
Robust and Decomposable Average Precision
for Image Retrieval

– Supplementary Material –

Elias Ramzi1,2

elias.ramzi@cnam.fr
Nicolas Thome1

nicolas.thome@cnam.fr

Clément Rambour1

clement.rambour@cnam.fr
Nicolas Audebert1

nicolas.audebert@cnam.fr

Xavier Bitot2

xavier.bitot@coexya.eu
1CEDRIC, Conservatoire National des Arts et Métiers, Paris, France

2Coexya, Paris, France

A ROADMAP model

A.1 Properties of SupAP & comparison to SmoothAP

We further discuss and give additional explanations of the property of our LSupAP loss function, and
especially its comparison with respect to the SmoothAP [1] baseline.

As shown in Fig. 1.a of the main paper, and discussed in Section 3.1 ("Comparison to SmoothAP"),
the smooth rank approximation in [1] has several drawbacks, that we show below:

Figure 1: Limitation of the smooth rank approximation in [1]: contradictory gradient flow for the
positives samples x1 and x2 (in green), vanishing gradient for the negative example x3 (in red), and
no guarantees of having an upper bound of LAP.

Specifically, we explain in more detail the following three limitations identified in the main paper
for SmoothAP [1], which comes from the use of the sigmoid function to approximate the Heaviside
(step) function for computing the rank:

i Contradictory gradient flow for positives samples: Firstly we can see on the toy dataset of
Fig. 1 that the gradients of the two positive examples (in green) with SmoothAP have opposite
directions. The positive with the lowest rank x1 has a gradient in the good direction, since it
leads to increase x1’s score because the correct ordering is not reached (the negative instance

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

x3 has a better rank). But the gradient of the positive with the highest rank x2 is on the wrong
direction, since it tends to decrease x2’s score. This is an undesirable behaviour, which comes
from the use of the sigmoid in LSmoothAP. In the example of Fig. 1, we can actually show that

∂LSmoothAP

∂s1
= −∂LSmoothAP

∂s2

To see this we write :

∂LSmoothAP

∂s1
=
∂LSmoothAP

∂ rank+(x1)
· ∂ rank

+(x1)

∂s1
+

∂LSmoothAP

∂ rank+(x2)
· ∂ rank

+(x2)

∂s1

+
∂LSmoothAP

∂ rank−(x1)
· ∂ rank

−(x1)

∂s1
+

∂LSmoothAP

∂ rank−(x2)
· ∂ rank

−(x2)

∂s1

Because rank−(x2) = σ(s3−s2τ), we have ∂ rank−(x2)
∂s1

= 0 and ∂ rank−(x1)
∂s1

= 0 in the example
of Fig. 1, because rank−(x1) = σ(s3−s1τ) and s3 − s1 falls into the saturation regime of the
sigmoid. We get a similar result for the derivative of LSmoothAP wrt. s2 :

∂LSmoothAP

∂s2
=

∂LSmoothAP

∂ rank+(x1)
· ∂ rank

+(x1)

∂s2
+

∂LSmoothAP

∂ rank+(x2)
· ∂ rank

+(x2)

∂s2

Furthermore we have :

∂ rank+(x1)

∂s1
= −∂ rank

+(x1)

∂s2

Indeed rank+(x1) = 1 + σ(s2−s1τ), such that ∂ rank+(x1)
∂s1

= −τ · σ(s2−s1τ)
(
1− σ(s2−s1τ)

)
and

∂ rank+(x1)
∂s2

= τ · σ(s2−s1τ)
(
1− σ(s2−s1τ)

)
. Similarly the derivatives of rank+(x2) wrt. s1

and s2 also have opposite signs: ∂ rank+(x2)
∂s1

= −∂ rank+(x2)
∂s2

. It concludes the proof that
∂LSmoothAP
∂s1

= −∂LSmoothAP
∂s2

.

ii Vanishing gradients: Secondly, SmoothAP [1] has vanishing gradients due to its use of the
sigmoid function. This is illustrated on the toy dataset in Fig. 1. The negative instance x3 has
a high score s3, but does not receive any gradient, which does not enable it to lower its score
although it would improve the overall ranking. This is because the score difference between x3

and x2 is large, i.e. s3 − s2 = 0.13. Similarly, s3 − s1 = 0.14. Consequently, both s3 − s2 and
s3 − s1 fall into the saturation regime of the sigmoid, preventing to propagate any gradient (see
Fig. 3c. in the main paper).

iii Finally, LSmoothAP is not an upper bound of LAP. The use of the sigmoid means that both rank+

and rank− can be over or under estimated. If rank+ is overestimated (resp. underestimated)
LSmoothAP underestimates LAP (resp. overestimates). And if rank− is overestimated (resp.
underestimated) LSmoothAP overestimates LAP (resp. overestimated). Therefore, LSmoothAP can be
larger or lower than LAP in general. In the example of Fig. 1, we show that LSmoothAP is lower
than LAP.

