1 =k), k=1,2,..., K. Similarly we can show that for any
pair of k1, ka: sgn(KApe k, — KApo r,) = —sgn(ex, — ex,), wherein above eg, , ey, are the error

rates of label class k1, ko. With the above, we can compute KApe 1, rank them, and start inserting
noise to the classes that are determined to have a lower error rate to match the highest one.

A.11 Pseudocodes



import numpy as np
from sklearn.neighbors import NearestNeighbors
def estimate_PA(X, y):
nbrs = NearestNei.(n_neighbors=3, algorithm=’ball_tree’).fit (X)
_, indices = nbrs.kneighbors(X)
return np.mean(np.array([np.all(y[i] == y[indices[i]]) for i in np
.where(y > 0)[0]1]1))

Figure Al: Numpy-like pseudocode for an implementation of estimating PA. Our implementa-
tion utilizes scikit-learn’s Nearest Neighbors module. The code for esimating NA is similar.

B Additional Experiment Details and Results

We provide more details on the experimental setup as well as further results.

B.1 Datasets
We evaluate our methods on five datasets:

e Adult, the UCI Adult Income dataset [9]. The task is to predict whether an individual’s
income exceeds S0K. The dataset consists of 48,842 examples and 28 features. We select
female and male as two protected groups in constrained learning. We resample the dataset
to ensure that both the classes and groups are balanced.

* Compas, the COMPAS recidivism dataset for crime statistics with 7,168 instances and 10
features [2]. We select race as the protected attribute in constrained learning.

* Fairface, the face attribute dataset containing 108,501 images with balanced race and
gender groups [15]. We use a pre-trained vision transformer (ViT/B-32) model [8] to
extract image representations, and project them into 50-dimensional feature vectors. For
both unconstrained and constrained learning, we take gender attribute as labels for binary
classification. For constrained learning, we categorize race into White and Non-White
groups.

* MNIST [18], consisting of 50,000 training images and 10,000 test images in 10 classes. We
train a MLP model from scratch on the MNIST dataset.

* CIFAR-10 [16], consisting of 50,000 training images and 10,000 test images in 10 classes.
We evaluate unconstrained multi-class classification on CIFAR-10 dataset. Similar to
Fairface, we use a pre-trained vision transformer to extract 512-dimensional feature vectors.

For Adult, Compas, and German datasets, we perform random train/test splits in a ratio of 80 to 20.
For Fairface, MNIST, and CIFAR-10, we follow their original splits.

B.2 Computing infrastructure

For all the experiments, we use a GPU cluster with 4 2080 Ti GPUs for training and evaluation.

B.3 Noise transition matrix for CIFAR-10
We adopt the following procedure to generate the noise transition matrix:

1. Manually set the diagonal elements at least 0.4. We ensure that the difference between the
maximal elements and 0.4 is equal to the noise gap.

2. Permute the diagonal elements to increase the randomness.

3. Fill out the non-diagonal elements randomly and ensure the sum of each column is 1




We show one sample noise transition matrix generated by our procedure with noise gap 0.2 as follows:

(0.4 0.087 0.013 0.032 0.032 0.068 0.050 0.178 0.001 0.118]
0.043 0.4 0.002 0.016 0.049 0.113 0.060 0.024 0.224 0.017
0.181 0.111 0.4 0.147 0.033 0.005 0.026 0.040 0.110 0.076
0.051 0.001 0.060 0.6 0.032 0.047 0.149 0.145 0.022 0.059
0.001 0.167 0.119 0.032 0.6 0.092 0.051 0.018 0.037 0.129
0.097 0.007 0.001 0.059 0.016 0.4 0.019 0.014 0.084 0.001
0.018 0.023 0.277 0.041 0.034 0.014 0.4 0.028 0.041 0.062
0.149 0.096 0.081 0.019 0.041 0.015 0.143 0.4 0.061 0.110
0.031 0.066 0.022 0.007 0.133 0.080 0.049 0.113 0.4 0.025

