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ABSTRACT

COMpression with Bayesian Implicit NEural Representations (COMBINER) is a
recent data compression method that addresses a key inefficiency of previous
Implicit Neural Representation (INR)-based approaches: it avoids quantization
and enables direct optimization of the rate-distortion performance. However,
COMBINER still has significant limitations: 1) it uses factorized priors and pos-
terior approximations that lack flexibility; 2) it cannot effectively adapt to lo-
cal deviations from global patterns in the data; and 3) its performance can be
susceptible to modeling choices and the variational parameters’ initializations.
Our proposed method, Robust and Enhanced COMBINER (RECOMBINER), ad-
dresses these issues by 1) enriching the variational approximation while retain-
ing a low computational cost via a linear reparameterization of the INR weights,
2) augmenting our INRs with learnable positional encodings that enable them
to adapt to local details and 3) splitting high-resolution data into patches to in-
crease robustness and utilizing expressive hierarchical priors to capture depen-
dency across patches. We conduct extensive experiments across several data
modalities, showcasing that RECOMBINER achieves competitive results with the
best INR-based methods and even outperforms autoencoder-based codecs on low-
resolution images at low bitrates. Our PyTorch implementation is available at
https://github.com/cambridge-mlg/RECOMBINER/.

1 INTRODUCTION

Advances in deep learning recently enabled a new data compression technique impossible with
classical approaches: we train a neural network to memorize the data (Stanley, 2007) and then
encode the network’s weights instead. These networks are called the implicit neural representation
(INR) of the data, and differ from neural networks used elsewhere in three significant ways. First,
they treat data as a signal that maps from coordinates to values, such as mapping pX,Y q pixel
coordinates to pR,G,Bq color triplets in the case of an image. Second, their architecture consists
of many fewer layers and units than usual and tends to utilize SIREN activations (Sitzmann et al.,
2020). Third, we aim to overfit them to the data as much as possible.

Unfortunately, most INR-based data compression methods cannot directly and jointly optimize rate-
distortion, which results in a wasteful allocation of bits leading to suboptimal coding performance.
COMpression with Bayesian Implicit NEural Representations (COMBINER; Guo et al., 2023) ad-
dresses this issue by picking a variational Gaussian mean-field Bayesian neural network (Blundell
et al., 2015) as the INR of the data. This choice enables joint rate-distortion optimization via maxi-
mizing the INR’s β-evidence lower bound (β-ELBO), where β controls the rate-distortion trade-off.
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Figure 1: Schematic of (a) COMBINER and (b) RECOMBINER, our proposed method. See Sections 2
and 3 for notation. As the INR’s input, RECOMBINER uses hz upsampled to pixel-wise positional
encodings concatenated with Fourier embeddings. (c) A closer look at how RECOMBINER maps hz

to the INR input, taking images as an example. FE: Fourier embeddings; FC: fully connected layer.

Finally, the authors encode a weight sample from the INR’s variational weight posterior to represent
the data using relative entropy coding (REC; Havasi et al., 2018; Flamich et al., 2020).

Although COMBINER performs strongly among INR-based approaches, it falls short of the state-
of-the-art codecs on well-established data modalities both in terms of performance and robustness.
In this paper, we identify several issues that lead to this discrepancy: 1) COMBINER employs a
fully-factorized Gaussian variational posterior over the INR weights, which tends to underfit the data
(Dusenberry et al., 2020), going directly against our goal of overfitting; 2) Overfitting small INRs
used by COMBINER is challenging, especially at low bitrates: a small change to any weight can
significantly affect the reconstruction at every coordinate, hence optimization by stochastic gradient
descent becomes unstable and yields suboptimal results. 3) Overfitting becomes more problematic
on high-resolution signals. As highlighted by Guo et al. (2023), the method is sensitive to model
choices and the variational parameters’ initialization and requires considerable effort to tune.

We tackle these problems by proposing several non-trivial extensions to COMBINER, which signifi-
cantly improve the rate-distortion performance and robustness to modeling choices. Hence, we dub
our method robust and enhanced COMBINER (RECOMBINER). Concretely, our contributions are:

• We propose a simple yet effective learned reparameterization for neural network weights
specifically tailored for INR-based compression, yielding more expressive variational pos-
teriors while matching the computational cost of standard mean-field variational inference.

• We augment our INR with learnable positional encodings whose parameters only have a lo-
cal influence on the reconstructed signal, thus allowing deviations from the global patterns
captured by the network weights, facilitating overfitting the INR with gradient descent.

• We split high-resolution data into patches to improve robustness to modeling choices and
the variational parameters’ initialization. Moreover, we propose an expressive hierarchical
Bayesian model to capture the dependencies across patches to enhance performance.

• We conduct extensive experiments to verify the effectiveness of our proposed extensions
across several data modalities, including image, audio, video and protein structure data.
In particular, we show that RECOMBINER achieves better rate-distortion performance than
VAE-based approaches on low-resolution images at low bitrates.

2 BACKGROUND

This section reviews the essential parts of Guo et al. (2023)’s compression with Bayesian implicit
neural representations (COMBINER), as it provides the basis for our method.

Variational Bayesian Implicit Neural Representations: We assume the data we wish to compress
can be represented as a continuous function f : RI Ñ RO from I-dimensional coordinates to O-
dimensional signal values. Then, our goal is to approximate f with a small neural network gp¨ | wq
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with weights w. Given L hidden layers in the network, we write w “ rwr1s, . . . ,wrLss, which
represents the concatenation of the L weight matrices wr1s, . . .wrLs, each flattened into a row-
vector. Guo et al. (2023) propose using variational Bayesian neural networks (BNN; Blundell et al.,
2015) that place a prior pw and a variational posterior qw on the weights. Furthermore, they use
Fourier embeddings γpxq for the input data (Tancik et al., 2020) and sine activations at the hidden
layers (Sitzmann et al., 2020). To infer the implicit neural representation (INR) for some data D, we
treat D as a dataset of coordinate-value pairs tpxi,yiquDi“1, e.g. for an image, xi can be an pX,Y q

pixel coordinate and yi the corresponding pR,G,Bq triplet. Next, we pick a distortion metric ∆
(e.g., mean squared error) and a trade-off parameter β to define the β-rate-distortion objective:

LpD, qw, pw, βq “ β ¨ DKLrqw}pws `
1

D

D
ÿ

i“1

Eqw r∆pyi, gpxi | wqs , (1)

where DKLrqw}pws denotes the Kullback-Leibler divergence of qw from pw, and as we explain
below, it represents the compression rate of a single weight sample w „ qw. Note that Equation (1)
corresponds to a negative β-evidence lower bound under mild assumptions on ∆.

We infer the optimal posterior by computing q˚
w “ argminqwPQ LpD, qw, pw, βq over an appropri-

ate variational family Q. Guo et al. (2023) set Q to be the family of factorized Gaussian distributions.

Training COMBINER: Once we selected a network architecture g for our INRs, a crucial element of
COMBINER is to select a good prior on the weights pw. Given a training set tD1, . . . ,DMu and an
initial guess for pw, Guo et al. (2023) propose the following iterative scheme to select the optimal
prior: 1) Fix pw and infer the variational INR posteriors q˚

w,m for each datum Dm by minimizng
Equation (1); 2) Fix the q˚

w,ms and update the prior parameters pw based on the parameters of the
posteriors. When the qw are Gaussian, Guo et al. (2023) derive analytic formulae for updating the
prior parameters. To avoid overloading the notion of training, we refer to learning pw and the other
model parameters as training, and to learning qw as inferring the INR.