We address those three issues with LSupAP:

i Using the the true Heaviside (step) function H+ for rank+ allows to have the expected
behaviour regarding the gradients of positives. When Changing H+ for rank+ in Fig. 2a, we can
see that we fix the problem of opposite gradients for the positive examples x1 and x2 - although
the gradient is zero.

ii Using H− for rank− overcomes vanishing gradients. By using H− in Eq. (4) in submission,
we design a linear function for positive (sj − sk) values, where sj (resp. sk) is the score of a
negative (resp. positive) example - see Fig. 3b in the main paper. We can see in Fig. 2b that this
change enables to have gradients in the correct directions for the two positive instances x1 and
x2 (tending to increase their scores), and for the negative instance x3 (tending to decrease its
score).

2

(a) When replacing H+ by the Heaviside function
in SmoothAP we stop the unexpected behaviour of
the gradient flow. However there is still vanishing
gradients.

(b) Our LSupAP has gradients that do not stop until the
correct ranking is achieved.

Figure 2: We illustrates the different steps to built LSupAP. On Fig. 2a we change H+ to be the true
Heaviside (step) function. On Fig. 2b we replace the sigmoid by H− defined in Eq. (4) of the main
paper. Using H+ and H−, LSupAP is an upper bound of LAP.

iii LSupAP is an upper bound of LAP. By the proposed design of H− in Eq. (4) in submission, we
have rank−s (k) ≥ rank−(k). Since we do not approximate rank+(k) by keeping the Heaviside
function, it leads to rank+(k)

rank+(k)+rank−
s (k)

≤ rank+(k)
rank+(k)+rank−(k)

, and therefore LSupAP ≥ LAP.

Overall, LSupAP has all the desired properties : i) A correct gradient flow during training, ii) No
vanishing gradients while the correct ranking is not reached, iii) Being an upper bound on the AP
loss LAP.

A.2 Properties of the Lcalibr. loss function

We remind the reader of the definition of the decomposability gap given in Eq. (6) of the main paper.

DGAP(θ) =
1

K

K∑
b=1

APbi (θ)− APi(θ)

We illustrates the decomposability gap, DGAP with the toy dataset of Fig. 3. The decomposability
gap comes from the fact that the AP is not decomposable in mini-batches as we discuss in the Sec.
3.2 of the main paper. The motivation behind Lcalibr. is thus to force the scores of the different batches
to aligned as illustrated in the Fig. 2b of the main paper.

Figure 3: Illustration of the decomposability gap on a toy dataset.

Proof of Eq. (8): Upper bound on the DGAP with no LAP We choose a setting for the proof of
the upper bound similar to the one used for training, i.e. all the batch have the same size, and the
number of positive instances per batch (i.e. Pbi) is the same.

3

Figure 4: The worst case when computing the global AP would be that each batch is juxtaposed.

Eq. (8) from the main paper gives an upper bound for DGAP . This upper bound is given in the worst
case: when the AP has the lowest value guaranteed by the AP on each batch. We illustrate this case
in Fig. 4.

In Eq. (8) from the main paper the 1 in the right hand term comes from the average of AP over all
batches:

1

K

K∑
b=1

AP bi (θ) = 1

We then justify the term in the parenthesis of Eq. (8) in the main paper, which is the lower bound
of the AP. In the global ordering the positive instances are ranked after all the positive instances
from previous batches giving the following rank+: j + |P1

i |+ · · ·+ |P
b−1
i |, with j the rank+ in

the batch, Positive instances are also ranked after all negative instances from previous batches giving
rank−: |N 1

i |+ · · ·+ |N
b−1
i |.

