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Abstract

Current benchmarks for evaluating neural code
models focus on only a small subset of program-
ming languages, excluding many popular lan-
guages such as Go or Rust. To ameliorate this
issue, we present the BabelCode framework for
execution-based evaluation of any benchmark in
any language. BabelCode enables new investi-
gations into the qualitative performance of mod-
els’” memory, runtime, and individual test case
results. Additionally, we present a new code trans-
lation dataset called Translating Python Program-
ming Puzzles (TP3) from the Python Program-
ming Puzzles (Schuster et al.| 2021)) benchmark
that involves translating expert-level python func-
tions to any language. With both BabelCode and
the TP3 benchmark, we investigate if balancing
the distributions of 14 languages in a training
dataset improves a large language model’s per-
formance on low-resource languages. Training a
model on a balanced corpus results in, on average,
12.34% higher pass@Fk across all tasks and lan-
guages compared to the baseline. We find that this
strategy achieves 66.48% better pass@Qk on low-
resource languages at the cost of only a 12.94%
decrease to high-resource languages. In our three
translation tasks, this strategy yields, on average,
30.77% better low-resource pass@k while having
19.58% worse high-resource pass@k/l|

1. Introduction

In the 2022 StackOverflow Developer Survey, Rust was the
14th most popular programming language despite not rank-
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ing in the survey taken five years prior. However, the 13th
most popular language, Go, has nearly doubled Rust’s num-
ber of StackOverflow questions in this time frame. Further,
despite their similar popularity, Go has nearly 350% more
source code available (Kocetkov et al., [2022). These dispar-
ities highlight the problem that many popular programming
languages are starkly low-resource, especially compared to
the most popular languages.

Despite their impressive generative capabilities, especially
in code, Large Language Models (LLM) are adversely im-
pacted by this language resource imbalance. Thus, develop-
ers will likely find minimal utility from LLMs if they are
not using the extremely popular languages. It is therefore
imperative to investigate how to mitigate the discrepancy
between a language’s popularity and the amount of data
available for it. Prior works focusing on code generation
(Ahmad et al.| 2021) and multilingual natural language pro-
cessing (Arivazhagan et al., [2019; (Conneau et al., [2019)
use temperature-based strategies to balance the training lan-
guages. Such a strategy duplicates extremely low-resource
languages thousands of times, which has been shown to
significantly reduce performance (Allamanis| |[2019).

Beyond the the language balancing strategy, evaluating code
LLMs in a multi-lingual setting presents significant chal-
lenges. Existing datasets are either mono-lingual (Chen
et al.}2021;|Austin et al., 20215 Lai et al.[[2022) or limited to
only a subset of popular programming languages (Roziere
et al.l 2020). Each problem in these datasets, which we
henceforth refer to as a benchmark, contains an input, and
a canonical solution along with the test-cases for checking
correctness. Creating a new benchmark for each language of
interest would require insurmountable engineering and mon-
etary costs. To address both of these problems, we present
the BabelCode framework for execution-based evaluation
of any benchmark in any language and use it to investigate
the impact of programming language distribution on code
generation and translation.

BabelCode is open-sourced, has an extensive test suite, and
supports evaluating four benchmarks in 14 languages. It is
designed specifically to enable future research directions
such as the evaluation of custom data-structures. BabelCode
allows investigation of novel research directions through


https://insights.stackoverflow.com/survey
https://github.com/google-research/babelcode

Measuring the Impact of Programming Language Distribution 2

Figure 1. Overview of this work’s contributions.
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the measurement of memory and runtime usage for a given
prediction, as well as the outcomes of individual test cases.
Furthermore, we can use BabelCode to build multi-lingual
execution based benchmarks from existing mono-lingual
datasets. We demonstrate this functionality by creating a
new dataset called Translating Python Programming Puz-
zles (TP3) from the Python Programming Puzzles (Schuster|
et al., 2021)) benchmark, where the objective is to trans-
late expert-level python programs to other languages. The
source programs for TP3 are the hand-crafted verification
functions for each problem in P3. As the authors hand-wrote
each function, they are significantly more complex than the
current state-of-the-art code translation benchmarks, such
as Transcoder (Roziere et al.,|2020), for which code LLMs
are already achieving highly impressive results.