Compressing data with COMBINER: Once we picked the INR architecture g and found the optimal
prior pw, we can use COMBINER to compress new data D in two steps: 1) We first infer the varia-
tional INR posterior qw for D by optimizing Equation (1), after which 2) we encode an approximate
sample from qw using relative entropy coding (REC), whose expected coding cost is approximately
DKLrqw}pws (Havasi et al., 2018; Flamich et al., 2020). Following Guo et al. (2023), we used
depth-limited global-bound A˚ coding (Flamich et al., 2022), to which we will refer as just A˚ cod-
ing. Unfortunately, applying A˚ coding to encode a sample from qw is infeasible in practice, as the
time complexity of the algorithm grows as ΩpexppDKLrqw}pwsqq. Hence, Guo et al. (2023) suggest
breaking up the problem into smaller ones. First, they draw a uniformly random permutation α on
dimpwq elements, and use it to permute the dimensions of w as αpwq “ rwαp1q, . . . ,wαpdimpwqqs.
Then, they partition αpwq into smaller blocks, and compress the blocks sequentially. Permuting the
weight vector ensures that the KL divergences are spread approximately evenly across the blocks.
As an additional technical note, between compressing each block, we run a few steps of finetuning
the posterior of the weights that are yet to be compressed, see Guo et al. (2023) for more details.

3 METHODS

In this section, we propose several extensions to Guo et al. (2023)’s framework that significantly
improve its robustness and performance: 1) we introduce a linear reparemeterization for the INR’s
weights which yields a richer variational posterior family; 2) we augment the INR’s input with
learned positional encodings to capture local features in the data and to assist overfitting; 3) we
scale our method to high-resolution image compression by dividing the images into patches and
introducing an expressive hierarchical Bayesian model over the patch-INRs, and 4) we introduce
minor modifications to the training procedure and adaptively select β to achieve the desired coding
budget. Contributions 1) and 2) are depicted in Figure 1, while 3) is shown in Figure 2.

3.1 LINEAR REPARAMETERIZATION FOR THE NETWORK PARAMETERS

A significant limitation of the factorized Gaussian variational posterior used by COMBINER is that it
posits dimension-wise independent weights. This assumption is known to be unrealistic (Izmailov
et al., 2021) and to underfit the data (Dusenberry et al., 2020), which goes directly against our goal
of overfitting the data. On the other hand, using a full-covariance Gaussian posterior approximation
would increase the INR’s training and coding time significantly, even for small network architectures.
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Hence, we propose a solution that lies in-between: at a high level, we learn a linearly-transformed
factorized Gaussian approximation that closely matches the full-covariance Gaussian posterior on
average over the training data. Formally, for each layer l “ 1, . . . , L, we model the weights as
wrls “ h

rls
wArls, where the Arls are square matrices, and we place a factorized Gaussian prior and

variational posterior on h
rls
w instead. We learn each Arls during the training stage, after which we fix

them and only infer factorized posteriors q
h

rls
w

when compressing new data. To simplify notation,

we collect the Arls in a block-diagonal matrix A “ diagpAr1s, . . . ,ArLsq and the h
rls
w in a single

row-vector hw “ rh
r1s
w , . . . ,h

rLs
w s, so that now the weights are given by w “ hwA. We found this

layer-wise weight reparameterization as efficient as using a joint one for the entire weight vector w.
Hence, we use the layer-wise approach, as it is more parameter and compute-efficient.

This simple yet expressive variational approximation has a couple of advantages. First, it provides
an expressive full-covariance prior and posterior while requiring much less training and coding time.
Specifically, the KL divergence required by Equation (1) is still between factorized Gaussians and
we do not need to optimize the full covariance matrices of the posteriors during coding. Second, this
parameterization has scale redundancy: for any c P R we have hwA “ p1{c ¨ hwqpc ¨ Aq. Hence,
if we initialize hw suboptimally during training, A can still learn to compensate for it, making our
method more robust. Finally, note that this reparameterization is specifically tailored for INR-based
compression and would usually not be feasible in other BNN use-cases, since we learn A while
inferring multiple variational posteriors simultaneously.

3.2 LEARNED POSITIONAL ENCODINGS

A challenge for overfitting INRs, especially at low bitrates is their global representation of the data, in
the sense that each of their weights influences the reconstruction at every coordinate. To mitigate this
issue, we extend our INRs to take a learned positional input zi at each coordinate xi: gpxi, zi | wq.

However, it is usually wasteful to introduce a vector for each coordinate in practice. Instead, we use
a lower-dimensional row-vector representation hz, that we reshape and upsample with a learnable
function ϕ. In the case of a W ˆ H image with F -dimensional positional encodings, we could pick
hz such that dimphzq ! F ¨ W ¨ H , then reshape and upsample it to be F ˆ W ˆ H by picking ϕ
to be some small convolutional network. Then, we set zi “ ϕphzqxi

to be the positional encoding
at location xi. We placed a factorized Gaussian prior and variational posterior on hz. Hereafter, we
refer to hz as the latent positional encodings, ϕphzq and zi as the upsampled positional encodings.

3.3 SCALING TO HIGH-RESOLUTION DATA WITH PATCHES

With considerable effort, Guo et al. (2023) successfully scaled COMBINER to high-resolution images
by significantly increasing the number of INR parameters. However, they note that the training pro-
cedure was very sensitive to hyperparameters, including the initialization of variational parameters
and model size selection. Unfortunately, improving the robustness of large INRs using the weight
reparameterization we describe in Section 3.1 is also impractical, because the size of the transforma-
tion matrix A grows quadratically in the number of weights. Therefore, we split high-resolution data
into patches and infer a separate small INR for each patch, in line with other INR-based works as well
(Dupont et al., 2022; Schwarz & Teh, 2022; Schwarz et al., 2023). However, the patches’ INRs are
independent by default, hence we re-introduce information sharing between the patch-INRs’ weights
via a hierarchical model for hw. Finally, we take advantage of the patch structure to parallelize data
compression and reduce the encoding time in RECOMBINER, as discussed at the end of this section.

RECOMBINER’s hierarchical Bayesian model: We posit a global representation for the weights
hw, from which each patch-INR can deviate. Thus, assuming that the data D is split into P patches,
for each patch π P 1, . . . , P , we need to define the conditional distributions of patch representa-
tions hpπq

w | hw. However, since we wish to model deviations from the global representation, it is
natural to decompose the patch representation as hpπq

w “ ∆h
pπq
w ` hw, and specify the conditional

distribution of the differences ∆h
pπq
w | hw instead, without any loss of generality. In this paper,

we place a factorized Gaussian prior and variational posterior on the joint distribution of the global
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Figure 2: Illustration of (a) the three-level hierarchical model and (b) our permutation strategy.

representation and the deviations, given by the following product of P ` 1 Gaussian measures:

p
hw,∆h

p1:P q
w

“ N pµw,diagpσwqq ˆ

P
ź

π“1

N pµ
pπq

∆ ,diagpσ
pπq

∆ qq (2)

q
hw,∆h

p1:P q
w

“ N pνw,diagpρwqq ˆ

P
ź

π“1

N pν
pπq

∆ ,diagpρ
pπq

∆ qq, (3)

where 1 : P is the slice notation, i.e. ∆h
p1:P q
w “ ∆h

p1q
w , . . . ,∆h

pP q
w . Importantly, while the

posterior approximation in Equation (3) assumes that the global representation and the differences
are independent, hw and h

pπq
w remain correlated. Note that optimizing Equation (1) requires us to

compute DKLrq
h

p1:P q
w

}p
h

p1:P q
w

s. Unfortunately, due to the complex dependence between the h
pπq
w s,

this calculation is infeasible. Instead, we can minimize an upper bound to it by observing that
DKLrq

h
p1:P q
w

}p
h

p1:P q
w

s ď DKLrq
h

p1:P q
w

}p
h

p1:P q
w

s ` DKLrq
hw|h

p1:P q
w

}p
hw|h

p1:P q
w

s

“ DKLrq
hw,h

p1:P q
w

}p
hw,h

p1:P q
w

s

“ DKLrq
hw,∆h

p1:P q
w

}p
hw,∆h

p1:P q
w

s. (4)

Hence, when training the patch-INRs, we replace the KL term in Equation (1) with the divergence in
Equation (4), which is between factorized Gaussian distributions and cheap to compute. Finally, we
remark that we can view hw as side information also prevalent in other neural compression codecs
(Ballé et al., 2018), or auxiliary latent variables enabling factorization (Koller & Friedman, 2009).