Therefore we obtain the resulting upper bound of Eq. (8) of the main paper:

0 ≤ DGAP ≤ 1− 1∑K
b=1 |Pbi |

 K∑
b=1

B∑
j=1

j + |P1
i |+ · · ·+ |P

b−1
i |

j + |P1
i |+ · · ·+ |P

b−1
i |+ |N 1

i |+ · · ·+ |N
b−1
i |



Proof of Eq. (9): Upper bound on the DGAP with LAP In the main paper we refine the upper
bound on DGAP in Eq. (9) by adding Lcalibr. which calibrates the absolute scores across the mini-
batches.

We now write that each positive instance that respects the constraint of Lcalibr. is ranked after
the positive instances of previous batch that respect the constraint giving the following rank+:
j +G+

1 + · · ·+G+
b−1, with j the rank+ in the current batch. Positive instances are also ranked

after the negative instances of previous batches that do not respect the constraints yielding rank− :
E−1 + · · ·+ E−b−1.

We then write that positive instances that do not respect the constraints are ranked after all positive
instances from previous batches and the positive instances respecting the constraints of the current
batch giving rank+ : j +G+

b |P1
i |+ · · ·+ |P

b−1
i |. They also are ranked after all the negative

instances from previous batches giving rank− : |N 1
i |+ · · ·+ |N

b−1
i |.

Resulting in Eq. (9) from the main paper:

4

sk sj

0.00

0.05

0.10

0.15

0.20

0.25

= ln 1

(sk sj)

Figure 5: Gradient of the temperature scaled sigmoid (τ = 0.01) vs. the difference of scores sk − sj
of a negative pair.

0 ≤ DGAP ≤ 1− 1∑K
b=1 |Pbi |

(
K∑
b=1

[G+
b∑

j=1

j +G+
1 + · · ·+G+

b−1

j +G+
1 + · · ·+G+

b−1 + E−1 + . . . E−b−1
+

E+
b∑

j=1

j +G+
b + |P1

i |+ · · ·+ |P
b−1
i |

j +G+
b + |P1

i |+ · · ·+ |P
b−1
i |+ |N 1

i |+ · · ·+ |N
b−1
i |

])

A.3 Choice of δ

In the main paper we introduce δ in Eq. (4) to define H−. We choose δ as the point where the
gradient of the sigmoid function becomes low< ε, and we then have δ = τ · ln 1−ε

ε . This is illustrated
in Fig. 5. For our experiments we use ε = 10−2 giving δ ' 0.05.

B Experiments

B.1 Metrics

We detail here the performance metrics that we use to evaluate our models.

Recall@K The Recall@K metrics is often used in the literature. For a single query the Recall@K
is 1 if a positive instance is in the K nearest neighbors, and 0 otherwise. The Recall@K is then
averaged on all the queries. Researcher use different values of K for a given dataset (e.g. 1, 2, 4, 8 on
CUB).

R@K =
1

M

M∑
i=1

r(i), where r(i) =
{
1 if a positive instance has a ranking smaller than i
0 otherwise

(1)

mAP@R Recently, the mAP@R has been introduced in [9]. The authors show that this metric is
less noisy and better captures the performance of a model. The mAP@R is a partial AP, computed
on the R first instances retrieved, with R being set to the number of positive instances wrt. a query.

5

mAP@R is a lower bound of the AP (mAP@R = AP when the correct ranking is achieved, i.e.
mAP@R = AP = 1).

mAP@Ri =
1

R

R∑
j=1

P (j), where P (j) =
{

precision at j if the jth retrieval is correct
0 otherwise

(2)

B.2 Detail on experimental setup

In this section, we describe the experimental setup used in the Sec. 4.1 of the main paper, and the
Sec. B of the supplementary.

We use standard data augmentation strategy during training: images are resized so that their shorter
side has a size of 256, we then make a random crop that has a size between 40 and 256, and aspect
ratio between 3/4 and 4/3. This crop is then resized to 224x224, and flipped horizontally with a 50%
chance. During evaluation, images are resized to 256 and then center cropped to 224.

We use two different strategy to sample each mini-batch. On CUB and INaturalist we choose a batch
size (e.g. 128) and a number of samples per classes (e.g. 4). We then randomly sample classes (e.g.
32) to construct our batches. For SOP we use the hard sampling strategy from [2]. For each pair
of category (e.g. bikes and coffee makers) we use the preceding sampling strategy. This sampling
techniques is used because it yields harder and more informative batches. The intuition behind this
sampling is that it will be harder to discriminate two bikes from one another, than a bike and a sofa.

