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ABSTRACT

We present a novel frequency-based Self-Supervised Learning (SSL) approach
that significantly enhances its efficacy for pre-training. Prior work in this direc-
tion masks out pre-defined frequencies in the input image and employs a recon-
struction loss to pre-train the model. While achieving promising results, such an
implementation has two fundamental limitations as identified in our paper. First,
using pre-defined frequencies overlooks the variability of image frequency re-
sponses. Second, pre-trained with frequency-filtered images, the resulting model
needs relatively more data to adapt to naturally looking images during fine-tuning.
To address these drawbacks, we propose FOurier transform compression with
seLf-Knowledge distillation (FOLK), integrating two dedicated ideas. First, in-
spired by image compression, we adaptively select the masked-out frequencies
based on image frequency responses, creating more suitable SSL tasks for pre-
training. Second, we employ a two-branch framework empowered by knowl-
edge distillation, enabling the model to take both the filtered and original im-
ages as input, largely reducing the burden of downstream tasks. Our experi-
mental results demonstrate the effectiveness of FOLK in achieving competitive
performance to many state-of-the-art SSL methods across various downstream
tasks, including image classification, few-shot learning, and semantic segmenta-
tion. https://github.com/aminK8/FOLK

1 INTRODUCTION

In recent years, Self-Supervised Learning (SSL) has gained considerable interest in the context of
visual pre-training. This interest stems from its prominent capability of extracting meaningful visual
representations from the vast expanse of readily available, unlabeled images without the need for
costly manual labeling (Ben-Shaul et al., 2024; Su et al., 2024; Almalki & Latecki, 2024). Key to
this advancement is several pre-training methods established with different pretext tasks, including
multi-view contrastive learning (Oord et al., 2018; Chen et al., 2020b; Tian et al., 2020b; He et al.,
2020), Masked Image Modeling (MIM) (Bao et al., 2021; He et al., 2022a; Xie et al., 2022; Monsefi
et al., 2024a; Oquab et al., 2024), Masked Frequency Modeling (MFM) (Xie et al., 2023; Liu et al.,
2023; Zheng et al., 2024), and self-supervised Knowledge Distillation (KD) (Kakogeorgiou et al.,
2022; Zhou et al., 2022; Chen et al., 2020c; Chen & He, 2021; Caron et al., 2021). In the recent
popular approach of Masked Image Modeling (MIM), a key strategy involves masking portions of
an image and then tasking models with either reconstructing these hidden sections or generating
feature representations for them (Bao et al., 2021; Xie et al., 2022; He et al., 2022a; Yi et al.,
2023). Through this process, the model is encouraged to learn robust feature representations that
capture the underlying structure between unmasked and masked image parts, thereby enhancing its
understanding of image semantics.

Instead of masking in the spatial domain (MIM), Masked Frequency Modeling (MFM) (Xie et al.,
2023) introduced a self-supervised approach that masks frequency components of the input image.
Since high-level semantics and low-level details of an image can be separated into different fre-
quency components (Oppenheim & Lim, 1981; Piotrowski & Campbell, 1982; Navard & Yilmaz,
2024), the frequency domain offers a more convenient avenue for revealing underlying image pat-
terns. The pretext task in MFM is to predict the masked frequencies from the frequency-filtered
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(a) Original
Image

(b) Low-pass Filtered (c) Low-pass Result (d) High-pass Filtered (e) High-pass Result

(f) Com Filtered (g) Com Result (h) RCom Filtered (i) RCom Result

Figure 1: Detailed visualizations outlining our proposed masking approach compared to the
low/high-pass filters used in the MFM method (Xie et al., 2023). Figures b, d, f, h here show
the retained frequencies after applying the corresponding filter (zoom-in views on the shifted spec-
trum for better comparison). Figures c, e, g, i show the restored image from the retained frequencies.
More examples can be found in Appendix D. All images used in this paper are from ImageNet (Deng
et al., 2009).

image (see Section 3.1). It has two main advantages: first, it can help avoid issues encountered
when analyzing raw pixel values in the spatial domain, such as spatial redundancy (Wang et al.,
2020; Chen et al., 2023); second, unlike the patch-based masking used in MIM which often restricts
the model to a Vision Transformer (ViT), MFM is suitable for both ViT and Convolutional Neural
Network (CNN)-based models.

However, though MFM (Xie et al., 2023) has demonstrated promising results, it has two fundamental
limitations. Firstly, MFM uses constant filters, controlled by a pre-defined hyperparameter radius,
for masking in the frequency spectrum. This disregards the intrinsic structure specific to individual
images, which leads to a less challenging task for reconstruction (see Figure 1b and Figure 1d).
Secondly, in the pretext stage, MFM only shows frequency-masked images to the model without a
mechanism to properly expose the raw information of the original images. This potentially restricts
the pre-trained model’s understanding of normal image distribution which further hampers MFM’s
training efficiency and model effectiveness, especially making it unsuitable in a few-shot learning
scenario (see Section 4.2.2).

Our motivation is to achieve more effective vision pre-training through MFM, by addressing its
aforementioned limitations. To this end, we propose a novel framework that integrates FOurier
transform compression with seLf-Knowledge distillation, termed as FOLK. Similar to MFM and
dissimilar to MIM, FOLK applies masking to image frequency responses and embraces both ViT
and CNN architectures. Furthermore, it resolves MFM’s problems from two main perspectives.

Firstly, instead of adopting constant filters, we seek an improved masking scheme that considers each
image’s unique frequency responses, to improve the pre-training efficiency and model effectiveness.
Inspired by the attention-based masking in MIM approaches such as AttMask (Kakogeorgiou et al.,
2022), where the most critical parts of the image are hidden from the student model to create a
more challenging pretext task, FOLK utilizes the Fourier transform compression (Pratt et al., 1969)
concept to mask the most critical parts in image frequency responses. Two types of filters, the
Com filter and its counterpart, the RCom filter, are designed to retain (or remove) the highest
coefficient values within the frequency spectrum (see Fig. 1). In contrast to the constant filters used
in MFM, these Com and RCom filters adaptively mask the frequencies that carry the essence (or
finer details) of each individual image, creating greater variations across training samples. Hence, a

2



Published as a conference paper at ICLR 2025

more challenging pretext task is presented to the model, enforcing its understanding of macro and
micro visual cues uniquely held by each image.

Secondly, we question how to properly expose natural image information to the model during pre-
training to enhance fine-tuning efficiency. To this end, FOLK incorporates a knowledge distillation
strategy using a self-supervised teacher-student design. With the original image fed to the teacher
model, and the frequency-masked image fed to the student, the student model learns not only to
reconstruct the masked frequencies (as what MFM does), but also to reconstruct the original image’s
representation (generated by the teacher model) from the frequency-masked view of the same image.
This multi-task teacher-student approach allows for model perception on both masked and original
image realms, hence enhancing training stability and the pre-trained model’s efficacy when applied
to downstream tasks, as demonstrated in our experimental findings (Section 4.2).

To summarize, our contributions are threefold:

• We introduce a novel masking technique in masked frequency modeling with Com and
RCom filters, which presents a meaningful and considerably more challenging pretext
task for efficient SSL.

• We propose the FOLK framework, an innovative multi-task self-supervision methodology
with self-knowledge distillation to allow for model perception on both frequency-masked
images and original images in the pre-training stage.

• Through extensive experimentation, we demonstrate the efficacy of FOLK. Our findings
indicate that FOLK performs on par or better than many state-of-the-art MIM and MFM
techniques in various downstream tasks, including image classification, few-shot learning,
and semantic segmentation.

2 RELATED WORK

2.1 SELF-SUPERVISED LEARNING

Self-supervised Learning (SSL) methods have been developed to exploit large-scale unlabeled data
for learning discriminative representations, which can then benefit a variety of downstream tasks
(Chong et al., 2023). Early SSL approaches rely on several pretext tasks, such as rotation prediction
(Gidaris et al., 2018), jigsaw puzzle (Noroozi & Favaro, 2016), and colorization (Zhang et al., 2016).
A branch of more recent studies follows a contrastive SSL paradigm (Chen et al., 2020b;c; Ci et al.,
2022; Chen et al., 2020d; Tian et al., 2020b; Perera et al., 2024). SimCLR (Chen et al., 2020b;c;
Monsefi et al., 2024b; Zhou et al., 2024) considers two augmentations of a given image as positives
and the augmentations of all other images in the batch as negatives, on top of which a contrastive
loss is utilized for model learning. MOCO (He et al., 2020; Chen et al., 2020d) maintains a dynamic
dictionary of encoded representations with a momentum-updated encoder to generate consistent em-
beddings for contrastive learning. Instead of relying on negative samples and large training batches,
BYOL (Grill et al., 2020) adopts a teacher-student framework that enforces consistency between
representations of two augmented views of the same image generated by the two models. More
recently, Correlational Image Modeling (CIM) (Li et al., 2023) operates by predicting correlation
maps between randomly cropped image regions (exemplars) from a given image (context). It em-
ploys a bootstrap learning architecture with online and target encoders and a simple cross-attention
mechanism to process the exemplars and context.