While Equations (2) and (3) describe a two-level hierarchical model, we can easily extend the hi-
erarchical structure by breaking up patches further into sub-patches and adding extra levels to the
probabilistic model. For our experiments on high-resolution audio, images, and video, we found that
a three-level hierarchical model worked best, with global weight representation hw, second/group-
level representations h

p1:Gq

w and third/patch-level representations hp1:P q
w , illustrated in Figure 2a. Em-

pirically, a hierarchical model for hz did not yield significant gains, thus we only use it for hw.

Compressing high-resolution data with RECOMBINER: An advantage of patching is that we can
compress and fine-tune INRs and latent positional encodings of all patches in parallel. Unfortunately,
compressing P patches in parallel using COMBINER’s procedure is suboptimal, since the information
content between patches might vary significantly. However, by carefully permuting the weights
across the patches’ representations we can 1) adaptively allocate bits to each patch to compensate
for the differences in their information content and 2) enforce the same coding budget across each
parallel thread to ensure consistent coding times. Concretely, we stack representations of each patch
in a matrix at each level of the hierarchical model. For example, in our three-level model we set

Hp0q
π,: “ rhpπq

w ,hpπq
z s, Hp1q

g,: “ h
pgq

w , Hp2q “ hw, (5)
where we use slice notation to denote the ith row as Hi,: and the jth column as H:,j . Furthermore,
let Sn denote the set of permutations on n elements. Now, at each level ℓ, assume Hpℓq has Cℓ
columns and Rℓ rows. We sample a single within-row permutation κ uniformly from SCℓ

and for
each column of Hpℓq we sample an across-rows permutation αj uniformly from SRℓ

elements.
Then, we permute Hpℓq as ĂH

pℓq

i,j “ H
pℓq

αjpiq,κpjq
. Finally, we split the Hpℓqs into blocks row-wise,

and encode and fine-tune each row in parallel. We illustrate the above procedure in Figure 2b.
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3.4 EXTENDED TRAINING PROCEDURE

In this section, we describe the ways in which RECOMBINER’s training procedure deviates from
COMBINER’s. To begin, we collect the RECOMBINER’s representations into one vector. For non-
patching cases we set h “ rhw,hzs, and for the patch case using the three-level hierarchical model
we set h “ vecprHp0q,Hp1q,Hp2qsq. For simplicity, we denote the factorized Gaussian prior and
variational posterior over h as ph “ N pµ,diagpσqq and qh “ N pν,diagpρqq, where µ and ν are
the means and σ and ρ are the diagonals of covariances of the prior and the posterior, respectively.

Training RECOMBINER: Our objective for the training stage is to obtain the model parameters
A, ϕ,µ,σ given a training dataset tD1, . . . ,DMu and a coding budget C. 1 In their work, Guo et al.
(2023) control the coding budget implicitly by manually setting different values for β in Equation (1).
In this paper, we adopt an explicit approach and tune β dynamically based on our desired coding
budget of C bits. More precisely, after every iteration, we calculate the average KL divergence of the
training examples, i.e., δ̄ “ 1

M

řM
m“1 DKLrqh,m||phs. If δ̄ ą C, we update β by β Ð βˆp1`τCq;

if δ̄ ă C ´ ϵC , we update β by β Ð β{p1 ` τCq. Here ϵC is a threshold parameter to stabilize the
training process and prevent overly frequent updates to β, and τC is the adjustment step size. Unless
otherwise stated, we set τC “ 0.5 in our experiments. Empirically, we find the value of β stabilizes
after 30 to 50 iterations. We present the pseudocode of this prior learning algorithm in Algorithm 1.
Then, our training step is a three-step coordinate descent process analogous to Guo et al. (2023)’s:

1. Optimize variational parameters, linear transformation and upsampling network: Fix the
prior ph, and optimize Equation (1) or its modified version from Section 3.3 via gradient descent.
Note, that L is a function of the linear transform A and upsampling network parameters ϕ too:

tνm,ρmu
M
m“1 ,A, ϕ Ð argmin

tνm,ρmuMm“1,A,ϕ

#

1

M

M
ÿ

m“1

LpDm, qh,m, ph,A, ϕ, βq

+

. (6)

2. Update prior: Update the prior parameters by the closed-form solution:

µ Ð
1

M

M
ÿ

m“1

νm, σ Ð
1

M

M
ÿ

m“1

”

pνm ´ µq
2

` ρm

ı

. (7)

3. Update β: Set β Ð β ˆ p1 ` τCq or β Ð β{p1 ` τCq based on the procedure described above.

Note that unlike other INR-based methods (Dupont et al., 2022; Schwarz & Teh, 2022; Schwarz
et al., 2023) our training procedure is remarkably stable, as we illustrate in Appendix D.4.

4 RELATED WORKS

Nonlinear transform coding: Currently, the dominant paradigm in neural compression is nonlinear
transform coding (NTC; Ballé et al., 2020) usually implemented using variational autoencoders
(VAE). NTC has achieved impressive performance in terms of both objective metrics (Cheng et al.,
2020; He et al., 2022) and perceptual quality (Mentzer et al., 2020), mainly due to their expressive
learned non-linear transforms (Ballé et al., 2020; Zhu et al., 2021; Liu et al., 2023) and elaborate
entropy models (Ballé et al., 2018; Minnen et al., 2018; Guo et al., 2021).

Compressing INRs can also be viewed as a form of NTC: we use gradent descent to transform
data into an INR. The idea to quantize INR weights and entropy code them was first proposed by
Dupont et al. (2021), whose method has since been extended significantly (Dupont et al., 2022;
Schwarz & Teh, 2022; Schwarz et al., 2023). The current state-of-the-art INR-based method, VC-
INR (Schwarz et al., 2023), achieves impressive results across several data modalities, albeit at the
cost of significantly higher complexity and still falling short of autoencoder-based NTC methods on
images. Our method, following COMBINER (Guo et al., 2023), differs from all of the above methods,
as it uses REC to encode our variational INRs, instead of quantization and entropy coding.

Linear weight reparameterization: Similar to our proposal in Section 3.1, Oktay et al. (2019)
learn an affine reparameterization of the weights of large neural networks. They demonstrate that
scalar quantization in the transformed space leads to significant gains in compression performance.
However, since they are performing one-shot model compression, their linear transformations have

1As a slight abuse of notation, we use ϕ to denote both the upsampling function and its parameters.
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(f) Decoded protein structure examples.

Figure 3: Quantitive evaluation and qualitative examples of RECOMBINER on image, audio, video,
and 3D protein structure. Kbps stands for kilobits per second, RMSD stands for Root Mean Square
Deviation, and bpa stands for bits per atom. For all plots, we use solid lines to denote INR-based
codecs, dotted lines to denote VAE-based codecs, and dashed lines to denote classical codecs.

very few parameters as they need to transmit them alongside the quantized weights, limiting their ex-
pressivity. On the other hand, RECOMBINER learns the linear transform during training after which
it is fixed and shared between communicating parties, thus it does not cause any communication
overhead. Therefore, our linear transformation can be significantly more expressive.