10.029 0.040 0.023 0.043 0.027 0.162 0.048 0.036 0.018 0.4 |

B.4 Additional results

Table B1: Binary classification accuracy of compared methods on 3 datasets across different
levels of noise rates. Mis. SL: surrogate loss [25] with misspecified parameters. Est. SL: surrogate
loss [25] with estimated parameters. CE: vanilla cross entropy. Peer: peer loss function [21]. All
methods are trained with one-layer perceptron with the same hyper-parameters. For each noise
setting, we average across 5 runs and report the mean and standard deviation. We find that the
increasing-to-balancing can boost the vanilla cross entropy on all the noise settings.
BASELINES (LESS NOISE) NOISE+ (MORE NOISE)
Dataset e_  eyq Mis. SL Est. SL CE Peer CE Peer

Adult 00 0.1 7279+£0.34 72.64+£0.38 7263+£0.29 72.77+£0.32 73.62+£0.37 73.86+0.41
n=48,842 0.0 02 7227+039 7213+£037 71.26+038 71.95+034 72.73+£0.71 73.52+0.58
d=28 00 03 67.93£0.52 71.58+£0.28 66.86+£0.47 71.33£0.30 73.30£0.27 73.74+£0.15
00 04 5554+£028 70.29+0.28 63.97+1.07 69.38£0.41 73.06+£0.50 73.53+0.51

0.1 02 73.02+£0.50 72.68+0.16 72.31+£0.25 72.88+0.14 71.92+1.98 73.81+0.40

0.1 03 7244+£047 7215+£0.23 69.06£2.01 72.26+£0.43 69.53+£4.90 73.34+£1.27

0.1 04 5487+£085 71.48+0.50 63.60+1.04 71.44+£0.72 7243+£1.90 73.56+0.89

02 03 7281+0.51 7243+£0.14 71.44+£093 72.78+£0.28 71.55+£2.04 73.75+0.26

02 04 7206+£0.19 71.97+£0.41 63.49+£1.58 71.97+£0.37 65.99+£7.99 71.43+2.26

Compas 00 0.1 66.36+£1.05 66.04+1.14 66.16£1.13 68.06£0.70 67.14£0.92 68.22+£0.68
n="7168 00 02 66.84+0.69 66.06+=0.81 6538+1.40 68.03+0.77 66.51+£1.90 68.40=£0.78
d=10 00 03 58.06+0.32 62.69+1.20 53.04+£3.69 66.41+1.19 59.02+£7.78 65.93+0.56
00 04 51.16+£0.30 62.41+£0.71 54.03£4.95 65.01£0.65 54.26+£2.50 65.85+£1.17

0.1 02 66.41+£0.43 65.69£0.57 6591£0.97 67.49+£0.40 66.54+£0.21 67.80£0.44

0.1 03 6591+£042 65.22+£0.63 61.24+£0.70 67.36£0.79 65.76 £2.09 68.05+£ 0.56

0.1 04 51.60+£0.12 63.34+£1.12 57.65+£3.90 66.47+1.34 55.83+£6.43 67.04£0.75

02 03 65.06£0.72 65.86+£1.69 65.06+£1.48 68.02+£0.94 66.46+1.27 68.04£1.11

02 04 64.82+0.52 6547+£0.46 59.68+2.49 67.37+£0.54 63.85+£3.31 68.39+£0.56

Fairface 00 0.1 87.64+£0.03 87.75+£0.03 87.41+£0.11 87.58+0.15 88.23+£0.07 88.49+0.12
n=108,501 0.0 0.2 8522+0.06 85.83+0.08 85.084+0.16 85.184+0.16 88.55+0.03 88.67+0.03
d =50 00 03 81.51£0.09 83.36+£0.04 79.62+£0.12 81.37£0.35 87.44£0.15 88.25+£0.06
0.1 02 87.67+£0.07 87.56+£0.04 87.21+£0.08 87.28+0.05 88.45+0.06 88.65+0.07