2.2 MASKED IMAGE MODELING

Masked Image Modeling (MIM) is an exciting approach to self-supervised visual learning. The
central concept is to rebuild or reconstruct the hidden parts of images or to predict general char-
acteristics like the image’s category (Bao et al., 2021; Zhou et al., 2022; Chen et al., 2020a; Xie
et al., 2022; Wei et al., 2022). It draws inspiration from the success of masked language modeling
in natural language processing (Devlin et al., 2018; Liu et al., 2019), adapting the concept to the
visual domain. Specifically, BEiT (Bao et al., 2021) utilizes a discrete pre-trained Variational Au-
toEncoder (VAE) to create discrete tokens for image patches, then it tasks the model with predicting
such discrete tokens of masked patches in images. The iBOT method (Zhou et al., 2022) offers
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improvements over BEiT by adopting a teacher-student self-distillation strategy where the teacher
model simultaneously serves as an online tokenizer, instead of using a pre-trained discrete VAE.
MAE (He et al., 2022a) takes a more aggressive masking strategy, with typically around 75% of
patches being masked, and recovers the missing pixels using an autoencoder. To further investigate
which parts of an image should be masked for efficient self-supervisory, AttMask (Kakogeorgiou
et al., 2022) proposes the utilization of an attention map generated by a teacher model, and masks
the highly attended patches from the image for the student model learning.

2.3 DISTILLATION-BASED MODELING

Knowledge Distillation (KD) in general endeavors to transfer knowledge from a complex, teacher
model to its simpler, student counterpart (Buciluǎ et al., 2006; Hinton et al., 2015). This is often
achieved by aligning the network logits (Hinton et al., 2015; Zhou et al., 2021) or intermediate
representations (Romero et al., 2014), as well as designated statistics between teach and student
models (Tian et al., 2020a; Ahn et al., 2019; He et al., 2022b; Chen et al., 2021). In the self-
supervised domain, SEED (Fang et al., 2021) innovates by training a student encoder to mirror the
similarity score distribution inferred by a larger, pre-trained teacher across a spectrum of instances.
The EMA teacher, adopted by numerous SSL methodologies (Grill et al., 2020; He et al., 2020; Zhou
et al., 2022; Caron et al., 2021), leverages the benefits of knowledge distillation to foster stabilized
training and improved model efficacy. Our method extends the single model approach used by MFM
(Xie et al., 2023) to a teacher-student distillation strategy for robust visual representation learning.

3 METHOD

3.1 PRELIMINARY AND BACKGROUND

In the domain of self-supervised learning for visual models, MFM (Xie et al., 2023) introduces
a novel approach that diverges from traditional spatial domain masking strategies. By leveraging
the frequency domain, which encapsulates both high-frequency details and low-frequency elements,
MFM bases its learning process on the masking of frequency components and the prediction of the
masked frequencies. More specifically, given a single-channel image1 x ∈ RH×W , the frequency
representation is obtained via 2D Fast Fourier transform (FFT) F(x):

F(x)(u, v) =
H−1∑
h=0

W−1∑
w=0

x(h,w)e−i2π(uh
H + vw

W ), (1)

where x(h,w) represents the pixel value at the spatial coordinate (h,w) on the image, while
F(x)(u, v) denotes the complex frequency value at the coordinate (u, v) on the spectrum. Here,
e is Euler’s number, and i is the imaginary unit.

To mask some frequencies from the spectrum and task a model with the reconstruction of these
missing frequencies, a frequency-masked image x̃ is first obtained by:

x̃ = F−1(F(x)⊙M), (2)

where M ∈ {0, 1}H×W is a mask, with 0 denoting corresponding frequencies being masked and
1 denoting frequencies being retained. F−1 denotes the inverse Fourier transform operation, and
⊙ signifies element-wise multiplication. The learning objective of MFM, designed to minimize the
discrepancy between the reconstructed and the original frequency components, can then be written
as:

LMFM = ∥(F(x)−F(gθ(x̃)))⊙ (1−M)∥2, (3)

1For RGB images, the procedure is applied to each channel independently.

4



Published as a conference paper at ICLR 2025

Figure 2: The frequency-based filtering process with our proposed informed filters, Com and
RCom. A portion of frequencies with the highest magnitude will be determined to create the masks.
The process randomly returns the resulting image from the Com or RCom filter.

where F(x) is the frequency spectrum of the original image, Fr(x̃) is the reconstructed spectrum
using a neural network model gθ, parameterized by θ. And 1 −M indicates that only the masked
areas of the frequency spectrum are considered for loss.

3.2 FOLK FRAMEWORK

Before introducing our proposed method, we start by re-emphasizing the MFM method (Xie et al.,
2023) limitations. Firstly, notice that, in Eq. 3, the MFM’s loss depends on the filter M applied to
the spectrum. However, the low/high-pass filters used in MFM are simple, using a circular area with
a fixed radius (see Fig. 1). This can lessen the difficulty of the frequency reconstruction task hence
hampering the model learning. Another limitation of MFM is that the model only sees frequency-
masked images in the pre-training stage, expressed by gθ(x̃) in Eq. 3. As a result, the pre-trained
model may be relatively unfamiliar with natural images and requires more data during fine-tuning
to adapt effectively (see Section 4.2.2).

To overcome these limitations and achieve effective masked frequency modeling, we propose the
FOLK framework. Our key ideas involve the creation of informed frequency-based filters, Com
and RCom, as well as a self-distillation strategy based on a teacher-student design.

3.2.1 INFORMED FILTERS

Successful vision pre-training largely depends on the suitable and challenging enough pretext task
presented to the model. Demonstrated by AttMask (Kakogeorgiou et al., 2022), masking the most-
attended patches in images creates a more effective training scheme than random masking for MIM
approaches. However, for MFM methods, this gap still exists as only constant masking/filters have
been explored (Xie et al., 2023), which presumably presents a less challenging task in the pre-
training.

To bridge this gap, we introduce two types of filters, Com and RCom, for informed masking.
Inspired by Fourier image compression techniques (Pratt et al., 1969), where the most significant
frequencies (those with the highest magnitudes) that carry the bulk of an image’s visual informa-
tion are preserved while other frequencies are discarded for efficient storage or bandwidth usage,
our Com filters selectively retain these significant frequencies and discard the rest. This approach
highlights the main semantics of an image for the model and necessitates the reconstruction of the
less significant frequencies that correspond to finer details, such as edges. Conversely, RCom filters
remove the significant frequencies and require their reconstruction from the finer details preserved
by the less significant frequencies. By applying both filter types during pre-training, the model is
effectively trained to comprehend both macro and micro visual cues, thereby enhancing its general-
izability and effectiveness in downstream tasks.

The generation of Com and RCom filters is illustrated in Fig. 2, with the pseudocode available
in Appendix A.4. The input image is first converted to grayscale to ensure the creation of a single
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Figure 3: The Proposed FOLK Framework. Two views (u and v) of the input image are processed
through the informed filtering process, introduced in Figure 2. This yields two frequency-masked
views (ũ and ṽ) which serve as the input to the student model. The student model is tasked with
reconstructing the missing frequencies from the masked view ũ (or ṽ), as well as reconstructing the
feature representation of the other original view v (or u), generated by the teacher model, using the
masked view ũ (or ṽ). The student model gθ and the teacher model gϕ, with their corresponding
heads hθ and hϕ, have the same architecture but different parameters, except that the student has an
additional MFM head ĥθ. Only the student model (with its both heads) is updated through back-
propagation, while the teacher parameters are periodically updated with an exponential moving
average (EMA) of the corresponding student parameters.

common filter for all three RGB channels, as generating and applying filters separately to each chan-
nel can result in unnatural and corrupted visual information. The image is converted to a frequency
spectrum using 2D FFT, after which the frequency components with the highest magnitudes are iden-
tified based on a threshold uniformly sampled from a predefined set of values ([0.005, 0.01, 0.05]
in our experiments, detailed in Appendix Section B.5.1). The informed filters are then created to
retain (Com) or mask (Rcom) these frequencies. The two filters are randomly selected with an
equal possibility (i.e. 50%) and applied to the spectrum (effects of different selection probabilities
are provided in Appendix Section B.5.2). By applying inverse FFT to the filtered spectrum, we
restore a frequency-masked image which will serve as an input to the model during pre-training.
It is important to note that Com and RCom filters are uniquely generated based on individual im-
ages (examples are provided in Appendix D), which introduces more significant variation in training
samples and presents a more challenging training task compared to using constant filters. In addition
to comparing our approach with the low/high-passed filters used in MFM (Xie et al., 2023), we also
conducted an ablation study using a set of random frequency filters to demonstrate the effectiveness
of our proposed informed filters (refer to Appendix B.5.4).