Positional encodings: Some recent works have demonstrated that learning positional features is
beneficial for fitting INRs (Jiang et al., 2020; Kim et al., 2022; Müller et al., 2022; Ladune et al.,
2023). Sharing a similar motivation, our method essentially incorporates implicit representations
with explicit ones, forming a hybrid INR framework (Chen et al., 2023).

5 EXPERIMENTAL RESULTS

In this section, we evaluate RECOMBINER on image, audio, video, and 3D protein structure data and
demonstrate that it achieves strong performance across all modalities. We also perform extensive
ablation studies on the CIFAR-10 and Kodak datasets which demonstrate RECOMBINER’s robustness
and the effectiveness of each of our proposed solutions. For all experiments, we use a 4-layer, 32-
hidden unit SIREN network (Sitzmann et al., 2020) as the INR architecture unless otherwise stated,
and a small 3-layer convolution network as the upsampling network ϕ, as shown in Figure 6 in the
appendix. See Appendix C for the detailed description of our experimental setup.
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(a) w/o positional encodings;
bitrate 0.287 bpp; PSNR 25.62 dB.

(b) with positional encodings;
bitrate 0.316 bpp; PSNR 26.85 dB.

(c) with positional encodings;
bitrate 0.178 bpp; PSNR 25.05 dB.

Figure 4: Comparison between kodim24 details compressed with and without learnable positional
encodings. (a)(b) have similar bitrates and (a)(c) have similar PSNRs.

5.1 DATA COMPRESSION ACROSS MODALITIES

Image: We evaluate RECOMBINER on the CIFAR-10 (Krizhevsky et al., 2009) and Kodak (Kodak,
1993) image datasets, and show its rate-distortion (RD) performance in Figure 3a, and compare it
against recent INR and VAE-based methods, as well as VTM (JVET, 2020)2, BPG (Bellard, 2014)
and JPEG2000. RECOMBINER displays remarkable performance on CIFAR-10, especially at low
bitrates, outperforming even VAE-based codecs. On Kodak, it outperforms most INR-based codecs
and is competitive with the more complex VC-INR method of Schwarz et al. (2023). Finally, while
RECOMBINER still falls behind VAE-based codecs, it significantly reduces the performance gap.

Audio: Following the experimental set-up of Guo et al. (2023), we evaluate our method on the
LibriSpeech (Panayotov et al., 2015) dataset. In Figure 3b, we depict RECOMBINER’s RD curve on
the full test set, alongside the curves of VC-INR, COIN++, and MP3. We can see RECOMBINER
outperforms both COIN++ and MP3 and matches with VC-INR. Since Guo et al. (2023) only tested
COMBINER on 24 test clips, we do not include COMBINER in this plot but put an extra comparison in
Figure 13 in Appendix F, where we can also see that RECOMBINER clearly outperforms COMBINER.

Video: We evaluate RECOMBINER on UCF-101 action recognition dataset (Soomro et al., 2012),
following Schwarz et al. (2023)’s experimental setup. However, as they do not report their train-
test split and due to the time-consuming encoding process of our approach, we only benchmark our
method against H.264 and H.265 on 16 randomly selected video clips. Figure 3c shows RECOM-
BINER achieves comparable performance to the classic domain-specific codecs H.264 and H.265,
especially at lower bitrates. However, there is still a gap between our approach and H.264 and
H.265 when they are configured to prioritize quality. Figure 3e shows a non-cherry-picked video
compressed with RECOMBINER at two different bitrates and its reconstruction errors.

3D Protein Structure: To further illustrate the applicability of our approach, we use it to compress
the 3D coordinates of Cα atoms in protein fragments. We take domain-specific lossy codecs as
baselines, including Foldcomp (Kim et al., 2023), PDC (Zhang & Pyle, 2023) and PIC (Staniscia &
Yu, 2023). Surprisingly, as shown in Figure 3d, RECOMBINER’s performance is competitive with
highly domain-specific codecs. Furthermore, it allows us to tune its rate-distortion performance,
whereas the baselines only support a certain compression rate. Since the experimental resolution of
3D structures is typically between 1-3 Å (RCSB Protein Data Bank, 2000), RECOMBINER could help
with reducing the increasing storage demand for protein structures without losing key information.
Figure 3f shows non-cherry-picked examples compressed with our method.

5.2 EFFECTIVENESS OF OUR SOLUTIONS, ABLATION STUDIES AND RUNTIME ANALYSIS

This section showcases RECOMBINER’s robustness to model size and the effectiveness of each com-
ponent. Appendix D.1 provides additional visualizations for a deeper understanding of our methods.

Positional encodings facilitate local deviations: Figure 4 compares images obtained by RECOM-
BINER with and without positional encodings at matching bitrates and PSNRs. As we can see, po-
sitional encodings preserve intricate details in fine-textured regions while preventing noisy artifacts
in other regions of the patches, making RECOMBINER’s reconstructions more visually pleasing.

2
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/tree/VTM-12.0?ref_type=tags
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Figure 5: (a) RD performances of COMBINER and RECOMBINER with different numbers of hidden
units. (b)(c) Ablation studies on CIFAR-10 and Kodak. LR: linear reparameterization; PE: posi-
tional encodings; HM: hierarchical model; RP: random permutation across patches. We describe
the details of experimental settings for ablation studies in Appendix C.3.

RECOMBINER is more robust to model size: Using the same INR architecture, Figure 5a shows
COMBINER and RECOMBINER’s RD curves as we vary the number of hidden units. RECOMBINER
displays minimal performance variation and also consistently outperforms COMBINER. Based on
Figure 7 in Appendix D, this phenomenon is likely due to RECOMBINER’s linear weight reparame-
terization allowing it to more flexibly prune its weight representations.

Ablation study: In Figures 5b and 5c, we ablate our linear reparameterization, positional encodings,
hierarchical model, and permutation strategy on CIFAR-10 and Kodak, with five key takeaways:

1. Linear weight reparameterization consistently improves performance on both datasets, yielding
up to 4dB gain on CIFAR-10 at high bitrates and over 0.5 dB gain on Kodak in PSNR.

2. Learnable positional encodings provide more substantial advantages at lower bitrates. On
CIFAR-10, the encodings contribute up to 0.5 dB gain when the bitrate falls below 2 bpp. On
Kodak, the encodings provide noteworthy gains of 2 dB at low bitrates and 1 dB at high bitrates.

3. Surprisingly, the hierarchical model without positional encodings can degrade performance. We
hypothesize that this is because directly applying the hierarchical model poses challenges in
optimizing Equation (1). A potential solution is to warm up the rate penalty β level by level akin
to what is done in hierarchical VAEs (Sønderby et al., 2016), which we leave for further work.

4. However, positional encodings appear to consistently alleviate this optimization difficulty, yield-
ing 0.5 dB gain when used with hierarchical models.

5. Our proposed permutation strategy provides significant gains of 0.5 dB at low bitrates and more
than 1.5 dB at higher bitrates.

Runtime Analysis: We list RECOMBINER’s encoding and decoding times in Appendix D.5. Unfor-
tunately, our approach exhibits a long encoding time, similar to COMBINER. However, our decoding
process is still remarkably fast, matching the speed of COIN and COMBINER, even on CPUs.