We train the ResNet-50 models using Adam [7]. On CUB we train our models with a learning rate
of 10−6 for 200 epochs. For SOP and INaturalist we take the same scheduling as in [1]. We set the
learning rate for the backbone to 10−5 and the double for the added linear projection layer. We drop
the learning rate by 70% on the epochs 30 and 70. Finally the models are trained for 100 epochs on
SOP and 90 on INaturalist (as in [1]).

We train the DeiT transformers models using AdamW [8] as in [4]. On INaturalist we use the same
schedule as when training ResNet-50, with a learning rate of 10−5. On SOP we train for 75 epochs
with a learning rate of 10−5 which is dropped by 70% at epochs 25 and 50. Finally on CUB we train
the models for about 100 epochs with a learning rate of 10−6.

B.3 Details of the backbones used

We briefly describe the backbones used throughout out the experiments presented in the main paper
and the supplementary.

ResNet-50 [5] We use the well-known convolutional neural network ResNet-50. We remove the
linear classification layer. We also add a linear projection layer to reduce the dimension (e.g. from
2048 to 512).

DeiT [16] Recently transformer models have been introduced for computer vision [3, 16]. They
establish new state-of-the-art performances on computer vision tasks. We use the DeiT-S from [16]
which has less parameters than the ResNet-50 (∼ 21 million for DeiT vs. 25 for ResNet-50). We use
the pretrained version with distillation from [16] and its implementation in the timm library [17].

B.4 ROADMAP validation

Comparison to AP approximations We compare in Table 1 ROADMAP vs. other ranking losses
on different settings : a batch size of 128 and two backbones (ResNet-50 and DeiT). We conduct this
comparison on 5 runs to show the statistical improvement of our method compared to other ranking
losses baselines.

We observe that our method outperforms recent ranking losses on the two backbones and the three
datasets. On SOP and CUB, ROADMAP has a high increase for the mAP@R, of +1pt on CUB and
+2pt on SOP. The performance improvement is greater on the large scale dataset INaturalist with
∼+3.5pt with a ResNet-50 backbone and ∼+2pt with a DeiT backbone of mAP@R. This trend is the
same as in the comparison of the main paper (Table 1).

6

Table 1: Comparison between ROADMAP and state-of-the-art AP ranking based losses on three
image retrieval datasets. Bck in the first column stands for bakcbone. Models are trained with a batch
size of 128.

CUB SOP INaturalist

Bck Method R@1 mAP@R R@1 mAP@R R@1 mAP@R

R
es

N
et

-5
0 FastAP [2] 61.28±0.37 24.11±0.16 78.97±0.05 52.23±0.09 57.23±0.05 22.17±0.05

SoftBinAP [14] 61.70±0.10 24.29±0.16 80.30±0.21 53.69±0.27 60.88±0.06 23.22±0.05
BlackBoxAP [15] 61.96±0.28 23.83±0.14 80.97±0.07 54.49±0.15 59.53±0.12 19.62±0.02
SmoothAP [1] 62.45±0.48 24.32±0.1 81.13±0.05 54.74±0.16 64.48±0.05 24.33±0.07
ROADMAP (ours) 64.05±0.51 25.27±0.12 82.20± 0.09 56.64±0.09 68.15±0.10 27.01±0.10

D
ei

T

FastAP [2] 73.42±0.22 31.96±0.06 82.92±0.07 59.06±0.03 62.18±0.07 25.48±0.10
SoftBinAP [14] 74.84±0.11 33.57±0.08 84.09±0.05 60.53±0.07 65.97±0.13 27.57±0.09
BlackBoxAP [15] 75.45±0.22 33.97±0.10 84.07±0.09 60.20±0.05 70.29±0.10 29.44±0.06
SmoothAP [1] 76.02±0.14 34.69±0.08 84.28±0.06 60.49±0.17 69.80±0.08 29.56±0.04
ROADMAP (ours) 77.14±0.12 36.30±0.08 85.44± 0.06 62.73±0.06 72.81±0.11 31.31±0.10