Our presented framework is closely related to the concur-
rent work of MBXP (Athiwaratkun et al.,|2023)) and Multi-
PLE(Cassano et al.| 2022). While MBXP is quite similar
to BabelCode, it is not open-sourced and requires that the
input benchmarks be in Python. Multi-PLE is open-sourced,
but only supports generation tasks and contains significant
errors in multiple languages. BabelCode addresses these
issues through an extensive test suite that ensures that the
code generated is correct, and that crucial functionality, such
as data structure equivalence, works when executed.

With the BabelCode framework, we investigate remedies
to the problems of programming language imbalance. We
utilize the Unimax algorithm (Chung et al.l 2023) to limit
the maximum number of times to duplicate a language’s
data to a constant N. We then train 1B, 2B, and 4B param-
eter decoder-only models on both the natural and Unimax
N distributions. We utilize the UL2 (Tay et al.,[2022) and
causal language modeling training objective. We find that
models trained on the balanced dataset significantly outper-
form the baseline models on low-resource languages across
all tasks. Further, we find that the resulting performance
drop on high-resource languages is mitigated by increasing
the model size.

This paper makes the following key contributions:

Multi-Lingual Evaluation With BabelCode on 14 Programming Languages

e We propose and release BabelCode, a new execution-
based evaluation framework that allows for multilin-
gual evaluation of code generation and translation ca-
pabilities of code language models. It also supports the
easy addition of new benchmark tasks and execution-
based metrics.

e We show that the code language models trained on
the natural distributions of GitHub source code have
poor performance on low-resource languages in both
generation and translation tasks.

e We propose a new data balancing strategy for pro-
gramming languages to improve performance on low-
resource languages. We demonstrate that the resulting
models outperform the baseline models across all tasks
by an average of 12.34% passQE for all languages,
with a further improvement of 39.70% passQFk to low-
resource languages.

e We find that the average improvements on low-resource
languages from training on balanced data do not scale
with model size. But scaling model sizes significantly
helps the average pass@Qk loss compared to the base-
lines on high-resource languages going from a loss of
39.70% with the 1B model to a loss of 2.47% with the
4B model.

2. The BabelCode Framework

BabelCode enables the evaluation of a collection of prob-
lems, each consisting of a prompt and a set of test cases,
in any language through four stages: 1) represent each test
case in our domain specific language (DSL) defined in
2) use this generic form to generate the test cases in
the target language from the input and output values, 3) use
al injtemplate to generate a testing script in the target lan-
guage, and 4) execute the target script through the command
line. This is done autonomously, requiring minimal human
intervention. We provide an overview of how an example

Zhttps://jinja.palletsprojects.com/en/3.1.x/
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Table 1. Differences between BabelCode and prior works. NL2C is natural language to code, while C2C is code to code datasets.
BabelCode has an extensive test-suite that automatically tests each language’s implementation and correctness when executed.

Open # NL2C c2C Mem. & Test Indiv. Test ~ Lang. Agnostic
Name Sourced Lang. Support Support Time Metrics Suite Case Results Datasets
MultiPL-E | v/ 18 v X X X X X
MBXP X 10 v v X X v X
BabelCode v 14 v v v v v v

Figure 2. BabelCode’s domain specific language for representing
the input and output types of a question. Prior works require that
the source dataset be written in Python, while our DSL removes
this restriction and allows users to create datasets in any language.
This enables seamless additions of new languages while simplify-
ing future expansions to features such as custom data structures.
S — LeafTypes | ListType | MapType
ListType — list <S> | set <S>
MapType — map < CoreTypes;S >
LeafTypes — CoreTypes | boolean | double | float | long

CoreTypes — character | integer | string

problem is translated in Overall the key novel
elements of BabelCode are: I) the use of a DSL to translate

programming questions, II) type-specific equivalence, III)
the ability to measure the performance of a given program at
a low level (i.e., memory used, runtime, which tests passed),
and IV) a large scale test-suite for ensuring correctness of
generated code.