6 CONCLUSIONS AND LIMITATIONS

In this paper, we propose RECOMBINER, a new codec based on several non-trivial extensions to
COMBINER, encompassing the linear reparameterization for the network weights, learnable posi-
tional encodings, and expressive hierarchical Bayesian models for high-resolution signals. Experi-
ments demonstrate that our proposed method sets a new state-of-the-art on low-resolution images at
low bitrates, and consistently delivers strong results across other data modalities.

A major limitation of our work is the encoding time complexity and tackling it should be of primary
concern in future work. A possible avenue for solving this issue is to reduce the number of parame-
ters to optimize over and switch from inference over weights to modulations using, e.g. FiLM layers
(Perez et al., 2018), as is done in other INR-based works. A second limitation is that while com-
pressing with patches enables parallelization and higher robustness, it is suboptimal as it leads to
block artifacts, as can be seen in Figure 4. Third, as Guo et al. (2023) demonstrate, the approximate
samples given by A˚ coding significantly impact the methods performance, e.g. by requiring more
fine-tuning. An interesting question is whether an exact REC algorithm could be adapted to solve
this issue, such as the recently developed greedy Poisson rejection sampler (Flamich, 2023).

9
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A NOTATIONS

We summarize the notations used in this paper in Table 1:

Notation Name
β rate penalty hyperparameter in Equation (1)
C coding budget
τC step size for adjusting β
ϵC threshold parameter to stabilize training when adjusting β
w weights in INR
xi ith coordinate
yi ith signal value
zi RECOMBINER’s upsampled positional encodings at coordinate xi

hw RECOMBINER’s latent INR weights
hz RECOMBINER’s latent positional encodings
h

pπq
w latent INR weights for πth patch (lowest level of the hierarchical model)

h
pπq
z latent positional encodings for πth patch (lowest level of the hierarchical model)

h
pgq

w gth representation in the second level of the hierarchical model
hw third level representations of the hierarchical model
ν mean of the Gaussian posterior
µ mean of the Gaussian prior
ρ diagonal of the covariance matrix of the Gaussian posterior
σ diagonal of the covariance matrix of the Gaussian prior
A RECOMBINER’s linear transform on INR weights

Hpℓq matrix stacking representations in the ℓth level defined in Equation (5)
ĂHpℓq matrix for representations in the ℓth level after permutation
D a signal data point (as a dataset with coordinate-value pairs)
Sn set of all permutations on n elements
γp¨q Fourier embedding to coordinates

αp¨q, κp¨q a permutation
ϕp¨q upsampling network for positional encodings

gp¨ | wq INR with weights w

Table 1: Notations.
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B RECOMBINER’S TRAINING ALGORITHMS

We describe the algorithm to train RECOMBINER in Algorithm 1.

Algorithm 1 Training RECOMBINER: the prior, the linear transform A and upsampling network ϕ

Require: Training data tD1, ...,DMu; desired bitrate C.
Initialize: qh,m “ N pνm,diag pρmqq for every training instance Dm.
Initialize: ph “ N pµ,diag pσqq.
Initialize: A, ϕ.
repeat until convergence

# Step 1: Optimize posteriors, linear reparameterization matrix, and upsampling network
tνm,ρmu

M
m“1 ,A, ϕ Ð argmintνm,ρmuMm“1,A,ϕ

!

1
M

řM
m“1 LpDm, qh,m, ph,A, ϕ, βq

)

.

Ź Optimize by Equation (6)
# Step 2: Update prior
µ Ð 1

M

řM
m“1 νm, σ Ð 1

M

řM
m“1

”

pνm ´ µq
2

` ρm

ı

. Ź Update by Equation (7)

# Step 3: Update β

δ̄ “ 1
M

řM
m“1 DKLrqh,m||phs. Ź Calculate the average training KL

if δ̄ ą C then
β Ð β ˆ p1 ` τCq Ź Increase β if budget is exceeded

end if
if δ̄ ă C ´ ϵC then

β Ð β{p1 ` τCq Ź Decrease β if budget is not fully occupied
end if

end repeat
Return: ph “ N pµ,diag pσqq, A, ϕ.

C SUPPLEMENTARY EXPERIMENTAL DETAILS

C.1 DATASETS AND MORE DETAILS ON EXPERIMENTS

In this section, we describe the dataset and our experimental settings. We depict the upsampling
network we used in Figure 6 and summarize the hyperparameters for each modality in Table 2.
Besides, we present details for the baselines in Appendix C.2.

Note, that as the proposed linear reparameterization yields a full-covariance Gaussian posterior over
the weights in the INR, the local reparameterization trick (Kingma et al., 2015) is not applicable in
RECOMBINER. Therefore, in the above experiments, when inferring the posteriors of a test signal,
we employ a Monte Carlo estimator with 5 samples to estimate the expectation in β-ELBO in Equa-
tion (1). While during the training stage, we still use 1 sample. In Appendix D.3, we provide an
analysis of the sample size’s influence. It is worth noting that using just 1 sample during inferring
does not significantly deteriorate performance, and therefore we have the flexibility to reduce the
sample size when prioritizing encoding time, with marginal performance impact.

CIFAR-10: CIFAR-10 is a set of low-resolution images with a size of 32 ˆ 32. It has a training
set of 50,000 images and a test set of 10,000 images. We randomly select 15,000 images from the
training set for the training stage and evaluate RD performance on all test images. we use SIREN
network (Sitzmann et al., 2020) with 4 layers and 32 hidden units as the INR architecture.

Kodak: Kodak dataset is a commonly used image compression benchmark, containing 24 images
with resolutions of either 768 ˆ 512 or 512 ˆ 768. In our experiments, we split each images into 96
patches with size 64 ˆ 64. Lacking a standard training set, we randomly select and crop 83 images
with the same size (splitting into 7,968 patches) from the DIV2K dataset (Agustsson & Timofte,
2017) as the training set. We compress each Kodak image in 64 ˆ 64 patches. For each patch, we
use the same INR setup as that for CIFAR-10, i.e., SIREN network (Sitzmann et al., 2020) with 4
layers and 32 hidden units. Besides, we apply a three-level hierarchical Bayesian model to Kodak
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patches. The lowest level has 96 patches. Every 16 (4 ˆ 4) patches are grouped together in the
second level, and in total there are 6 groups. The highest level consists of a global representation for
the entire image.

Audio: LibriSpeech (Panayotov et al., 2015) is a speech dataset recorded at a 16kHz sampling
rate. We follow the experiment settings by Guo et al. (2023), taking the first 3 seconds of every
recording, corresponding to 48,000 audio samples. We compress each audio clip with 60 patches,
each of which has 800 audio samples. For each patch, we use the same INR architecture as CIFAR-
10 except the output of the network has only one dimension. We train RECOMBINER on 197 training
instances (corresponding to 11,820 patches) and evaluate it on the test set split by Guo et al. (2023),
consisting of 24 instances. We also apply a three-level hierarchical model. The lowest level consists
of 60 patches. Every 4 patches are grouped together in the second level, and in total there are
60{4 “ 16 groups. The highest level consists of a global representation for the entire signal.

