
Under review as a conference paper at ICLR 2023

SUPPLEMENTARY MATERIAL FOR
“RE-BENCHMARKING OUT-OF-DISTRIBUTION
DETECTION IN DEEP NEURAL NETWORKS”

Anonymous authors
Paper under double-blind review

A APPENDIX

In this section, we provide another method of improving OOD detection models. Existing method
is to split the ID dataset into training set and validation set. Training set is used to train models
while validation set is used to select the model. After the model is established, each image can get
a score according to OOD detection algorithms. Hence, we recommend models trained by the data
with higher scores and utilize the data with lower scores to form validation set. Models can then get
better features from training data. Here is the introduction of our method.

Adaptive Model Selection

We divide datasets into different groups and make ID dataset as well as OOD dataset using methods
from our benchmark. Then we divide this dataset into training set and validation set. After we train
the model by training set, we hope to select the data which has the lowest algorithm scores as the
new validation set. Thus, we calculate the algorithm scores of different batches of data and then sort
them. The lowest 20% batches are picked as the validation set while the other batches are used as
the training set. The models are then trained again by utilizing these new sets. These new models
are used to re-detect OOD data. In order to improve the effectiveness of models, this method can be
repeated more than one time. After several times of iteration, the models are fully improved.

In this paper, we only suggest this method. We will make a total experiment and all-round analysis
in the future work.

Algorithm 1 Divide training set and validation set manually based on grad norm score
1: Selecting datasets to form ID dataset;
2: Training model with training set and validation set divided from ID dataset;
3: Initializing an empty dictionary S;
4: for each batch i in ID dataset do
5: Calculating the algorithm score Si;
6: S[Si]=i;
7: end for;
8: Sorting S according to the algorithm scores;
9: Initializing an empty list val set;

10: for i = 0; i < 0.2 ∗ num(IDdataset); i++ do
11: Adding S[i][1] into val set;
12: end for
13: for each batch i in ID dataset do
14: if i in val set then
15: Validating model
16: else
17: Training model
18: end if
19: end for
20: Testing the performance of the model

1


	Appendix