Table 2: Ablation study for the impact of our two contribution vs. the SmoothAP baseline for the
three datasets and different batch sizes, with a ResNet-50 backbone [5]

CUB SOP INaturalist

BS Method H− Lcalibr. R@1 mAP@R R@1 mAP@R R@1 mAP@R

32
SmoothAP 7 7 61.84 23.76 79.96 53.21 53.25 16.4
SupAP 3 7 62.58 24.12 80.51 53.85 55.01 17.13
ROADMAP 3 3 63.69 24.97 80.74 54.68 56.43 20.43

128
SmoothAP 7 7 62.81 24.44 81.19 54.96 64.53 24.26
SupAP 3 7 63.18 24.9 81.72 55.65 65.79 24.77
ROADMAP 3 3 64.18 25.38 82.18 56.64 68.28 27.13

224
SmoothAP 7 7 62.93 24.69 81.2 54.73 66.62 26.08
SupAP 3 7 64.08 25.13 81.88 55.75 67.43 26.32
ROADMAP 3 3 64.65 25.51 82.3 56.55 69.28 27.74

384
SmoothAP 7 7 63.69 24.89 81.45 55.1 67.39 26.77
SupAP 3 7 64.64 25.27 81.94 55.78 68.37 27.24
ROADMAP 3 3 64.69 25.36 82.31 56.47 69.19 27.85

We perform a paired student t-test to further asses the statistical significance of the performance boost
obtained with ROADMAP. We compute the p-values for both the R@1 and mAP@R: it turns out that
the p-values are never larger than 0.001, meaning that the gain is statistically significant (with a risk
less than 0.1%).

Ablation studies In Table 2 we extend the ablation studies of the main paper (Table 2 of main
paper) to other settings, including more batch sizes (32, 128, 224, 384) and two backbones (ResNet-50
and DeiT). On all settings LSupAP outperforms the LSmoothAP baseline by almost ∼+0.5pt consistently,
and almost +1pt on every setting for INaturalist. When we add Lcalibr. the gain is further increased.
As noticed in Table 2 (main paper) the gain when adding Lcalibr. is particularly noticeable on the large
scale dataset INaturalist with boost in performances that can be up to +3.3pt of mAP@R for the
ResNet-50 with a batch size 32.

In Table 3 we extend ablation studies with a transformer backbone (DeiT). We observe the same
trend as in Table 2. LSupAP is consistently better than the LSmoothAP baseline, with gain up to more
than 1pt (e.g. on batch size 128 on INaturalist). Lcalibr. further lifts the performances on the three
datasets and all batch sizes.

Comparison to state of the art method We show in Table 4 the impact of increasing the em-
bedding dimension when using ResNet-50. All metrics improve on the three datasets when the

7

Table 3: Ablation study for the impact of our two contribution vs. the SmoothAP baseline for the
three datasets and different batch sizes, with a DeiT backbone [16]

CUB SOP INaturalist

BS Method H− Lcalibr. R@1 mAP@R R@1 mAP@R R@1 mAP@R

128
SmoothAP 7 7 76.2 34.7 84.16 60.18 69.83 29.49
SupAP 3 7 76.33 34.91 84.74 61.29 71.12 30.5
ROADMAP 3 3 77.09 35.76 85.44 62.57 72.82 31.36

224
SmoothAP 7 7 76.38 35.33 84.3 60.49 70.55 30.25
SupAP 3 7 76.47 35.67 84.77 61.38 71.9 31.31
ROADMAP 3 3 77.14 36.18 85.56 62.75 73.64 31.82

384
SmoothAP 7 7 76.72 35.86 84.66 61.26 71.09 30.89
SupAP 3 7 77.13 36.17 85.01 61.76 72.55 31.89
ROADMAP 3 3 77.38 36.23 85.35 62.29 73.64 32.12

Table 4: Difference in performance when using an embedding size of 512 vs. 2048 with a ResNet-50
backbone, on the three datasets. Performances are obtained with the same setup as described in the
Sec. 4.2 of the main paper.

CUB SOP INaturalist

Method dim R@1 mAP@R R@1 mAP@R R@1 mAP@R

ROADMAP (ours) 512 68.5 27.97 83.19 58.05 69.19 27.85
ROADMAP (ours) 2048 69.87 28.8 83.77 59.38 69.62 27.87

embedding dimension increases. We observe a gain particularly important on CUB and SOP with
∼+1pt in R@1 and mAP@R.