Video: UCF-101 (Soomro et al., 2012) is a dataset of human actions. It consists of 101 action
classes, over 13k clips, and 27 hours of video data. We follow Schwarz et al. (2023) center-cropping
each video clip to 240ˆ240ˆ24 and then resizing them to 128ˆ128ˆ24. Then we compress each
clip with 16ˆ16ˆ24 patches. We train RECOMBINER on 75 video clips (4,800 patches) and evaluate
it on 16 randomly selected clips. For each patch, we still use the INR with 4 layers and 32 hidden
units. We also apply the three-level hierarchical model. The lowest level consists of 64 patches.
Every 16 4 ˆ 4 patches are grouped together in the second level, and in total, there are 4 groups.
The highest level consists of a global representation for the entire clip. 3D Protein structure: We
evaluate RECOMBINER on the Saccharomyces cerevisiae proteome from the AlphaFold DB v43. To
standardize the dataset, for each protein, we take the Cα atom of the first 96 residues (i.e., amino
acids) as the target data to be compressed. The input coordinates are the indices of the Cα atoms
(varying between 1-96, and normalized between 0-1) and the outputs of INRs are their corresponding
3D coordinates. We randomly select 1,000 structures as the test set and others as the training set. We
still use the same INR architecture as CIFAR-10, i.e., SIREN network with 4 layers and 32 hidden
units in each layer. We use the standard MSE as the distortion measure. Note that our method
can also be extended to take the fact that the 3D structure is rotation and translation invariant into
account by using different losses.
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Figure 6: Architecture of the up-sampling network ϕ for learnable positional encodings. The num-
bers in the convolution layer represent the number of input channels, the number of output channels,
and kernel size respectively. same padding mode is used in all convolution layers. The kernel
dimension depends on the modality, for instances, we use kernels with sizes of 5, 3, 3 for audio
and proteins, kernels with sizes of 5 ˆ 5, 3 ˆ 3, 3 ˆ 3 for images, and kernels with sizes of
5 ˆ 5 ˆ 5, 3 ˆ 3 ˆ 3, 3 ˆ 3 ˆ 3 for video.

C.2 BASELINE SETTINGS

The baseline performances, including JPEG2000, BPG, COIN, COIN++, Ballé et al. (2018) and
Cheng et al. (2020) on CIFAR-10 and Kodak, and MP3 and COIN++ on the full test set of Lib-
riSpeech, are taken from the COIN++’s GitHub repo4. Statistics for VC-INR and MSCN are pro-

3https://ftp.ebi.ac.uk/pub/databases/alphafold/v4/UP000002311_559292_
YEAST_v4.tar

4https://github.com/EmilienDupont/coinpp
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Image Audio Video Protein
Cifar-10 Kodak

Patching
patch or not ✗ ✓ ✓ ✓ ✗
patch size z 64 ˆ 64 800 16 ˆ 16 ˆ 24 z

hierarchical model levels z 3 3 3 z

number of patches (lowest level) z 96 60 64 z

number of groups of patches (middle level) z 6 16 4 z

number of groups of groups (highest level) z 1 1 1 z

Positional Encodings
latent positional encoding shape 128 ¨ 2 ¨ 2 128 ¨ 4 ¨ 4 128 ¨ 50 128 ¨ 1 ¨ 1 ¨ 1 128 ¨ 6

latent positional encoding param number 512 2560 6400 128 768
upsampled positional encoding shape 16 ˆ 32 ˆ 32 16 ˆ 64 ˆ 64 16 ˆ 800 16 ˆ 16 ˆ 16 ˆ 24 16 ˆ 96

INR Architecture
layers 4

hidden units 32
Fourier embeddings dimension 16 16 16 18 ( 163 is not integer) 16

output dimension 3 3 1 3 1
number of parameters 3267 3267 3201 3331 3201

Training Stage
training size 15000 83 (7968 patches) 197 (11820 patches) 75 (4800 patches) 4691

epochs 550
optimizer Adam (lr=0.0002)

sample size to estimate β-ELBO 1
gradient iteration between updating prior 100

the first gradient iteration 200
initial posterior variance 9 ˆ 10´6

initial posterior mean SIREN initialization

initial Arls values A „ Up´1{a, 1{aq, a “ dindout where
din and dout are the input and output dimension for layer l.

ϵC 0.3 bpp 0.05 bpp 0.5 kbps 0.3 bpp 0.3 bpa
β Adaptively adjusted. Initial value 1 ˆ 10´8

Posterior Inferring and Compression Stage
gradient descent iteration 30000

optimizer Adam (lr=0.0002)
sample size to estimate β-ELBO 5

blocks per signal
(total number of blocks)

{19,46,60,98,
123,214,281}

{1819, 3187,
4373,7770,

12004, 23898}
{1066, 1999,
4146, 8182}

{2827, 5992,
14858, 29073}

{67, 211, 364
503, 637}

bits per block 16 bits

blocks in the lowest level (patch) z

{17, 30,
41, 73,

114, 233}
{15, 31,
64, 122}

{34, 71,
198, 409} z

blocks in the middle level z

{17, 34,
52, 102,

145, 211}
{5, 5,

14, 50}
{109, 284,
427, 561} z

blocks in the highest level z

{85,103,
125, 150,
190, 264}

{31, 64,
96, 112}

{215, 312,
478, 653} z

Table 2: Hyperparameters for images, audio, video, and protein structure compression.

vided by the authors in the paper. We also include a comparison of RECOMBINER and COMBINER
on 24 test audio clips since the authors of COMBINER did not test on the full test set. For this com-
parison, the performances of COMBINER and MP3 on 24 test audio clips are provided by the authors
of COMBINER.

Below, we describe details about the baseline of the video and protein structure compression.

C.2.1 VIDEO BASELINES

Video compression baselines are implemented by ffmpeg (Tomar, 2006), with the following com-
mands.

H.264 (best speed):

ffmpeg.exe -i INPUT.avi -c:v libx264 -preset ultrafast -crf $CRF
OUTPUT.mkv

H.265 (best speed):

ffmpeg.exe -i INPUT.avi -c:v libx265 -preset ultrafast -crf $CRF
OUTPUT.mkv
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H.264 (best quality):

ffmpeg.exe -i INPUT.avi -c:v libx264 -preset veryslow -crf $CRF
OUTPUT.mkv

H.265 (best quality):

ffmpeg.exe -i INPUT.avi -c:v libx265 -preset veryslow -crf $CRF
OUTPUT.mkv

The argument $CRF varies in 15 20 25 30 35 40.

C.2.2 PROTEIN BASELINES

Softwares implementing PIC, PDC and Foldcomp are available at https://github.
com/lukestaniscia/PIC, https://github.com/kad-ecoli/pdc and https://
github.com/steineggerlab/foldcomp.

PIC first employs a lossy mapping, converting the 3D coordinates of atoms to an image, and then
lossless compresses the image in PNG format. We use the PNG image size to calculate the bitrate.

As for PDC and Foldcomp, since they directly operate on PDB files containing other information
like the headers, sequences, B factor, etc., we cannot use the file size directly. Therefore, we use their
theoretical bitrates as our baseline. Below we present how we calculate their theoretical bitrates.

PDC uses three 4-byte integers to save the coordinates of the first Cα atom, and three 1-byte integers
for coordinate differences of all remaining Cα atoms. Therefore, in theory, for a 96-residue length
protein, each Cα atom is assigned with p8 ˆ 3 ˆ 95 ` 4 ˆ 8 ˆ 3 ˆ 1q{96 bits.

Foldcomp compresses the quantized dihedral/bond angles for each residue. Every residue needs 59
bits. Besides, Foldcomp saves uncompressed coordinates for every 25 residues as anchors, which
requires 36 bytes. Therefore, the theoretical number of bits assigned to each Cα is given by p36 ˆ

8 ` 59 ˆ 25q{25. However, since Foldcomp is designed to encode all backbone atoms (C, N, Cα)
instead of merely Cα, it is unfair to compare in this way. We thus also report its performance on all
backbone atoms for reference.

C.3 ABLATION STUDY SETTINGS

In this section, we describe the details settings for ablation studies in Figures 5b and 5c.

