
Lie Point Symmetry and Physics Informed Neural Networks

Appendix

A. Illustrative Examples
Example 1 (Obtaining the Prolongation of an Infinitesimal
Generator). We will work through an example of obtaining

the prolongation of an infinitesimal generator of the heat

equation: Consider X × U = R2
× R and the following

infinitesimal generator, a symmetry of the heat equation:

v = ⇠1(x, t, u)@x + ⇠2(x, t, u)@t + �(x, t, u)@u

= 2⌫t@x − xu@u

where x, t denote the independent variables, u is the depen-

dent variable and ⌫ is a positive constant. By the prolon-

gation formula, Eq. (4), the first prolongation in t is given

by:

�t
=Dt(� − ⇠1ux − ⇠2ut) + ⇠1uxt + ⇠2utt

=Dt(−xu − 2⌫tux) + 2⌫tuxt

= −xut − 2⌫ux

Example 2 (A Symmetry of the Heat Equation). As another

illustrative example, we can consider the heat Eq. (2) and

will show that the following vector field generates a sym-

metry group for this PDE: v = 2⌫t@x − xu@u. We need to

find the first prolongation �(t) and the second prolongation

�(xx), where � = −xu. Using the prolongation formula

given in Eq. (4), we get:

�(t) = −xut − 2⌫ux and �(xx) = −2ux − xuxx

Now:

pr(2)v[�] = �(t) − ⌫�(xx)
= xut + 2⌫ux − ⌫�2⌫ux − x⌫uxx�

= x(ut − ⌫uxx)

Clearly pr(2)v[�] = 0 when � = 0, hence v is a symmetry

of the heat equation.

B. Theory and Background
One Parameter Subgroups. The Lie point symmetry G
of � can be multi-dimensional and complex. When the
n-dimensional group G is simply connected, it is often rep-
resented in terms of a series of n one-parameter transfor-

mations, g = g1(✏1)g2(✏2) . . . gn(✏n), where gi ∶ R → G,
i = 1, . . . , n and such that gi(✏)gi(�) = gi(✏ + �). The
✏’s are the real parameters of the transformation, and each
gi is a continuous group homomorphism (i.e., a smooth,
group-structured map) from this parameter to the symmetry
group.

Solution set of a PDE. The graph of all prolonged solu-
tions is the set S� ⊂X ×U (n), and is defined as:

S� = {(x,u
(n)
) ∶�(x,u(n)) = 0} (11)

In this new notation, we can say that u(x) is a solution of
the PDE if:

�(n)u = {(x,pr(n)u(x))} ⊂ S�
where pr(n)u(x) ∶ X → Un, is a vector-valued function
whose entries represent derivatives of u wrt x up to order n.

Prolonations. The coefficients for the partial derivatives
are given below. See (Olver, 1986) for a derivation.

�(J)↵ =DJQ↵ +

p

�

i=1
⇠i
@u↵

J

@xi
where Q↵ = �↵ −

p

�

i=1
⇠i
@u↵

@xi

(12)

C. Data Generation
To generate data, we use ⌦ = [0, L] = [0,2⇡], dis-
cretized uniformly into 256 points and assume periodic
spatial boundaries. We also use [0, T ] = [0,16], dis-
cretized into 100 points. The viscosity coefficient is set
to ⌫ = 0.01. Similar to (Brandstetter et al., 2022a) and (Bar-
Sinai et al., 2019), we represent the initial condition func-
tions by truncated Fourier series with coefficients Ak, lk,�k

sampled randomly, and K = 10: u(t = 0, x) = f(x) =
∑

K
i=1Ak sin(2⇡lkx�L + �k). These functions are sampled

at Ns = 200 fixed points, which are used as input to e✓1 in
Eq. (8). We also sample a total of Nl = 300 points (includ-
ing the 200 points sampled at t = 0), used to impose the
data-fit loss, Ldata−fit.

D. Implementation
We model the two networks, g✓1 and e✓2 in Eq. (8) with
MLPs consisting of 7 hidden layers of width 100. This
choice was based on the previous research using PINN
and DeepONets for solving Burgers’ equation (Wang et al.,
2021b). We used elu activation as differentiable activations
are required for the PDE loss. The output of the embedding
vectors from both networks is 100 dimensional. We note that
while we acknowledge recent architectural improvements to
PINNs (Krishnapriyan et al., 2021), our goal is to showcase
the effectiveness of using symmetries, which is why we
deploy MLPs for both networks.