Choosing an embedding size of 2048 further boost the performances of ROADMAP, yielding
competitive performances on CUB and state-of-the-art performances for SOP and INaturalist.

Preliminary results on Landmarks retrieval We show in Table 5 preliminary experiments to
evaluate ROADMAP onROxford andRParis [13], by training our model on the SfM-120k dataset
and using the standard GitHub code for evaluation1.

We can see that ROADMAP is significantly better than [4] with the DeiT-S [16] on ROxford and
RParis medium protocol, and has similar performances forRParis hard protocol. This highlights the
relevance of using ROADMAP instead of the contrastive loss used in [4].

Table 5: Comparison of ROADMAP vs IRT [4] onROxford andRParis [13]. Models are DeiT-S [16],
ROADMAP is trained with a batch size of 128.

Method ROxford RParis
Medium Hard Medium Hard

IRT [4] 34.5 15.8 65.8 42.0
ROADMAP (ours) 38.9 20.7 67.5 42.3

1https://github.com/filipradenovic/cnnimageretrieval-pytorch

8

https://github.com/filipradenovic/cnnimageretrieval-pytorch

B.5 Model analysis

Hyperparameters In Fig. 6 we show the impact of the hyperparameters of LSupAP. We plot the
mAP@R vs. τ in Fig. 6a and mAP@R vs. ρ in Fig. 6b. The experiments are conducted on SOP with
a batch size of 128.

We observe on Fig. 6a that LSupAP is stable with small values of τ , i.e. in the range [0.001, 0.05]. As
a reminder we use the default value τ = 0.01 in all our results, as it was the suggested value from the
SmoothAP paper [1].

We conduct a study of the impact of ρ in Fig. 6b. We find that LSupAP is very stable wrt. this
hyperparameter. Performances are improving with a greater value of ρ before dropping after 104.
The trend follows what was observed in the Fig. 4b of the main paper, although this time using a
value if ρ = 104 yields better performances. Using cross-validation to choose an optimal value for ρ
may lead to even better performances for LSupAP.

10−3 10−2 10−1 100
0

10

20

30

40

50

m
A

P@
R

(a) mAP@R vs. τ for LSupAP.

10−1 100 101 102 103 104
55

55.2

55.4

55.6

55.8

56

(b) mAP@R vs. ρ for LSupAP.

Figure 6: Analysis of LSupAP hyperparameters on SOP (batch size 128).

Decomposability gap In Table 6 we measure the relative decrease of the decomposability gap
DGAP on SOP and CUB test sets. On both datasets we can see that Lcalibr. decreases the decompos-
ability gap.

Table 6: Relative decrease of the decomposability gap when adding Lcalibr. to LSupAP (ROADMAP).
Dataset decrease of DGAP
CUB 3.7%
SOP 5.4%

B.6 Source code

We describe in this section the software used for our work, and discuss the computation costs
associated with training models presented in this paper.

Librairies We use several Python libraries often used in image retrieval.

We use PyTorch [12] as a general framework to implement our neural networks, losses and training
loops. We use several utilities from PyTorch Metric Learing [10], an open-source Python library
focused on helping researcher working on image retrieval and metric learning. We use Faiss [6] to
compute metrics (i.e. to perform nearest neighbours search), which is a Python library often used
in image retrieval to compute the rankings or the similarity matrix. To load and use the transformer
models we use timm [17], a library implementing recent computer vision models, with pretrained
weights for most of them. To handle all our config files, we use Hydra [18], this library makes it
possible to combine the use of Yaml configuration files and overriding them using the command line.

9

We use the publicly available implementation of SoftBinAP2 [14] which is under a BSD-3 license.
The original codes of SmoothAP3 [1], BlackBox4 [11, 15] are under an MIT license. For FastAP [2]
we use the implementation from [10] (MIT license), the original implementation of FastAP5 is also
under an MIT license.

Compute costs We use mixed-precision learning offered within PyTorch [12]. The time and
memory consumption are reduced by a factor between 2 and 3/2 with no notable difference in
performances. We could train all models on 16GiB GPUs, except for models trained with a batch
size of 384 which requires a 32GiB GPU.

CUB Models take between 30 minutes and 1 hour to train on a Nvidia Quadro RTX 5000 with 16GiB.