2.1. Framework Design

BabelCode shares many design similarities to the concur-
rent work from Athiwaratkun et al.| (2023). Specifically,
we follow the same approach to inferring argument and re-
turn types. We follow the respective documentation and
tutorials for each language to determine which native types
to use. We also use these docs to determine the docstring
formatting and naming convention. These mappings are
used to generate unit and integration tests for each language
automatically. They ensure that each language’s implemen-
tation is syntactically correct and that, when executed, the
equality comparison is correct. We describe the framework
design and similarities to|Athiwaratkun et al.[(2023) in [@

D 4 A

DSL Representations: Using a DSL in the first phase, we
do not force the inputs to be Python, thus enabling more flex-
ibility to represent more generic tasks. For example, given
the inputs from two test cases: {"a": [[1], [1, [80]11]}
and {"a": []}, we only represent the zypes in our generic
DSL. Thus, the resulting type string for this input is

map<string; list<integer>>. We do not represent
the actual values in the generic form as we can easily trans-
late literals across languages. This allows users to create
a dataset from any language by requiring that they only
represent the types of the inputs and outputs in this generic
form. The language agnostic nature of the DSL enables
future extensions of BabelCode to incorporate complex in-
puts and outputs such as custom data-structures. For exam-
ple, the representation of a node class in a BST could be
BSTNode<integer; integer>.

Equality Checking: We support floating point equivalence
to a precision of € = le—6 for floats and ¢ = 1le—9 for
doubles. To determine if a given value is a f1loat or a
double, we count the number of digits after the decimal
place. We apply this same logic to int and 1ong by count-
ing the total number of digits. Languages such as C# do
not, by default, support deep equivalence of data structures.
In such cases, we serialize the objects to JSON and check
that the resulting strings are equal. Otherwise, we use the
language built-in deep equality functionality.

Test Statement Execution: We opt to print the result of
each test case (i.e. TEST—-0...PASSED) to the standard
output in a parseable format across all languages. Along
with try-catch blocks, this allows the evaluation of every
test case for a given problem. This allows finer analysis
of individual programs when compared to using assert
statements as it identifies if specific corner cases fail.

Prompt Translation: As |Wang et al.| (2022a) showed,
LLMs are sensitive to the input prompts for code gener-
ation. Therefore BabelCode supports prompt translation
and construction for multiple different problem formula-
tions. We replace the names of languages, such as Python,
with the target language. We use the language-specific nam-
ing convention to properly format the signature in the best
practice style. If an argument uses a reserved keyword, we
append arg to its name so that it retains the same mean-
ing but will no longer conflict. We replace Python-specific
terms with their equivalent names in the target language.
For tasks formulated as code-completion, we support for-
matting the problem description as a native docstring. We
do not translate the import statements in the header. In-
stead, we exclude the headers from all languages to provide
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a language-agnostic format. Translating prompts to a tar-
get language is not novel by itself, as both |Athiwaratkun
et al.| (2023)) and |Cassano et al.| (2022) proposed methods
to accomplish this. BabelCode’s builds on those works by
translating reserved characters. For example, in Julia, the
”$” in docstrings will raise errors if not properly escaped.
Thus, we implement methods to automatically handle such
cases and ensure correctness.

2.2. Differences To Prior Works

We summarize the high-level differences between Babel-
Code and prior works in The MBXP framework
from |Athiwaratkun et al.| (2023) is the most similar to our
work as discussed in Similar to BabelCode,
MBXP does have individual test-case results; however, it
uses assert statements and thus can only determine the
first test-case that fails. MBXP does use language experts to
review the generated code’s quality and discuss the valida-
tion it supports to ensure that generated code parses and/or
compiles for its respective language. BabelCode also has
this functionality but, additionally, it ensures correctness
through a test suite that covers the execution of generated
code. We provide scripts to allow validating that source so-
lutions to a dataset pass the generated code. For languages
that do not have a solution in the respective dataset, we
generate “mock” predictions that return the expected output
type. This allows us to ensure that generated code is correct
in all supported languages even if no solution exists.