Experiments without Linear Reparameterization: We simply set w “ hw without the linear
matrix A. Besides, since in this case, w follows mean-field Gaussian, we use the local reparameter-
ization trick with 1 sample to reduce the variance during both training and inferring.

Experiments without Positional Encodings: Recall that the inputs of INRs in RECOMBINER is
the concatenation of Fourier transformed coordinates γpxiq and the upsampled positional encodings
at the corresponding position zi “ ϕphzqxi . In the experiments without positional encodings, we
only input the Fourier transformed coordinates to the INR. To keep the INR size consistent, we also
increase the dimension of the Fourier transformation, so that dimpγ1pxiqq Ð dimpγpxiqq ` dimpziq.
Also, we no longer need to train the upsampling network ϕ.

Experiments without Hierarchical Model: We assume all patch-INRs are independent and simply
assign independent mean-field Gaussian priors and posteriors over hpπq

w for each patch.

Experiments without Random Permutation across patches: Recall in RECOMBINER, for each
level in the hierarchical model, we stack the representations together into a matrix, where each row
is one representation. We then (a) apply the same permutation over all rows. This is the same as
COMBINER and is to ensure KL is distributed uniformly across the entire representation for each
patch. Then (b) for each column, we apply its own permutation to encourage KL to be distributed
uniformly across patches. In the ablation study, we do not only apply the permutation in (b) but still
perform the permutation in (a).
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D SUPPLEMENTARY EXPERIMENTS AND RESULTS

D.1 METHODS VISUALIZATION

(a) Visualization of 4 channels in the upsampled positional encodings for kodim03 at 0.488 bpp. Patches are
stitched together for a clearer visualization.

(b) Visualization of the information contained in encoded hw for kodim03 at 0.488 bpp. Patches are stitched
together.
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(c) Visualization of Ar2s at 0.074 bpp.
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(d) Visualization of Ar2s at 0.972 bpp.

Figure 7: Visualizations.

In this section, we bring insights into our methods by visualizations. Recall that each signal is rep-
resented by hZ and hw together in RECOMBINER. We visualize the information contained in each
of them. Besides, we visualize the linear transform A to understand how it improves performances.

Positional encodings: We take kodim03 at 0.488 bpp as an example, and visualize 4 channels of its
upsampled positional encodings ϕphzq in Fig 7a. Interestingly, before fed into the INR, the positional
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encodings already present a pattern of the image. This is an indication of how the learnable positional
encodings help with the fitting. When the target signal is intricate, and there is a strict bitrate
constraint, the INR capacity is insufficient for learning the complex mapping from coordinates to
signal values directly. On the other hand, when combined with positional encodings, INR simply
needs to extract, combine, and enhance this information, instead of “creating” information from
scratch. This aligns with the findings of the ablation study, which indicate that learnable positional
encodings have a more significant impact on CIFAR-10 at low bitrates and the Kodak dataset, but a
small effect on CIFAR-10 at high bitrates.

Information contained in hw: To visualize the information contained in hw, we also take
kodim03 at 0.488 bpp as an example. We reconstruct the image using hw for this image but
mask out hZ by the prior mean. The image reconstructed in this way is shown in Fig 7b.

From the figure, we can clearly see hw mostly captures the color specific to each patch, in compar-
ison to the positional encodings containing information more about edges and shapes. Moreover,
interestingly, we can see patches close to each other share similar patterns, indicating the redun-
dancy between patches. This explains why employing the hierarchical model provides substantial
gains, especially when applying it together with positional encodings.

Linear Transform A: To interpret how the linear reparameterization works, we take the Kodak
dataset as an example, and visualize A for the second layer (i.e., Ar2s) at 0.074 and 0.972 bpp in
Fig 7c and 7d. Note that this layer has 32 hidden units and thus Ar2s has a shape of 1056 ˆ 1056.
We only take a subset of 150 ˆ 150 in order to have a clearer visualization. Recall w “ hwA, and
thus rows correspond to dimensions in hw and columns correspond to dimensions in w.

It can be seen that when the bitrate is high, many rows in A are active, enabling a flexible model.
Conversely, at lower bitrates, many rows become 0, effectively pruning out corresponding dimen-
sions. This explains clearly how A contributes to improve the performance: first, A greatly pro-
motes parameter sharing. For instance, at low bitrates, merely 10 percent of the parameters get
involved in constructing the entire network. Second, the pruning in hw is more efficient than that
in w directly. The predecessor of RECOMBINER, i.e., COMBINER, utilizes standard Bayesian neural
networks. It controls its bitrates by pruning or activating the hidden units. When a unit is pruned,
the entire column in the weight matrix will be pruned out (Trippe & Turner, 2017). In other words,
in COMBINER, the pruning in w is always conducted in chunks, which highly limits the flexibility of
the network. On the contrary, in our approach, the linear reparameterization enables a direct pruning
or activating of each dimension in hw individually, ensuring the flexibility of INR while effectively
managing the rate.

Another interesting observation is the matrix A essentially learns a low-rank pattern without manual
tuning. This is in comparison with VC-INR (Schwarz et al., 2023) where the low-rank pattern is
explicitly enforced by manually setting the LoRA-style (Hu et al., 2021) modulation.

D.2 EFFECTIVENESS OF RANDOM PERMUTATION

In this section, we provide an example illustrating the effectiveness of random permutation across
patches. Specifically, we encode kodim23 at 0.074 bpp, both with and without random permu-
tation, and visualize their residual images in Figure 8. We can see that, without permutation, the
residuals for complex patches are significantly larger than simpler patches. This is due to the fact
that, in RECOMBINER, the bits allocated to each patch are merely determined by the number of
blocks, which is shared across all the patches. On the other hand, after the permutation, we can
see a more balanced distribution of residuals across patches: complex patches achieve better recon-
structions, whereas simple patches’ performances only degrade marginally. This is because, after
the permutation across patches, each block can have different patches’ representations, enabling an
adaptive allocation of bits across patches. Overall, random permutation yields a 1.00 dB gain on this
image.

D.3 INFLUENCE OF SAMPLE SIZE

As discussed in Appendix C.1, in our experiments, we use 5 samples to estimate the expectation in
the β-ELBO in Equation (1), when inferring the posterior of a test datum. Here, we provide the RD
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(a) with permutation, PSNR 29.16 dB (b) without permutation, PSNR 28.16 dB

Figure 8: Comparison of residuals of kodim23 at 0.074 bpp, with and without random permutation
across patches.

curve using 1, 5 and 10 samples, on 500 randomly selected Cifar-10 test images and kodim03 as
examples, to illustrate the influence of different choices of sample sizes.

As shown in Figure 9, the sample size mainly impacts the performance at high bitrates. Besides,
further increasing the sample size to 10 only brings a minor improvement. Therefore, we choose
5 samples in our experiments to balance between encoding time and performance. It is also worth
noting that using just 1 sample does not significantly reduce the performance. Therefore, we have
the flexibility of choosing smaller sample sizes when prioritizing encoding time, with minor perfor-
mance impacts.
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Figure 9: Influence of Sample size. (a) RD curve evaluated on 500 randomly selected CIFAR-10
images. (b) RD curve evaluated on kodim03.

D.4 ROBUSTNESS DURING TRAINING

Different from previous INR-based codecs based on MAML (Finn et al., 2017) including COIN++
(Dupont et al., 2022), MSCN (Schwarz & Teh, 2022) and VC-INR (Schwarz et al., 2023), our
proposed RECOMBINER does not require nested gradient descent and thus features higher stability
during training period.