3.2.2 MAKING BACKBONE FAMILIAR WITH NATURAL IMAGES

To further improve the training efficiency and model robustness in masked frequency modeling, we
incorporate a self-distillation design (Grill et al., 2020; Caron et al., 2021; Tarvainen & Valpola,
2017) in our proposed approach. The original MFM (Xie et al., 2023) method only tasked the model
with the reconstruction of missing frequencies from the frequency-masked view of the image. Such
an approach potentially overlooked the data distribution of the original image space, as the model
only sees frequency-masked images in pre-training, resulting in higher data demands to adapt to
naturally looking images during fine-tuning. To resolve this issue, we propose to properly inject the
original image information into the training process via a self-distillation technique (see Section 2.3
for more information about self-distillation). Here, we present our FOLK framework, detailed in
Fig. 3. Note that FOLK does not require additional training stages for pre-processing, such as the
offline tokenizer employed by BEiT (Bao et al., 2021).
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FOLK starts by generating two views, u, and v, from an input image x, following the same data
augmentations adopted by DINO (Caron et al., 2021). After applying 2D FFT to the view u (or v),
the Com and RCom filters are uniquely generated according to this view (detailed in Section 3.2.1
and Fig. 2). One filter is then randomly selected and applied to the frequency spectrum, and the
retained frequency components are processed through inverse FFT to restore a frequency-masked
view ũ (or ṽ), see Equation 2. The student model receives this frequency-masked view ũ (or ṽ)
and predicts against two targets: reconstruction of the missing frequencies discarded by the filter,
and reconstruction of the feature representation of the other original view v (or u) generated by the
teacher model.

Two different heads are appended to the student model, each facilitating one of the prediction tasks.
The MFM head ĥθ serves to reconstruct the missing frequencies, with a single linear layer imple-
mentation following the original design proposed in MFM (Xie et al., 2023). The student head hθ

(and teacher head hϕ), aiming at the reconstruction of the feature representation of the other orig-
inal view, adopts a three-layer multi-layer perceptron (MLP) design. Moreover, the student head
(and teacher head) is followed by a scaled softmax function to transform the outputs into probability
distributions for the computation of a distillation loss (described below). More specifically,

Ps(x)
(i) =

exp(fθ(x)
(i)/τs)∑K

k=1 exp(fθ(x)
(k)/τs)

, (4)

where fθ(x) = hθ(gθ(x)). K is the output dimension of h, and τs > 0 is a temperature parameter.
A similar formula holds for the teacher counterpart with Pt and τt. To sharpen the output distribu-
tions—particularly for the teacher—we employ a scaled softmax function alongside the centering
technique introduced in Caron et al. (2021). This combination helps prevent model collapse and
reduces the dependency on large batch sizes during training. Detailed descriptions of the heads are
provided in Appendix A.3.

The intended revealing of unmasked original image information is effectively achieved through
FOLK’s teacher-student design. During pre-training, the teacher model sees naturally looking im-
ages, which better align with those encountered during the fine-tuning stage, thereby enhancing
fine-tuning efficiency, particularly in few-shot learning scenarios. On the other hand, the student
model only observes masked views but is guided by the teacher model using the following distilla-
tion loss. Both the student and teacher models gθ and gϕ, with their heads hθ and hϕ, share the same
architecture and initialization but have distinct parameters during training. Only the student model
gθ and its both heads hθ and ĥθ are updated by the loss back-propagation, while the teacher pa-
rameters are periodically updated with an exponential moving average (EMA) of the corresponding
student parameters.

A distillation loss is employed to enforce the less-informed student model to emulate the more
knowledgeable teacher model who perceives the original views. For a single input image x, this loss
can be written as:

Ldis = −[Pt(u) log (Ps(ṽ)) + Pt(v) log (Ps(ũ))]. (5)

where u, v are two different views of x, and ũ, ṽ are the corresponding frequency-masked views.
Ps and Pt are the student and teacher output probability distributions introduced in Eq. 4. The
EMA update to the teacher is then ruled by ϕ ← λϕ + (1 − λ)θ, ensuring a gradual integration of
knowledge over time.

Note that, same as MFM (Xie et al., 2023), FOLK features compatibility with both ViT and CNN-
based architectures. Illustrated in Fig. 3, when using a ViT-based model as the student (and teacher),
the patch tokens out of the final encoder layer are fed into the MFM head, whereas the class token
[CLS] is directed to the student (and teacher) head. Conversely, when using a CNN-based model,
the framework utilizes the final feature maps out of the CNN encoder as the input for the MFM
head. An average-pooled feature map from the original feature maps will serve as the input to the
student (and teacher) head. We provide experiments and results using a CNN model (i.e. ResNet-50
(He et al., 2016)) in Appendix B.2. Hence, FOLK facilitates a consistent approach across different
architectural paradigms.
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3.2.3 COMPREHENSIVE LOSS CALCULATION

Finally, a comprehensive loss can be derived by integrating the two primary loss components:

Ltot = α · Ldis + LMFM. (6)

where a hyperparameter α controls the weights between two loss terms, which is set as 1 in our
experiments, unless stated otherwise. Note that for a single input image, LMFM takes an average
over two terms for the two different views. This comprehensive loss facilitates the simultaneous
model learning on the two tasks introduced above, the masked frequencies reconstruction (through
LMFM) and original image feature reconstruction with self-distillation (through Ldis). Furthermore,
an ablation study for different choices of the hyperparameter α is provided in Section B.5.3.

3.2.4 COMPARISONS WITH OTHER SELF-DISTILLATION-BASED METHODS

Though FOLK deliberately leverages self-distillation to overcome the limitations of MFM — par-
ticularly its inability to expose the model to natural images — it is also important to clarify FOLK’s
distinctions from other self-distillation-based methods such as DINO (Caron et al., 2021), AttMask
(Kakogeorgiou et al., 2022), and iBOT (Zhou et al., 2022). In contrast to the spatial domain aug-
mentation paradigms adopted by these methods (e.g. random cropping and masking on the original
images), FOLK performs augmentation in the frequency domain by masking with adaptive filters
and presenting frequency-masked images to the student model to enhance its visual understandings.
Note that the input to the teacher model is only spatially augmented (i.e. random cropping), thereby
preserving the model’s perception of natural images during pretraining. Moreover, FOLK incor-
porates a combination of both reconstructive and comparative losses, presenting rational yet more
challenging pretraining tasks compared to approaches that rely solely on comparative losses, such
as DINO and iBOT. Hence, we do not consider FOLK a close replication of previously presented
methods. Please refer to Appendix Section C for a more detailed comparison.

4 EXPERIMENTS

In this section, we detail the experimental setup and evaluate our proposed FOLK framework on
classification tasks using both full fine-tuning and few-shot learning approaches. Additional experi-
ments, including semantic segmentation as a downstream task and ablation studies, are provided in
Appendix B for further insights and comprehensive results.

4.1 SETUP

In this study, we employ three well-established model architectures as the foundation for our experi-
ments: the ViT-Small (ViT-S/16), ViT-Base (ViT-B/16)(Dosovitskiy et al., 2021) and the ResNet-50
(He et al., 2016) (For ResNet-50 results see Appendix Section B.2). These models are chosen for
their proven effectiveness and versatility, showing the power of our model with different types of
model architecture. We adopt the ImageNet-1K training dataset (Deng et al., 2009) without labels
for pre-training our self-supervised learning.