0.1 03 72.03+£0.13 85.68+0.07 83.20+£0.12 84.58+0.09 87.81+£0.14 88.50+0.12

0.1 04 5930£0.11 83.10£0.08 74.56+£0.53 80.51£0.30 80.83+£2.24 87.10£0.39

02 03 7418+020 87.34+0.14 86.47+0.09 87.00£0.11 88.46+0.08 88.58+0.10

02 04 5830+0.23 8548+0.09 7833+£0.63 84.056+0.13 81.90+0.58 87.69+0.15




Table B2: Accuracy of compared methods across different levels of noise gap for multi-class
classification. Mis. SL: surrogate loss [25] with misspecified parameters. Est. SL: surrogate loss [25]
with estimated parameters. CE: vanilla cross entropy. Peer: peer loss function [21]. When noise gap is
less than 0.2, cross entropy with increasing-to-balancing reaches a higher accuracy than cross entropy
at a lower noise. When noise gap is 0.3, balancing cannot compensate for the loss of increasing noise.

BASELINES (LESS NOISE) NOISE+ (MORE NOISE)
Dataset noise gap Mis. SL Est. SL CE Peer CE Peer
0.1 89.59£0.01 89.69+0.07 86.66+0.54 88.124+0.01 86.81£0.62 89.19+£0.05
MNIST 0.2 88.10£0.10 88.61+0.16 84.53+1.60 87.214+0.53 85.97+0.69 89.12+0.24

0.3 84.97£0.11 86.88£0.17 85.24+1.05 86.35+0.33 81.89+1.54 88.75+0.19

0.1 70.90 £2.66 85.76£1.44 88.03£1.07 89.66+1.18 88.69+0.82 89.90=+0.52
CIFAR-10 0.2 80.561 £4.51 86.34£2.30 88.43+1.29 89.36+0.56 89.01+1.27 90.08+1.26
0.3 81.30 £2.31 90.61+£0.52 89.78 £1.16 90.24+1.05 87.98+1.29 89.924+0.92

Table B3: Constrained learning results with group-dependent label noise. LR: naive logistic
regression without noise correction. GPR: group-weighted peer loss [30]. Peer: peer loss [21].

LESS NOISE  MORE NOISE
Dataset e, e,  Metrics LR GPL LR Peer

01 03 accuracy 72.57 7192 71.07 73.21
) ’ fairness ~ 2.37  3.39 1.83 1.95
accuracy 724 7292 73.07 718

Adult 0203 fimess 667 336 421 093
02 04 dccuracy 7273 712 71.88 73.02

) ’ fairness  6.48  2.95 3.16 1.67

03 04 dccuracy 73.15 7374 71.36 72.74

’ ’ fairness  5.29  4.11 5.49 1.88

01 03 @ccuracy 63.88 63.73 64.56 64.33

’ ’ fairness  7.17  6.58  7.35 1.89

02 03 Gccuracy 63.73 6328 64.26 67.8

Compas ' ' fairness 1052 447 7.10 2.76

02 04 Gccuracy 62.60 66.03 66.22 64.15
) ) fairness  2.87  7.55 6.07 3.63
accuracy 6193 62.08 61.63 62.68
fairness 1797 3.06 770 3.74

02 04 accuracy 86.97 8747 88.19 87.93
’ ’ fairness ~ 5.87  4.70 1.38  0.25
03 dccuracy 88.23 88.23 88.58 88.60
’ fairness  5.53  4.93 2.11 2.17
accuracy 88.61 88.53 88.90 88.85
fairness  4.05 3.75 264 220
accuracy 89.08 88.84 89.00 89.05
fairness 399 392 297 2091
accuracy 88.63 88.78 88.80 88.83
fairness 350  3.14  2.19 1.33

03 04

0.1

Fairface 0.0 0.2

00 0.1

02 03
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