The MultiPL-E framework from |Cassano et al.|(2022) sup-
ports 18 languages compared to BabelCode’s 16. However,
we support four datasets, while MultiPL-E only currently
has support for two datasets. In addition, BabelCode also
supports fine-grained evaluation metrics for memory, run-
ning time, and individual test cases. Our extensive test suite
and validation scripts have also exposed many language-
specific idiosyncrasies that naive methods of translation fail
to handle. For example, in Julia, any “$” will be treated
as string interpolation, even if it is in a docstring. Thus,
in the majority of cases, these must be escaped. We auto-
matically rename variables that use reserved keywords. In
languages such as C#, the == operator checks equivalence
by reference instead of value. Besides corner cases, our
DSL and templates allow us to effectively implement proper
floating point equivalence for problems that return a float.
Finally, in many languages, MultiPL-E uses types that are
not considered best practice, such as in Scala, where it relies
on the Java types ArrayList instead of the native List.

3. Low-Resource Code Language Models

Because the data availability can vary greatly by program-
ming language, we can consider the goal of building a multi-
lingual code model as a data-imbalanced multi-task learning

problem. Previous work in the multilingual natural lan-
guage community (Conneau et al.|[2019} |Arivazhagan et al.|
2019) and in the program synthesis space (Ahmad et al.|
2021) have used sampling strategies relying on temperature-
scaling. In this work, we use the Unimax (Chung et al.,
2023)) strategy to address this imbalance. The Unimax algo-
rithm assumes that we are given a budget of how many ex-
amples we plan to consume during training and a maximum
number of times, N, any single example can be duplicated
in the training corpus. Then, we separate the data into buck-
ets by programming language and add N epochs of each of
the lowest-resource languages until we can safely distribute
the remaining budget across all the remaining languages
without exceeding /N epochs over any one of these remain-
ing languages. This will allow us to control the number of
epochs N we perform over the low-resource languages to
minimize overfitting while allowing fair distribution of the
compute budget to the remaining high-resource languages.
We will ablate the choice of IV in our experiments.

Figure 3. Different distributions for Unimax with different budgets.
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4. Experimental Setup
4.1. Models

To understand the impact of training decoder-only models
on the different programming language distributions, we
train models in 3 sizes: 1B, 2B, and 4B. For each of these
sizes, we train 5 different models on each distribution: Natu-
ral and Unimax N, where N € {1,2,3,4}. The parameters
and training differences are listed in We follow
Chowdhery et al.|(2022) for all other architecture choices.
Every model has a context window of 2048 and is trained
identically with the same vocabulary described in
We use a base learning rate of 0.01 and a constant
warmup with a step inverse decay. The number of warmup
steps is kept to 10% of the total training steps per model.
The total number of training steps is 38000, 77000, 190000
for the 1B, 2B, and 4B models, respectively. We use the
Adafactor optimizer (Shazeer & Stern, |2018)) and a batch
size of 256. We prepend [code] to the beginning and add
the tag [eod] to the end of each file from our training data.
Finally, we use the T5X and SeqlO (Roberts et al., [2022])
frameworks. We use the UL2 (Tay et al., [2022)) objective
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Table 2. Hyperparameters for models trained (BC) compared with
those used to train PaLM-Coder(PC). For PaLM-Coder, we report
the number of code tokens trained on. Each BC model is trained
on each of the naturally occurring distributions of the GitHub
data and each of the distributions is detailed in where
N e€{1,2,3,4}