Our model’s performance is evaluated across two critical areas: image classification and semantic
segmentation. For image classification, we continue to leverage the ImageNet-1K dataset (Deng
et al., 2009) to assess the generalizability and effectiveness of the learned features. In contrast, for
semantic segmentation, we utilize the ADE20K dataset (Zhou et al., 2017), a standard benchmark
in scene parsing and segmentation tasks. This bifurcated approach to evaluation ensures a thorough
analysis of the models’ capabilities in varied contexts. Our computational infrastructure supports
these extensive experiments, consisting of four nodes, each of which has four NVIDIA A100 80GB
GPUs, in total 16 GPUs. Please see Appendix A for implementation details.
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Method Ref Data Epoch Token ViT-S ViT-B
Scratch (Touvron et al., 2021) - - - 79.9 81.8
MAE (He et al., 2022a) INet-1K 300 ✓ 80.6 82.9
iBOT (Zhou et al., 2022) INet-1K 1600 ✓ 81.1† 84.0‡

BEiT (Bao et al., 2021) INet-1K 300 ✓ 81.3 82.9+ DALL-E
AttMask (Kakogeorgiou et al., 2022) INet-1K 300 ✓ 81.3 N/A

MoCo V3 (Ci et al., 2022) INet-1K 600 - 81.4 83.2
DINO (Caron et al., 2021) INet-1K 1600 - 81.5 82.8
MFM (Xie et al., 2023) INet-1K 300 - 81.6 83.1
MFM∗ (Xie et al., 2023) INet-1K 300 - 81.2 82.9
MFM (Xie et al., 2023) INet-1K 300 - 81.4 83.2+ R/Com∗

FOLK Ours INet-1K 300 - 81.6 83.4
FOLK Ours INet-1K 800 - 82.1 84.0

Table 1: Top-1 results of fine-tuning self-supervised approaches utilizing ViT-S/16 and ViT-B/16 as
encoders for INet-1K (ImageNet-1K). All recorded data were resized to images of size 224 × 224.
Data means the pre-training dataset, and token means methods that need a masked token. ∗Our
reproduced results with MFM official code through a pre-training phase of 300 epochs followed by
200 epochs of full fine-tuning. Also, MFM + R/Com means using the MFM approach with our
proposed filters instead of its original low/high-pass filters. † Reported in AttMask paper with 300
pre-training epochs. ‡ iBOT ViT-B is pre-trained on 1600 epochs based on their report.

4.2 EXPERIMENTAL ANALYSIS

4.2.1 IMAGE CLASSIFICATION

In this section, we focus on the fine-tuning capabilities of different vision pre-training techniques
using the ViT-S/16 and ViT-B/16 encoders on the ImageNet-1K dataset. The motivation behind this
analysis stems from the need to understand how different SSL strategies, which range from tradi-
tional methods to novel approaches like the FOLK method introduced here, perform under uniform
testing conditions with the well-established ImageNet benchmark dataset (Deng et al., 2009).

Table 1 presents the top-1 accuracy results of various SSL approaches fine-tuned on ImageNet-
1K using both ViT-S/16 and ViT-B/16 encoders. Methods utilizing masked token strategies, such
as MAE, BEiT, iBOT, and AttMask, consistently outperform the baseline, achieving up to 81.3%
with ViT-S and 84.0% with ViT-B with huge number of pre-training epochs. These improvements
highlight the effectiveness of masked token approaches in enhancing model performance, particu-
larly when extensive pre-training epochs or additional data (e.g., DALL-E (Ramesh et al., 2021) for
BEiT) are employed.

However, our proposed FOLK method demonstrates superior performance without relying on to-
kens or external datasets. With only 300 epochs of pre-training, FOLK achieves 81.6% accuracy
with ViT-S and 83.4% with ViT-B, matching or, surpassing other methods that require more epochs
or additional data. Extending the pre-training to 800 epochs, FOLK further improves the ViT-S
and ViT-B accuracy to 82.1% and 84.0%, surpassing all other methods in the ViT-S and ViT-B
category under similar conditions or lower number of pre-training epochs. These results showcase
FOLK’s ability to enhance learning efficiency and model efficacy by integrating learning from dual
inputs—filtered and original images—without the complexities of token masking or the need for
external data sources.

4.2.2 FEW SHOT LEARNING

Our few-shot learning experiment’s motivation lies in demonstrating the robustness and efficiency of
our FOLK framework compared to other pre-training methodologies, especially in scenarios char-
acterized by limited data availability. In this context, we particularly challenge the efficacy of the
FOLK model against the MFM approach and others under the premise that showing original im-
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ages (solving the second weakness of MFM by applying KD) significantly enhances performance
on few-shot learning tasks.

In this experiment, we aim to highlight FOLK’s superior adaptability and efficiency by fine-tuning
pre-trained models using only 10% of the ImageNet-1K dataset over 200 epochs. This setup allows
us to critically assess the influence of learning rate adjustments on performance under sparse data
conditions. We explore variations in base learning rates and warm-up periods using a cosine learning
rate strategy for optimization (Gotmare et al., 2019).

BLR = 2e-4 BLR = 2e-4 BLR = 2e-3Method WUp = 0 WUp = 100 WUp = 5 AVG MAX Epoch

iBOT 64.0 71.1 2.0 45.7 71.1 800
AttMask 69.8 71.0 31.3 57.4 71.0 300

MFM 57.7 58.5 41.9 52.7 58.5 300
MFM + Com/RCom 66.3 63.9 59.9 63.4 66.3 300

FOLK 71.2 68.1 62.2 67.2 71.2 300
FOLK 76.3 73.5 63.9 71.2 76.3 800
FOLK‡ 77.4 74.9 66.4 72.9 77.4 800

Table 2: Results of few-shot learning that fine-tunes the pre-trained ViT-S with different approaches
for 200 epoch with 10% of labeled data from ImageNet-1k. BLR: Base Learning Rate, means the
peak value of the learning rate, and WUp: Warm Up, refers to the initial epochs during which the
learning rate increases from 0 to the predefined BLR. After reaching the BLR, the learning rate then
decreases according to a cosine function, from the BLR back down to 0. AVG: average. MAX:
Maximum.‡ 1000 fine-tune epochs.

The results in Table 2 highlight FOLK consistently outperforms methods like iBOT, AttMask, MFM,
and MFM with Com/RCom filters across different base learning rates (BLR) and warm-up (WUp)
settings. For instance, with a BLR of 2 × 10−4 and no warm-up (WUp=0), FOLK achieves a
top-1 accuracy of 71.2%, surpassing iBOT’s 64.0%, AttMask’s 69.8%, MFM’s 57.7%, and MFM
with Com/RCom’s 66.3%. When the pre-training epochs are increased to 800, FOLK’s performance
further improves, reaching 76.3% accuracy under the same BLR and WUp settings, and even achiev-
ing 77.4% when fine-tuned for 1000 epochs (denoted as FOLK‡). The average accuracy across the
three learning rate settings for FOLK with 800 pre-training epochs is 71.2%, significantly higher
than iBOT’s 45.7% with the same number of pre-training epochs. Notably, FOLK maintains ro-
bust performance even when the learning rate is less optimal, such as achieving 62.2% accuracy
with a higher BLR of 2 × 10−3 and a short warm-up period (WUp=5), where other methods like
iBOT drop drastically to 2.0% accuracy. These results demonstrate that FOLK not only excels in
leveraging limited labeled data but also exhibits resilience to variations in fine-tuning hyperparam-
eters, underscoring its effectiveness and adaptability compared to other state-of-the-art methods in
few-shot learning scenarios.

5 CONCLUSION

In this paper, we introduce the FOLK framework, a novel SSL method that addresses the limitations
of previous frequency-based pre-training approaches. By integrating Fourier transform compres-
sion with self-knowledge distillation, FOLK adaptively selects frequencies for masking based on
unique image responses, which allows the model to focus on more distinctive image features in the
frequency domain, thereby enhancing the pre-training efficiency and model efficacy. Moreover, our
dual-branch framework, which leverages both filtered and original images in pre-training, minimizes
the adaptation requirements for natural-looking images in downstream tasks. Our experimental re-
sults demonstrate the effectiveness of FOLK, achieving competitive performance compared to many
leading SSL methods. Notably, FOLK excels in tasks such as image classification, few-shot learn-
ing, and semantic segmentation, all while requiring fewer pre-training epochs.
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APPENDIX

The following appendices provide in-depth information to supplement our main findings and
methodologies presented in the paper. These appendices aim to enrich the reader’s understand-
ing by providing comprehensive insights and evidence supporting the robustness and versatility of
our proposed method.

• Appendix A: Implementation details like pre-training, fine-tuning process, and projection
heads architecture.

• Appendix B: Additional experimental results and analysis like semantic segmentation, few-
shot learning, image classification for CNN-based model, and ablation study.

• Appendix C: Distinctiveness of FOLK with other SSL based model.

• Appendix D: Visual prediction results.

A IMPLEMENTATION DETAILS

Throughout our experimental investigations, we adopted the methodologies prescribed by the iBOT
(Zhou et al., 2022) and MFM (Xie et al., 2023) frameworks. In a multi-GPU training circumstance,
the learning rate adjustment is vital for optimizing the model’s learning efficiency. The formulation
used to compute the scaled learning rate is delineated below:

ScaledLR = BaseLR ·BatchSize ·
(
WorldSize

512

)
(1)

In this context, BaseLR signifies the optimal or peak learning rate identified for the model’s training
process. The term BatchSize refers to the number of training examples processed simultaneously
by each GPU. Lastly, WorldSize denotes the total count of GPUs employed for parallel computa-
tion. The coefficient 512 in the denominator is a normalization factor, ensuring the scaled learning
rate maintains an appropriate magnitude relative to the hardware configuration. We used the PyTorch
Library (Paszke et al., 2019) for our code development.