For both the Heat equation and Burgers’ equation
experiments, we perform hyper-parameter tuning
on the coefficients of the loss terms from the set
[0.1, . . . ,1, . . . ,10, . . . ,100, . . .200]. This is done sepa-
rately for the baseline model and the model trained with
symmetry loss as we varied the number of samples, Nr.

6



Lie Point Symmetry and Physics Informed Neural Networks

Algorithm 1 PINN with Lie Point Symmetry
inputs:

�: the PDE of order n,
(vk)1∶K ∶ infinitesimal generators of symmetries

of �
D = ��x1∶Nr , (x,u)1∶Nl ,u1∶Ns��1∶Nf

: dataset for
Nf different initial conditions
init: initialize parameters ✓ of network u✓

for iteration do
Sample from D
calculate Lsym:

calculate u(n) using auto diff for x1∶Nr

calculate coef(pr(n)vk), using x1∶Nr ,
(u(n))1∶Nr , auto diff and Eq. (4)

calculate Lsym using coef(pr(n)vk) and �
and equation Eq. (9)

calculate LPDE:
using �, (u(n))1∶Nr and equation Eq. (6):

calculate Ldata−fit:
calculate û = u✓(x,u1∶Ns) for x1∶Nl

calculate Ldata−fit using u1∶Nl , û1∶Nl and
equation Eq. (7)
L = ↵LPDE + �Ldata−fit + �Lsym

✓ ← ✓ −∇✓L

end for
return u✓

We also note that for Burgers’ equation, cosine similarity for
Lsym works better than the dot product. The results reported
in Section 4 use cosine-similarity.

Algorithm 1 outlines the algorithm. Note that in Algo-
rithm 1, we use the notation u✓ to denote the operator O✓

and use Ns for the fixed sampled points from the initial
condition function. Additionally, we will use (xl,ul

)1∶Nl

to include both N0 and Nb. We will make the data and the
code available on GitHub.

E. Results for Burgers’ Equation
The second PDE we analyze is Burgers’ Eq. (13), which
combines diffusion (with thermal diffusivity ⌫) and non-
linear advection (wave motion). The nonlinearity of this
equation makes it more complex, resulting in shock forma-
tion.

ut = ⌫uxx − uux (13)

Symmetries. Burgers’ equation in the form described in
Eq. (13) has a symmetry group spanned by the following
5-dimensional vector space.

v1 = @x v4 = x@x + 2t@t − u@u

v2 = @t v5 = tx@x + t
2@t − (x − tu)@u

v3 = t@x + @u

(14)

However, only the last generator v5 results in a useful train-
ing signal. The first three generators give Lsym = 0 and v4

gives Lsym = c� = cLPDE, for a constant c. As with the
heat equation experiment, we can eliminate the PDE loss
and only use symmetry and supervised loss for training.

Data. The data for Burgers’ equation is obtained using the
Fourier Spectral method with periodic spatial boundaries.
Initial conditions are obtained similarly to the heat equation
experiment, described in Section 4. We use ⌫ = 0.1 as the
diffusion coefficient. The domain is [0, L] = [0,2⇡] and
[0, T ] = [0,2.475] discretized uniformly into 256 and 100
points respectively.

Training and Experiments. For Burgers’ equation, we
train the model on datasets of Nf = 500 initial conditions
and Nr = 5000,25000 and 100000 samples. We found that
for Lsym, cosine similarity works better in this case. The
models’ architectures are similar to those used for the heat
equation described in Appendix D.

Results. Table 2 shows the average mean-squared errors
on the test dataset for the two models as Nr increases. We
can see that, even with one symmetry group useful for train-
ing, the model trained with Lsym performs better. The
predictions on a single instance of the test dataset can also
be seen in Fig. 3. Again, we see that the symmetry loss espe-
cially improves the model’s performance for larger values of
t, especially in low-data regime. We also note that the high
standard deviations in Table 2 are because, compared to the
heat equation, the behaviour of the solution (specifically
shock formation) varies a lot based on the initial conditions.

Table 2. The average test set mean-squared error for Burgers’ equa-
tion.

Number of Points
(Nr)

No Symmetry Symmetry

5000 0.041 ± 0.042 0.034 ± 0.039
25000 0.030 ± 0.038 0.017 ± 0.020
100000 0.018 ± 0.022 0.013 ± 0.020

Figure 3. The effect of training the PDE solver for the Burgers’
equation with and without the symmetry loss for one of the PDEs
in the test dataset. (a) shows the ground truth solution and the
predictions of the two models as the number of samples inside the
domain increases from 5000 to 25000 and 100000.(b) shows the
corresponding predictions and the ground truth solution at different
time slices.

7