To demonstrate this advantage, we present a visualization of the average β-ELBO during training on
CIFAR-10 across three bitrates in Figure 10. We can see that the training curves exhibit an initial dip
followed by a consistent increase. The dip at the beginning is a result of our adjustment of β during
training (Step 3 in Algorithm 1). Importantly, this adjustment does not impact training robustness;
and we can see that β is quickly adjusted, and the training proceeds smoothly.
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(a) β-ELBO w.r.t. training steps.
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(b) Zoom-in plot.

Figure 10: Average training β-ELBO on Cifar-10 at three different bitrates. The initial dip is because
we also adjust β during training to ensure the coding budget (Step 3 in Algorithm 1). We can see
the initial β quickly adjusts in the first several steps, and then the training proceeds smoothly.

D.5 CODING TIME

In this section, we provide details regarding the encoding and decoding time of RECOMBINER. The
encoding speed is measured on a single NVIDIA A100-SXM-80GB GPU. On CIFAR-10 and protein
structures, we compress signals in batch, with a batch size of 500 images and 1,000 structures,
respectively. On Kodak, audio, and video datasets, we compress each signal separately. We should
note that the batch size does not influence the results. Posteriors of signals within one batch are
optimized in parallel, and their gradients are not crossed. The decoding speed is measured per
signal on CPU.

Similar to COMBINER, our approach features a high encoding time complexity. However, the
decoding process is remarkably fast, even on CPU, matching the speed of COIN and COMBINER.
Note that the decoding time listed here encompasses the retrieval of samples for each block. In
practical applications, this process can be implemented and parallelized using lower-level languages
such as C++ or C, which can lead to further acceleration of execution.

Bitrate Encoding Time
(GPU, 500 instances)

Decoding Time
(CPU, per instance)

0.297 bpp „63 min 0.00386 s
0.719 bpp „65 min 0.00429 s
0.938 bpp „68 min 0.00461 s
1.531 bpp „72 min 0.00514 s
1.922 bpp „75 min 0.00581 s
3.344 bpp „87 min 0.00776 s
4.391 bpp „93 min 0.01050 s

Table 3: Coding time for CIFAR-10.

Bitrate Encoding Time
(GPU, per instance, 96 patches)

Decoding Time
(CPU, per instance)

0.074 bpp „59 min 0.25848 s
0.130 bpp „64 min 0.29117 s
0.178 bpp „67 min 0.30875 s
0.316 bpp „72 min 0.29690 s
0.488 bpp „80 min 0.34237 s
0.972 bpp „92 min 0.41861 s

Table 4: Coding time for Kodak.
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Bitrate Encoding Time
(GPU, per instance, 50 patches)

Decoding Time
(CPU, per instance)

5.69 kbps „18 min 0.05564 s
10.66 kbps „21 min 0.06003 s
22.11 kbps „22 min 0.06166 s
43.64 kbps „22 min 0.07350 s

Table 5: Coding time for Audio.

Bitrate Encoding Time
(GPU, per instance, 64 patches)

Decoding Time
(CPU, per instance)

0.115 bpp „49 min 0.31936 s
0.244 bpp „62 min 0.33416 s
0.605 bpp „78 min 0.33448 s
1.183 bpp „102 min 0.35665 s

Table 6: Coding time for Video.

Bitrate Encoding Time
(GPU, 1000 instance)

Decoding Time
(CPU, per instance)

11.17 bpa „72 min 0.00704 s
35.17 bpa „123 min 0.00948 s
60.67 bpa „175 min 0.01429 s
83.83 bpa „226 min 0.01778 s
106.17 bpa „274 min 0.02014 s

Table 7: Coding time for Protein.

E THINGS WE TRIED THAT DID NOT WORK

• in RECOMBINER, we apply linear reparameterization on INR weights, which transfers the
weights linearly into a transformed space. Perhaps a natural extension is to apply more
complex transformations, e.g., neural networks, or flows. We experimented with this idea,
but it did not provide gains over the linear transformation.

• in RECOMBINER, we propose a hierarchical Bayesian model, equivalent to assigning hi-
erarchical hyper-priors and inferring the hierarchical posteriors over the means of the INR
weights. A natural extension can be assigning hyper-priors/posteriors to both means and
variances. But we did not find any gain by this.

• in RECOMBINER, the hierarchical Bayesian model is only applied to the latent INR weights
hw. It is natural to apply the same hierarchical structure to the latent positional encodings
hz. However, we found it does not provide visible gain.

F MORE RD CURVES

Here, we show the full-resolution RD curves for image compression in Figures 11 and 12. Besides,
we also provide a further comparison between RECOMBINER with COMBINER on 24 test audio clips
from LibriSpeech in Figure 13.
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Figure 11: RD curve on CIFAR-10.
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Figure 12: RD curve on Kodak.
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Figure 13: RD curve of MP3, COMBINER and RECOMBINER on 24 test audio clips from LibriSpeech
test set.

G RD VALUES

CIFAR-10:

rate = [0.297, 0.719, 0.938, 1.531, 1.922, 3.344, 4.391]

PSNR = [23.592, 27.222, 28.505, 30.911, 32.168, 35.732, 38.139]

Kodak:

rate = [0.074, 0.130, 0.178, 0.316, 0.488, 0.972, 1.567, 3.320]

PSNR = [26.158, 27.653, 28.594, 30.439, 31.953, 34.540, 36.547,
40.426]

Audio:

On full test set:

rate = [5.685, 10.661, 22.112, 43.637]

PSNR = [42.612, 47.101, 52.196, 58.195]

On 24 test examples (to compare with COMBINER):

rate = [5.168, 10.805, 22.112, 43.637]

PSNR = [42.789, 47.106, 52.206, 58.327]

Video:

rate = [0.115, 0.244, 0.605, 1.183]

PSNR = [28.722, 31.494, 35.717, 39.171]

Protein:

rate = [11.17, 35.17, 60.67, 83.83, 106.17]

RMSD = [0.9242, 0.1388, 0.0709, 0.0506, 0.0436]
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H MORE DECODED EXAMPLES

H.1 CIFAR-10

Ground Truth Bitrate 0.297bpp  PSNR 21.13 dB      Bitrate 4.391 bpp PSNR 35.18 dB        

Ground Truth Bitrate 0.297bpp  PSNR 21.48 dB      Bitrate 4.391 bpp PSNR 35.87 dB        

Ground Truth Bitrate 0.297bpp  PSNR 24.38 dB      Bitrate 4.391 bpp PSNR 39.08 dB        

Figure 14: Decoded CIFAR-10 images and residuals.

H.2 KODAK

Ground Truth Bitrate 0.074 bpp PSNR 23.11 dB Bitrate 0.316 bpp PSNR 26.61 dB 

Bitrate 0.488 bpp PSNR 27.87 dB Bitrate 0.972 bpp PSNR 30.17 dB 

(a) Decoded images and residuals of kodim01.

Ground Truth Bitrate 0.074 bpp PSNR 29.16 dB Bitrate 0.316 bpp PSNR 35.23 dB 

Bitrate 0.488 bpp PSNR 37.02 dB Bitrate 0.972 bpp PSNR 39.57 dB 

(b) Decoded images and residuals of kodim23.

Figure 15: Examples of decoded Kodak images and their residuals.
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H.3 AUDIO

Decoded Audios Ground Truth
5.17 kbps, 46.78 dB 10.81 kbps, 51.53 dB 22.11 kbps, 56.45 dB

here here here here

Table 8: Decoded audio examples.

H.4 VIDEO

Figure 16: Examples of decoded videos and residuals. Animation visualization is available here.

H.5 PROTEIN STRUCTURE

(a) Example 1. 3D view is available at here.

(b) Example 2. 3D view is available at here.

Figure 17: Examples of decoded protein structures and their ground truths.
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