A.1 PRE-TRAIN STAGE

Our pre-training procedures largely align with those outlined in the BEiT (Bao et al., 2021) study,
albeit with a few modifications. Specifically, our pre-training regime for the models incorporates
simple yet effective data augmentation techniques, including random resized cropping to a resolution
of 224× 224 pixels and image flipping.

We employ the AdamW optimizer (Loshchilov & Hutter, 2019), with a pre-training duration set to
300 or 800 epochs, a batch size of 2048, 128 per GPU, and a peak learning rate of 1.2 × 10−3.
Additional parameters include a cosine decay learning rate schedule, 20 warmup epochs, and a
specific setting for optimizer momentum (β1, β2 = 0.9, 0.95) (Chen et al., 2020a) with a weight
decay of 0.05. Also, we used a value of 3.0 for gradient clipping to prevent the exploding gradient
problem.

A.2 FINE-TUNE STAGE

For the fine-tuning stage, we tried to keep most of the configuration of our FOLK the same as MFM
(Xie et al., 2023) for a fair comparison.

A.2.1 CLASSIFICATION TASK

We ran 200 epochs for fine-tuning the pre-trained model (i.e. ViT-S/16 or ViT-B/16) on ImageNet-
1K for image classification, employing the AdamW optimizer across all configurations with a
weight decay of 0.05 and the optimizer momentum β1, β2 = 0.9, 0.999. Moreover, the approach
includes a cosine decay learning rate schedule (Li & Arora, 2020), with a layer-wise learning rate
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decay equal to 0.8 (Bao et al., 2021; Clark et al., 2020). We also utilized advanced augmenta-
tion techniques such as Mixup (Zhang et al., 2018) and Cutmix (Yun et al., 2019), as well as label
smoothing and random augmentation to further improve model robustness and generalization capa-
bility (Szegedy et al., 2016; Cubuk et al., 2020). The batch size is maintained at 2048, with a peak
learning rate set at 8× 10−3.

In contrast, the fine-tuning settings for the ResNet-50 model (He et al., 2016) generally follow the
configurations suggested by (Wightman et al., 2021), with modifications to adopt the AdamW op-
timizer as recommended by (Fang et al., 2023). This includes a binary cross-entropy loss function
(Zhang & Sabuncu, 2018) and adjustments to the learning rate scheduler. The weight decay is set
to 0.02, and the batch size is set to 2048 to optimize performance. For ResNet-50, the fine-tuning
epochs are specifically set to 300, with distinct configurations for repeated and random augmenta-
tion, indicating a tailored approach to maximize the model’s efficacy on the ImageNet-1K challenge.

A.2.2 SEMANTIC SEGMENTATION TASK

We followed the pipeline demonstrated by the iBot (Zhou et al., 2022) paper for fine-tuning the
pre-trained model for semantic segmentation using the ADE20K dataset (Zhou et al., 2017). More
specifically, we combined a pre-trained ViT-S/16 encoder with a UPerNet decoder (Xiao et al.,
2018). The ViT-S/16 encoder extracts detailed features from images, while the UPerNet decoder
specializes in semantic segmentation, translating these features into precise pixel-level classifica-
tions. This process employed the AdamW optimizer and fine-tuned for 160K iterations.

A.3 PROJECTION HEAD

FOLK has three projection headers: one for frequency reconstruction (MFM Head, ĥθ) and two for
the student (hθ) and teacher (hϕ) header, see Figure 3. We used a single linear layer for the frequency
reconstruction head, similar to that in the MFM method (Xie et al., 2023). However, when it came
to the distillation heads (student and teacher heads), we comprised a 3-layer multi-layer perceptron
(MLP) with a hidden dimensionality of 2048. All layers were followed by a GELU activation except
the final layer. We refrained from applying batch normalization (BN), as ViT architectures, unlike
standard CNNs, typically eschew BN by default. Also, the output dimension adopts a dimensionality
of 8192.

A.4 PSEUDOCODE OF INFORMED FILTERS

Algorithm 1 presents the pseudocode for our proposed Com and RCom filters (denoted as M in Eq.
2 and Eq. 3). Here, S is the set of predefined values ([0.005, 0.01, 0.05] in our experiments) from
which a threshold is uniformly sampled to filter frequency components with the highest magnitudes.
The parameter com prob represents the probability of applying the Com filter, set to 50% in our
experiments; accordingly, the RCom filter is applied with probability (1 − com prob). Ablation
studies evaluating different choices of S and com prob are provided in Appendix Sections B.5.1
and Section B.5.2, respectively.

Algorithm 1 Com and RCom Filter Generation

1: procedure FILTERGENERATION(image, S, com prob)
2: if image is colored then
3: Convert image to grayscale.
4: end if
5: spectrum← apply 2D FFT to image and retrieve the amplitude
6: compression rate ∼ Uniform(S)
7: threshold← the ((1− compression rate)× 100)th percentile of spectrum
8: Com filter ← (spectrum > threshold)
9: RCom filter ← 1− Com filter

10: Return Com filter with a possibility of com prob, and RCom filter with (1 −
com prob).

11: end procedure
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B EXTRA EXPERIMENTS

B.1 SEMANTIC SEGMENTATION

Semantic segmentation is a typical downstream task in the vision domain, where a classification
needs to be performed on each pixel individually. We evaluated FOLK and compared it with several
alternative SSL approaches on this task, using the ADE20K dataset (Zhou et al., 2017) and incorpo-
rating a task layer from UPerNet as described by (Xiao et al., 2018) to the SSL pre-trained encoder.
The whole model was fine-tuned over 160k iterations, handling images at a resolution of 512× 512,
following the methodology established by iBOT (Zhou et al., 2022).

Method mIoU
Supervised Learning• (Zhou et al., 2022) 44.5

iBOT (Zhou et al., 2022) 45.4
iBOT+AttMask (Kakogeorgiou et al., 2022) 45.3

MFM∗ (Xie et al., 2023) 44.9
MFM + Com/RCom (Xie et al., 2023) 45.1

FOLK† 45.3
FOLK‡ 45.5

Table 3: The full fine-tuning ViT-S/16 model for semantic segmentation task with ADE20K dataset.
• Supervised Learning result taken from iBOT paper. ∗ We produced MFM results with their official
code. FOLK was pre-trained with † 300 and ‡ 800 epochs.

Results of this fine-tuning effort for the semantic segmentation task on the ADE20K dataset are
shown in Table 3. It presents a comparative analysis of different methodologies: Supervised Learn-
ing, iBOT, iBOT with Attention Mask (AttMask), MFM, and our FOLK model at different pre-
training epochs (300 and 800 epochs). Notably, the FOLK model with 800 epochs of pre-training
achieves the highest mIoU at 45.5, slightly surpassing the iBOT’s 45.4 mIoU. This indicates a suc-
cessful adaptation of the FOLK methodology, showing not only an improvement over the MFM
results but also demonstrating that extended pre-training can lead to marginal yet significant perfor-
mance gains.

B.2 IMAGE CLASSIFICATION - CNN BASE MODAL

One limitation of many research studies, such as iBOT (Zhou et al., 2022) and AttMask (Kakoge-
orgiou et al., 2022), is that they are only compatible with a specific type of model architecture (e.g.
ViTs), but not with others (e.g. CNNs). Our approach, like MFM (Xie et al., 2023), does not have
this limitation and works with a wide range of encoder models.

Table 4 presents the ResNet-50 (He et al., 2016) (a CNN-based model) performance under the FOLK
framework. The same FOLK pre-training strategies that have been applied to ViTs were seamlessly
adopted here for CNNs. The only necessary modification to adopt CNNs is to alter the inputs to
the heads: replacing patch tokens from ViTs with reshaped feature maps from CNNs, and replacing
the [CLS] token from ViTs with the average-pooled (and reshaped) feature map from CNNs. Our
approach has demonstrated equal or superior performance to other methods with fewer epochs.

In the experiments above, we observed that FOLK did not lead to significant gains over MFM when
using CNN-based models in the standard many-shot (full-data) setting. However, upon further inves-
tigation, we discovered that FOLK offers considerable advantages over MFM in few-shot learning
scenarios, even with CNN architectures. We conducted additional experiments using a ResNet-50
(He et al., 2016) model as the backbone for both FOLK and MFM, and evaluated their performance
on ImageNet-1k with limited labeled data (1% and 10% subsets). The experimental setup mirrored
that of our ViT-based models to ensure a fair comparison.