SOP Models take between 4 and 8 hours to train on a Nvidia Quadro RTX 5000 with 16GiB.

INaturalist To train models on INaturalist we were granted access to the IDRIS HPC cluster with
Tesla V-100 GPUs (of 16GiB or 32GiB). Models train for approximately 20 hours.

We could not train models with mixed-precision when using BlackBox [15]. Models trained with it
took longer to train (e.g. 30 hours on INaturalist) and are more demanding on memory (almost 16GiB
with a batch size of 128 while models trained with other loss functions required less than 10Gib).

C Qualitative results

CUB As a qualitative assessment, we show in Fig. 7 some results of ROADMAP on CUB. We
show the queries (in purple) and the 10 most similar retrieved images, with relevant instances in green
and irrelevant instances in red.

SOP In Fig. 8 we perform the same assessment for SOP. In SOP there are fewer relevant instances
per query (in average 5). So even for queries that retrieved all the relevant instances, there will be
negative instances that have high ranks (in Fig. 8 ranks that are lower than 10).

INaturalist Finally we show on Fig. 9 some examples of queries and the 10 most similar instances
for a model trained with ROADMAP on INaturalist.

2https://github.com/naver/deep-image-retrieval
3https://github.com/Andrew-Brown1/Smooth_AP
4https://github.com/martius-lab/blackbox-backprop
5https://github.com/kunhe/FastAP-metric-learning

10

https://github.com/naver/deep-image-retrieval
https://github.com/Andrew-Brown1/Smooth_AP
https://github.com/martius-lab/blackbox-backprop
https://github.com/kunhe/FastAP-metric-learning

Figure 7: Qualitative results on CUB: a query (purple) with the 10 most similar instances. Relevant
(resp. irrelevant) instances are in green (resp. red).

11

Figure 8: Qualitative results on SOP: a query (purple) with the 10 most similar instances. Relevant
(resp. irrelevant) instances are in green (resp. red).

12

Figure 9: Qualitative results on INaturalist: a query (purple) with the 10 most similar instances.
Relevant (resp. irrelevant) instances are in green (resp. red).

13

References
[1] Andrew Brown, Weidi Xie, Vicky Kalogeiton, and Andrew Zisserman. Smooth-ap: Smoothing

the path towards large-scale image retrieval. In European Conference on Computer Vision,
pages 677–694. Springer, 2020.

[2] Fatih Cakir, Kun He, Xide Xia, Brian Kulis, and Stan Sclaroff. Deep metric learning to rank. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1861–1870, 2019.

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[4] Alaaeldin El-Nouby, Natalia Neverova, Ivan Laptev, and Hervé Jégou. Training vision trans-
formers for image retrieval. arXiv preprint arXiv:2102.05644, 2021.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. corr abs/1512.03385 (2015), 2015.

[6] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734, 2017.

[7] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[8] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[9] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. A metric learning reality check. In
European Conference on Computer Vision, pages 681–699. Springer, 2020.

[10] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. Pytorch metric learning, 2020.

[11] Marin Vlastelica P., Anselm Paulus, Vít Musil, Georg Martius, and Michal Rolínek. Differenti-
ation of blackbox combinatorial solvers. In ICLR, 2020.

[12] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

[13] Filip Radenović, Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondřej Chum. Revisiting
oxford and paris: Large-scale image retrieval benchmarking. In CVPR, 2018.

[14] Jerome Revaud, Jon Almazán, Rafael S Rezende, and Cesar Roberto de Souza. Learning with
average precision: Training image retrieval with a listwise loss. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 5107–5116, 2019.

[15] Michal Rolínek, Vít Musil, Anselm Paulus, Marin Vlastelica, Claudio Michaelis, and Georg
Martius. Optimizing rank-based metrics with blackbox differentiation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7620–7630, 2020.

[16] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. arXiv
preprint arXiv:2012.12877, 2020.

[17] Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

[18] Omry Yadan. Hydra - a framework for elegantly configuring complex applications. Github,
2019.

14

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

	ROADMAP model
	Properties of SupAP & comparison to SmoothAP
	Properties of the Lcalibr. loss function
	Choice of

	Experiments
	Metrics
	Detail on experimental setup
	Details of the backbones used
	ROADMAP validation
	Model analysis
	Source code

	Qualitative results