# of Train
Model | Layers | Heads | dyoder | Tokens(B)
BC 1B 16 8 8192 20.2
BC 2B 24 16 10240 40.4
BC 4B 26 16 14336 100
PC 8B 32 16 4096 46.8
PC 62B 64 32 8192 46.8

with an additional causal language modeling objective as

described in

4.2, Training Data

Our curated source code corpus was obtained by collecting
publicly available code data on the web using a custom
code data collection system. We apply a similar license
filter as |[Kocetkov et al.| (2022)) to remove any files with
non-permissible licenses, use simple heuristics to filter out
low-quality code and apply near-deduplication to obtain
our corpus of high quality, permissive source code. After
preprocessing, we select 14 programming languages by their
file extensions according to the mapping used by GitHub’s
Linguist libraryﬂ to segment the dataset by language. To
calculate the number of examples per language, we use
SeqlO’s caching feature and take the number of examples
after post-processing (Roberts et al.l 2022). We list the
percentages of all examples and file extensions used per
language in With these numbers, we consider
the top 7 languages to be high-resource(HR): Java, Python,
C++, PHP, TypeScript, JavaScript, and Go. We further
consider the bottom 7 languages to be low-resource(LR):
Dart, Lua, Rust, C#, R, Julia, and Haskell.

4.3. Vocabulary

The original PaLM (Chowdhery et al., [2022) vocabulary
focuses on multilingual natural language. In contrast, we
trained our SentencePiece (Kudo & Richardson, [2018)) vo-
cabulary with 64k tokens from the training data directly.
Each programming language is uniformly sampled to build
the vocabulary. In previous works, such as [Chen et al.
(2021)), a list of tokens that consists of a different number of
whitespace is manually added to represent code more effi-
ciently. In our work, we rely on the SentencePiece model to
learn the whitespace tokens by allowing extra whitespace to-
kens and whitespace-only tokens. In the end, the model can

*https://github.com/github/linguist/

represent up to 12 whitespaces into one token. In addition,
numbers are split into individual tokens.

4.4. Benchmarks

BabelCode currently supports 4 datasets. To allow the
translation of any dataset to any language, we modify each
benchmark as well as remove problems that were incom-
patible. These changes are described in[Appendix B| For
HumanEval (Chen et al., 2021)), MBPP (Austin et al., [2021)),
and Transcoder (Roziere et al., |2020), we add the pre-
fix BabelCode- (BC) to indicate that we are using the
BabelCode specific version. Further, for Transcoder, we
use the same version as in (Chowdhery et al.| (2022). BC-
HumanEval (BC-HE) has 161 out of the original 164 Hu-
manEval questions. BC-MBPP has 855 of the original 999
questions. BC-Transcoder (BC-TC) has 524 of the origi-
nal 560 questions.

We additionally introduce a new dataset called Translating
Python Programming Puzzles (TP3). We take the verifi-
cation functions from the questions in the original Python
Programming Puzzles dataset (Schuster et al.,|2021) to cre-
ate this dataset. These functions are hand-crafted by the
authors and are used to check if an answer satisfies the
constraints of the puzzle. These puzzles range in difficulty
from basic character checking to competitive programming
problems. Thus, each verification function is written by an
expert python programmer and requires a significant under-
standing of programming to translate. In total, there are 370
python functions to translate. Examples from TP3 can be

found infsubsection B.4l

4.5. Evaluation

For BC-HumanEval, we follow |Chen et al.|(2021) and gener-
ate 200 programs per problem. Further, we use a zero-shot
prompt described in We use the built-in
docstring translation of BabelCode. We generate 50 pro-
grams per problem on our three translation tasks and use
the prompts described in[subsection E.2] We consider these
prompts zero-shot as we do not provide any additional exam-
ples. However, we provide the translated signature without
the docstring in the prompt. We do not consider this to
be data leakage as it is trivial to translate signatures with
libraries such as Treesitteif']

For every dataset, we use T" = 0.8, top, = 0.95, and do not
use topg. We use the pass@Fk estimator (Chen et al., 2021)
to measure the performance. We use £ = 100 and k£ = 25
for generation and translation, respectively.