As shown in Table 5, FOLK significantly outperforms MFM in the few-shot setting when using a
CNN backbone. Specifically, FOLK achieves a top-1 accuracy of 71.1% with 10% labeled data and
46.2% with 1% labeled data, compared to MFM’s 53.9% and 22.7%, respectively. These results
highlight FOLK’s robustness and effectiveness in scenarios with limited labeled data, making it a
superior choice for applications where labeled data is scarce.
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Method Ref Epoch Top-1 Acc
SimSiam (Chen & He, 2021) 400 79.1
MoCo v2 (Chen et al., 2020d) 400 79.6
SimCLR (Chen et al., 2020b) 800 79.9
BYOL (Grill et al., 2020) 400 80.0
SwAV (Caron et al., 2020) 600 80.1
MFM (Xie et al., 2023) 300 80.1

MFM + Com/RCom (Xie et al., 2023) 300 80.1
FOLK Ours 300 80.1

Table 4: The top-1 full fine-tuning accuracy on ImageNet-1K for self-supervised models that utilize
ResNet-50 as the encoder. This information compares our methods against others, with the results
of these comparative methods being sourced from (Xie et al., 2023) and (Fang et al., 2023). The
highest model performance is highlighted in bold, with the second highest being underscored.

Model Ref Epoch 10% 1%
MFM (Xie et al., 2023) 300 53.9 22.7

MFM + Com/RCom (Xie et al., 2023) 300 58.6 31.0
FOLK Ours 300 71.1 46.2

Table 5: Few-Shot for ResNet-50 with 300 epochs pre-training.

The performance gains can be attributed to FOLK’s self-distillation mechanism, which allows the
student model to learn from the teacher model’s representations of unmasked images. This mech-
anism provides additional guidance during pre-training, enabling the student model to better un-
derstand the underlying data distribution, even when the amount of labeled data for fine-tuning is
limited. In contrast, MFM’s reliance solely on reconstructing masked frequencies without exposure
to unmasked images during pre-training may limit its effectiveness in low-data regimes.

In the full-data setting, the performance gap between FOLK and MFM using CNNs is less pro-
nounced. This observation aligns with prior findings that CNNs, due to their inherent inductive
biases and localized receptive fields, may not benefit as much from global context as ViT archi-
tectures do. Nonetheless, the substantial improvements observed in few-shot settings demonstrate
FOLK’s potential to enhance CNN-based models, especially when labeled data is limited.

These findings underscore the importance of evaluating self-supervised learning methods across dif-
ferent architectures and data availability scenarios. By effectively incorporating the original image
information through self-distillation, FOLK enhances the pre-training process for CNNs, leading to
better generalization in downstream tasks with scarce labeled data.

B.3 ROBUSTNESS TO IMAGE NOISE AND ARTIFACTS

While our FOLK framework leverages the Fourier transform to create frequency-masked augmen-
tations, concerns may arise regarding the potential sensitivity of the Fourier transform to image
artifacts and noise. It is well-known that the Fourier transform can amplify the impact of noise due
to its global nature (Oppenheim & Lim, 1981). However, our method uses the Fourier transform
primarily to generate diverse and challenging masked inputs, and the actual model training occurs
in the spatial domain.

To assess the robustness of our model’s learned representations of image noise and artifacts, we con-
ducted an experiment evaluating the impact of common types of image degradation on the model’s
performance in reconstructing masked frequencies. We randomly selected 100 images from the
ImageNet-1k validation set and applied following types of degradation to each image:

• Salt-and-Pepper Noise: Randomly replaces pixels with maximum or minimum intensity
values, simulating impulsive noise.

• Gaussian Noise: Adds zero-mean Gaussian noise with a standard deviation of σ = 50 to
simulate sensor noise.
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• Brightness Variation: Adjust the brightness by a random factor within ±50% to simulate
different lighting conditions.

• Contrast Variation: Adjust the contrast by a random factor within ±50% to mimic varia-
tions in image quality.

For each original and degraded image, we applied the Com or RCom filters described in Sec-
tion 3.2.1 to create frequency-masked versions. We then used our pre-trained FOLK model to predict
the masked frequencies and calculated the MFM loss as defined in Equation 3.

Noise Type Without Noise Salt-and-Pepper Gaussian Brightness Contrast
MFM Loss 0.179 0.181 0.182 0.186 0.189

Table 6: MFM loss values for original and degraded images. The slight increase in loss for noisy
images indicates minimal sensitivity to noise. All the results of this table are collected by ViT-S/16.

Table 6 presents the average MFM loss values for the original images and images subjected to var-
ious types of degradations. The results indicate that these degradations cause only a slight increase
in the MFM loss—approximately 0.002 to 0.01 higher than the loss for the original images. This
marginal difference suggests that common image degradations do not significantly compromise our
model’s ability to reconstruct masked frequencies.

Several factors contribute to the robustness of our model to image artifacts and noise:

• Spatial Domain Training: Although we use the Fourier transform for masking, the input
to the model remains in the spatial domain. This approach mitigates the potential amplifi-
cation of noise in the frequency domain.

• Randomized Masking Parameters: The use of randomly sampled thresholds for filter
creation (as discussed in Section 3.2.1) exposes the model to a wide range of frequency
masking scenarios. This diversity encourages the model to focus on significant frequencies
while reducing sensitivity to noise.

• Data Augmentation: Our training pipeline includes standard data augmentations such as
random cropping and flipping. These augmentations help the model learn robust features
that generalize well to variations in the input data.

The minimal impact of noise on the MFM loss indicates that our model effectively learns to recon-
struct masked frequencies even when the input images contain artifacts. This robustness is crucial
for practical applications where images may be degraded due to sensor imperfections or environ-
mental conditions.

B.4 FEW SHOT LEARNING

In addition to the primary few-shot learning results discussed in Section 4.2.2, Table 7 presents an
extended evaluation of few-shot learning performance using a smaller set of labeled data. Various
pre-trained models were fine-tuned using only 1% of the ImageNet-1K dataset over 1000 epochs.
This setup facilitates a detailed comparison of each model’s ability to adapt to new data with min-
imal examples, highlighting a crucial aspect of model robustness and versatility. Furthermore, the
evaluation considers three different settings for the base learning rate (LR) and warm-up periods,
which are crucial hyperparameters in training deep learning models, especially under few-shot sce-
narios. The different configurations aim to assess each model’s robustness across varying learning
rate adaptation conditions.

The performance data presented in Table 7 underscores the robustness of the FOLK method across
various learning rates and warm-up settings, evidenced by its superior average performance of
42.8%. This consistency indicates FOLK’s inherent stability and adaptability in few-shot learning
scenarios, distinguishing it from other models. Unlike iBOT and MFM, which exhibit fluctuating
accuracies with changes in learning rates and warm-up periods, FOLK maintains a high level of
performance. This suggests that FOLK is less sensitive to hyperparameter adjustments, thus requir-
ing less fine-tuning to achieve good results. This characteristic is particularly significant in practical
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BLR = 2e-4 BLR = 2e-4 BLR = 2e-3Method WUp = 0 WUp = 100 WUp = 5 AVG MAX Epoch

iBOT 33.2 59.0 1.4 31.2 59.0 800
AttMask 50.4 59.1 3.2 37.6 59.1 300

MFM 26.9 31.6 6.3 21.6 31.6 300
MFM + Com/RCom 42.5 44.5 10.7 32.6 44.5 300

FOLK 51.7 56.1 20.5 42.8 56.1 300
FOLK 58.9 64.2 29.3 50.8 64.2 800

Table 7: Results of few-shot learning by fine-tuning pre-trained models for 1000 epochs on 1% of
labeled ImageNet-1k. All models were sourced directly from their respective original repositories.
All the results of this table are collected by ViT-S/16. BLR: Base Learning Rate, means the peak
value of the learning rate, and WUp: Warm Up, refers to the initial epochs during which the learning
rate increases from 0 to the predefined BLR. After reaching the BLR, the learning rate then decreases
according to a cosine function from the BLR back down to 0. AVG: average. MAX: Maximum.

applications where extensive parameter tuning is inapplicable. By effectively integrating dual in-
puts—filtered and original images—FOLK enhances feature extraction and generalization capabili-
ties, resulting in more reliable performance across various settings. This robustness, combined with
a reduced dependency on precise parameter tuning, positions FOLK as an attractive option for tasks
demanding high accuracy with minimal labeled data and limited pre-processing.

B.5 ABLATION STUDY

B.5.1 RATIONALE BEHIND THRESHOLD SELECTION

Our primary goal in selecting multiple threshold values was to introduce diversity in the frequency-
masked input images during pre-training. By randomly sampling thresholds from a set (e.g., [0.005,
0.01, 0.05]), we ensure that the model is exposed to a variety of masking levels, which helps it
learn more robust and generalized representations. The thresholds correspond to the proportion of
frequency components retained or masked; for instance, a threshold of 0.005 means we retain (or
mask) the top 0.5% of the highest magnitude frequencies. By varying this threshold, we create
different levels of difficulty for the reconstruction task, encouraging the model to learn both coarse
and fine-grained features.

Threshold(s) CIFAR-10 CIFAR-100 ImageNet-1k
.05 98.8 90.2 81.1
.01 99.0 90.7 81.4

.005 99.0 90.6 81.3
.005,.01,.05 99.1 90.9 81.6
.002,.01,.07 99.1 90.9 81.6

Table 8: Evaluation of Com and RCom filters across benchmarks using varied threshold proba-
bilities. Optimal results are achieved with thresholds [0.005, 0.01, 0.05], proving the method’s
effectiveness across diverse datasets. ViT-S/16 collects all the results of this table.

While the initial selection of these thresholds might seem arbitrary, our experiments indicate that
the exact values are not highly sensitive parameters. To demonstrate this, we conducted additional
experiments using different sets of thresholds and evaluated their impact on downstream task perfor-
mance. We compared the original set of thresholds [0.005, 0.01, 0.05] with an alternative set [0.002,
0.01, 0.07]. The results, presented in Table 8, show that both sets yield similar performance across
various datasets (CIFAR-10, CIFAR-100, and ImageNet-1k), and both outperform using a single
threshold value.

These results suggest that the method’s effectiveness is robust to the specific choice of thresholds
as long as they are sufficiently separated to produce diverse frequency-masked images. The per-
formance gains from using multiple thresholds indicate that the model benefits from the increased
variability in the masking patterns. In practice, one can select a set of thresholds that produce visu-
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ally distinct frequency-masked images without extensive tuning. We found that thresholds leading
to the retention or masking of approximately 0.2% to 7% of the highest magnitude frequencies work
well. Visual inspection of the resulting images can help in determining appropriate thresholds, as
shown in Figures 13, 14, and 15 in the Appendix. By observing the images produced with different
thresholds, practitioners can ensure that the selected thresholds provide a good balance between re-
taining important image structures and introducing sufficient masking to challenge the model during
pre-training. The choice of multiple thresholds enhances the diversity of the training data without
requiring extensive hyperparameter tuning. Our empirical results demonstrate that as long as the
thresholds are spread out to produce varying levels of frequency masking, the model performance
remains robust. This approach avoids the need for fine-grained tuning of threshold values and sim-
plifies the practical application of our method.

In summary, while we initially selected the thresholds with the intention of creating diverse and
challenging pre-training tasks, our experiments indicate that the exact values are not critical. The
key is to have multiple thresholds that lead to different masking levels, and our findings show that
the method is effective across various datasets with minimal sensitivity to these values.

B.5.2 EFFECT OF FILTER SELECTION PROBABILITY

To assess the impact of different selection probabilities for the Com and RCom filters in our FOLK
framework, we conducted an ablation study by varying the probability of selecting each filter during
pre-training. While our default setting randomly selects between the two filters with equal probabil-
ity (50%), this experiment aims to determine whether this choice is optimal and how sensitive our
method is to this hyperparameter.

Com Probability RCom Probability Accuracy
0.1 0.9 81.3
0.3 0.7 81.4
0.5 0.5 81.6
0.7 0.3 81.4
0.9 0.1 81.4

Table 9: The impact of different selection probabilities for the Com and RCom filters on model accu-
racy. A ViT-S model, 300 epochs of pre-training, and 200 epochs of fine-tuning on the ImageNet-1k
dataset are adopted in these experiments.

The top-1 accuracy results on the ImageNet-1k validation set are presented in Table 9 We observe
that selecting the filters with equal probability (PCom = 0.5) yields the highest accuracy of 81.6%.
Slight deviations from this equal probability result in marginal decreases in performance, with ac-
curacies ranging from 81.3% to 81.4%. The performance differences are within 0.3% of the highest
accuracy, indicating that our method is not highly sensitive to the exact selection probability of the
filters.

These results suggest that while an equal selection probability slightly outperforms other settings,
the FOLK framework is robust to variations in the selection probability of the Com and RCom
filters. The performance does not significantly degrade when the selection probabilities are skewed
towards one filter over the other. This indicates that both filters contribute positively to the learning
process, and the model benefits from the diversity introduced by both types of frequency masking.

B.5.3 WEIGHT OPTIMIZATION

We explore the optimal weight values for Ltot, introduced in Eq. 6. Table 10 provides an insight
into how variations in the parameter α influence the Top 1 Accuracy of a ViT-S/16 model employing
the FOLK methodology. As α is adjusted from 4 down to 0.05, a clear trend is observed where the
model’s accuracy improves notably when α is reduced from 4 to 1, peaking at an accuracy of 81.6%
at α = 1. This suggests that a lower α enhances the model’s performance, potentially indicating an
optimal configuration of the loss function Ltot at this point.

Further adjustments of α beyond this optimal point (decreasing it to 0.1 and 0.05) result in a slight
decrease in accuracy to 81.4%, indicating a plateau. This stability around lower α values implies
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that while α = 1 is optimal, the model’s performance does not degrade significantly with minor
deviations from this value. The findings suggest that α critically influences the learning dynamics
or loss function weighting, making its precise tuning essential for achieving the best performance
from the ViT-S/16 model in the FOLK framework.

Param α = 4 α = 3 α = 2 α = 1 α = 0.1 α = 0.05
Acc 80.7 80.8 81.2 81.6 81.4 81.4

Table 10: Effect of α values in Ltot on top 1 accuracy for a ViT-S/16 model using FOLK methodol-
ogy.

B.5.4 DIFFERENT FILTERS

Another part of our ablation study demonstrates the advantages of selective masking over random
masking when applied to the frequency spectrum during model pre-training. The Com and RCom
filters play a crucial role in optimizing self-supervised learning by leveraging the principles of image
compression. The Com filter focuses on major visual elements by preserving significant frequen-
cies, thus compressing the image and emphasizing crucial features. Conversely, the RCom filter
retains less dominant frequencies to highlight finer details and textures, enhancing the model’s sen-
sitivity to subtle visual cues. This approach ensures that models are trained on both comprehensive
and detailed representations, fostering adaptability and improved performance across diverse appli-
cations.

Additionally, our masking approach generates unique masks according to each image’s frequency
responses, thereby accounting for each image’s distinctive features and semantics (see examples in
the Tables 13, 14 and 15). This contrasts sharply with random masking. By targeting essential
frequencies, selective masking ensures that the model adapts to recognize and prioritize these key
signals, resulting in more robust and effective pre-training. Our findings indicate that this method
significantly enhances the model’s generalization capabilities and overall accuracy, confirming the
efficacy of selective masking in the frequency domain for developing advanced predictive models.

Original Com Gabor Token Mask Circle Mask

Figure 4: Visual comparison between Com/RCom filters employed by FOLK and other random
masking techniques.

Figure 4 illustrates the implementation of three supplementary random filtering techniques on the
input frequencies and the effect of those filters compared with our Com filter. The Gabor filter
that we directly applied in the frequency domain, (Kamarainen et al., 2006). In addition to this,
Token Mask is utilized, drawing inspiration from the SimMIM approach (Xie et al., 2022),
where random square regions are masked in the frequency domain to mimic missing information.
Furthermore, we introduce the Circle Mask strategy, which involves randomly masking circular
areas at various distances from the center of the frequency spectrum. One of the significant advan-
tages of our introduced filter (Com/RCom) is that it uses actual image information for masking,
while other filters just randomly or constantly mask (like MFM) a portion of the frequency area
without considering the structure and information of the image.
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Filters Gabor Token Mask Circle Mask Com/RCom
Acc 80.1 80.3 80.4 81.6

Table 11: Image classification results of utilizing different filters for masking in the FOLK
framework. All the results of this table is collected by ViT-S/16.

Figure 5: The loss progression of MFM using the original constant filters (denoted as ”MFM”) and
MFM using the proposed Com and Rcom filters (denoted as ”MFM + Com/Rcom”) for the first
100 epochs during pre-training.

Table 11 illustrates the impact of various filtering techniques used for masking within the FOLK
framework on model accuracy. The methods compared include Gabor filters, Token Mask, and Cir-
cle Mask filters. A clear pattern emerges from the data, with the Com/RCom filters significantly
outperforming the other techniques, achieving the highest accuracy at 81.6%. This indicates a su-
perior efficacy of Com/RCom filters in capturing and utilizing relevant image features for model
training. The other filters—Gabor, Token, and Circle—also show competitive accuracies, but they
are notably less effective than Com/RCom, with accuracies hovering around the 80% mark. This
suggests that the design and application of the Com/RCom filters are better aligned with image
intrinsic information, enhancing the model’s ability to generalize from the training effectively.

B.5.5 EFFECT OF INFORMED FILTERS ON PRE-TRAINING

To further illustrate the impact of the proposed Com and RCom filters on the pre-training process,
we present in Fig. 5 a comparison of the loss progression of MFM when utilizing the original con-
stant filters versus the Com/RCom filters. Importantly, both experiments were conducted without
the self-distillation design of FOLK, thereby isolating the analysis to the effect of the filters alone.
As depicted in the figure, using the proposed Com and Rcom filters results in a higher MFM recon-
struction loss (Eq. 3) throughout the pre-training process. This indicates that the model finds it more
challenging to predict the masked frequencies produced by the Com/RCom filters, suggesting that
our filters are more effective in encouraging the model to learn richer representations by presenting
more demanding reconstruction tasks.
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B.6 EFFICIENCY ANALYSIS

Our proposed enhancement involves augmenting the MFM model framework to accommodate dual
inputs: both the original and the filtered images. By processing both types of inputs, the model gains
a more comprehensive understanding of the data, which is particularly advantageous in scenarios
requiring robust feature recognition, such as few-shot learning tasks. This approach aims to optimize
the model’s performance by leveraging the distinct characteristics captured in the filtered versus
original images.

Methods FOLK MFM iBOT AttMask∗
MemGPU (GB) 19.8 10.1 21.9 39.3∗

Few-Shot Accuracy (%) 67.2 52.7 45.7 57.4
Classification Accuracy (%) 81.6 81.4 81.1 81.3

Table 12: Comparison of GPU memory usage and model accuracy between FOLK and other meth-
ods. All methods are based on a ViT-S backbone. MemGPU is GPU memory with a batch size of
128. Few-Shot Accuracy is averaged from Table 2. Classification Accuracy comes from Table 1 in
the main manuscript. ∗We could not run AttMask’s official code with batch 128 with A100 80G and
received a memory error. Hence, we ran it with batch 64.

To assess the effectiveness of our enhanced model, we provide memory usage on the GPU, and
overall accuracy. Table 12 summarizes the performance metrics of various self-supervised learning
methods, highlighting the impact of integrating dual inputs—original and filtered images—on model
efficacy, particularly within the FOLK framework. Memory usage is a crucial consideration, as only
GPUs with high capacity can run the model. This is noteworthy when compared to iBOT and
AttMask which consume more memory2, while our model requires less than 20GB of memory for
the same batch size. The increased memory usage in models like FOLK and iBOT correlates with
the advanced processing capabilities necessary for handling dual inputs. However, the evident gains
in learning accuracy justify the resource allocation, making it a worthwhile trade-off for applications
where high precision and robust feature recognition are critical, such as few-shot learning scenarios.
FOLK achieves the highest few-shot learning accuracy at 67.2% and tops classification accuracy at
81.6%. This performance indicates that the model’s ability to effectively utilize both filtered and
original images significantly enhances its learning capabilities, particularly in tasks requiring robust
feature recognition.

C COMPARISON WITH DINO AND DISTINCTIVENESS OF FOLK

While our proposed FOLK framework and DINO (Caron et al., 2021) both employ self-distillation
techniques, it is crucial to clarify the key differences between the two methods and highlight the
unique contributions of FOLK.

C.1 USE OF SELF-DISTILLATION

Both FOLK and DINO utilize knowledge distillation in a self-supervised learning context involving
a student-teacher architecture where the student model learns from the teacher model’s output. How-
ever, knowledge distillation is a common technique in self-supervised learning (SSL) and has been
adopted in several works such as BYOL (Grill et al., 2020), iBOT (Zhou et al., 2022), and AttMask
(Kakogeorgiou et al., 2022). Therefore, using self-distillation alone does not define a method’s
identity or make it equivalent to DINO.

C.2 ADDRESSING DIFFERENT PROBLEMS

FOLK integrates self-distillation to address a specific limitation in Masked Frequency Modeling
(MFM) (Xie et al., 2023). Namely, the model lacks looking at the natural view of images and un-
masked images during pre-training. This limitation can hinder the model’s performance, especially
in few-shot learning scenarios where labeled data is scarce. By incorporating self-distillation, FOLK

2AttMask cannot run with a batch size of 128 on an A100 80GB GPU, so we run it with a batch size of 64.
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allows the student model, which only sees frequency-masked images, to learn from the teacher
model’s representations of unmasked images, thereby enhancing its ability to generalize to natural
images.

C.3 FREQUENCY-BASED MASKING AND FILTERS

A key distinction of FOLK is the introduction of informed frequency-based filters (Com and
RCom) for masking in the frequency domain. These filters are designed to adaptively mask signifi-
cant frequencies based on each image’s unique frequency components, creating a more challenging
pretext task and enhancing the model’s ability to learn both macro and micro visual cues. This
approach fundamentally differs from DINO, which operates in the spatial domain.

C.4 COMPUTATIONAL EFFICIENCY

FOLK is designed to be computationally efficient compared to DINO. Notably, FOLK requires
fewer pre-training epochs to achieve competitive or superior performance (see Table 1). For instance,
FOLK achieves strong results with 300 or 800 pre-training epochs, whereas DINO typically requires
800 to 1600 epochs to reach even lower performance levels (Caron et al., 2021).

Additionally, FOLK has lower GPU memory requirements. Using a batch size of 128, FOLK’s GPU
usage is approximately 19.8 GB (see B.6), while DINO’s GPU usage is around 30.8 GB (based on
reported usage in (Caron et al., 2021) with adjusted batch sizes). This efficiency is partly due to
FOLK not requiring additional local views of images during training, unlike DINO.

C.5 METHODOLOGICAL DIFFERENCES

While both methods use self-distillation, FOLK and DINO differ in their training methodologies:

• Input Views: FOLK employs frequency-masked views generated using Com and RCom
filters, whereas DINO uses multiple spatial views, including global and local crops. FOLK
does not need any local view.

• Loss Functions: FOLK combines a reconstruction loss (MFM loss) for masked frequency
prediction with a distillation loss, enabling the model to learn both from reconstructing
missing frequencies and from the teacher’s representations. DINO relies solely on the
distillation loss.

• Exposure to Original Images: In FOLK, the teacher model is exposed to unmasked im-
ages, and the student learns to reconstruct the teacher’s representations from frequency-
masked images. This design helps the student model adapt to natural images despite not
seeing them directly during training.

D PREDICTION VISUALIZATION

This section presents visualizations of a series of images from the ImageNet-1K dataset, processed
by our newly proposed techniques, namely the Com and RCom filters. Tables 13, 14, and 15 col-
lectively demonstrate the impact of our proposed approach. Distinct from the MFM method, which
employs static and conventional low/high-pass filters, Com and RCom filters are dynamic and tai-
lored to each image. This adaptability allows the filters to change in response to an image’s unique
concept and structural characteristics, offering a more nuanced and effective processing method. In
addition, Tables 13, 14, and 15 also show the reconstructed missing frequencies for each image, gen-
erated by the FOLK pre-trained model. The clear alignments between the model predicted and the
ground-truth masked frequencies provide further evidence for the successful pre-training of FOLK
and, therefore the improved model efficacy.
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Original Image Frequency

Rate Com Masked Input Predicted RCom Masked Input Predicted

.05

.01

.005

Rate Com Masked Input Predicted RCom Masked Input Predicted

.05

.01

.005

Table 13: The effect of applying Com and RCom filters to different images, and the predicted
missing frequencies by the FOLK pre-trained model. Rate means the rate of compression (between
0 and 1).
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Original Image Frequency

Rate Com Masked Input Predicted RCom Masked Input Predicted

.05

.01

.005

Rate Com Masked Input Predicted RCom Masked Input Predicted

.05

.01

.005

Table 14: The effect of applying Com and RCom filters to different images, and the predicted
missing frequencies by the FOLK pre-trained model. Rate means the rate of compression (between
0 and 1).

28



Published as a conference paper at ICLR 2025

Original Image Frequency

Rate Com Masked Input Predicted RCom Masked Input Predicted

.05

.01

.005

Rate Com Masked Input Predicted RCom Masked Input Predicted

.05

.01

.005

Table 15: The effect of applying Com and RCom filters to different images, and the predicted
missing frequencies by the FOLK pre-trained model. Rate means the rate of compression (between
0 and 1).
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