https://github.com/github/linguist/blob/master/lib/linguist/languages.yml
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Figure 4. Comparison of the models trained with PaLM-Coder models. For each dataset, we use (2021) pass@k estimator
with n = 2 % k. We then generate n samples per problem with 7' = 0.8. Full results can be found in[Appendix F} Languages in the
X-Axis are sorted from high to low resource. HS is Haskell, JS is JavaScript, Py is Python, and TS is TypeScript.
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5. Results
5.1. Baseline Models

We report the baseline results for our trained models and
PaLLM-Coder in On BC-HumanEval, we find that
the 2B model has a better pass@100 than that of PaLM-
Coder 8B on all but C# and Python. On average, the BC-2B
model trained on the natural distribution of GitHub data has
average improvements of 48.17% compared to PaLM-Coder
8B despite having a quarter of the number of parameters
and training on 6.4B fewer code tokens. Further, we find
that the 4B model outperforms PaLM-Coder 62B on 6 of
the 14 languages evaluated. This likely results from the 4B
model seeing over 53B tokens more than what PaLM-Coder
62B did. Another likely factor in this discrepancy is that the
data PaLM-Coder was fine-tuned on included all languages
on GitHub in contrast to our filtered training dataset.

We also observe that performance on languages do not scale
with respect to their resource level nor the model’s size.
C#, Dart, Julia, and Haskell have significantly higher gains
when scaling to 4B model size when compared to the other
languages. While this may be due to the increased number of
training tokens, it is not consistent across all LR languages
as the increase in performance for R and Lua when scaling
from 1B to 2B is similar to that when scaling from 2B to
4B. Instead, this result is likely due to better transfer from
languages such as Java, Python, and C++.

The importance of scale for multi-lingual code models is

*https://tree-sitter.githcub.io/tree-sitter/
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further demonstrated by the results of the translation tasks.
We find that in BC-TP3, the 1B and 2B models’ performance
is similar. However, the most significant gains are from
scaling up to 4B where it beats PALM-Coder 8B on all but
three languages in this zero-shot translation. We do make
note, though, that while we do not provide any examples for
in-context learning, we do provide the signature in the target
language during generation. This finding is less pronounced
in BC-Transcoder as the scaling observed in all languages
is more akin to that seen in BC-HumanEval.

5.2. Impact of Balancing Programming Languages

shows the mean pass@Fk scores of different mod-
els trained on each of the 5 distributions for each of the
4 datasets. As expected, the natural distribution is opti-
mal if the focus is solely HR languages as the performance
losses when training on Unimax balanced data are 15.47%,
14.00%, and 9.35% for the 1B, 2B, and 4B models, respec-
tively. However, for any LR language, Unimax is clearly
better given that there is an average pass@100 improve-
ment on these languages of 111.85%, 68.38%, and 19.22%
for the 1B, 2B, and 4B size models, respectively. For gen-
eration tasks, we find that NV = 3 is optimal with respect
to the difference between performance gained on LR and
performance lost on HR languages. On the 1B, 2B, and
4B models, the ones trained on the Unimax 3 dataset had
differences of 130.17%, 87.80%, and 36.00%, respectively.

We observe similar scaling trends on TP3, as training on
a Unimax distribution yielded average pass@25 improve-
ments to LR languages of 124.45% for the 1B model,


https://tree-sitter.github.io/tree-sitter/
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Figure 5. Effects of scale on the average pass@Fk of the high and low resource languages for each of four datasets. Full tabulated results

are located in
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Figure 6. Mean relative difference of pass@k for each of the models trained on the different Unimax distributions compared to the
passQ@k of the same sized model trained on the Natural distribution. The X-Axis is the language sorted from high to low resource. HS is
Haskell and Py is Python. The percent changes for each delta for HR languages are shown in[Table 12]and [Table 13|for LR languages.
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64.51% for the 2B model, and 51.29% for the 4B model When evaluated on BC-Transcoder, we find that LR perfor-
when compared to the same sized models trained on the mance increased with size. When the source language is
natural distribution. Unlike BC-HumanEval, training the C++, training on the Unimax distributions yielded an aver-
4B on Unimax Distributions yielded better average HR per-  age pass@25 improvements of 7.57%, 6.76%, and 11.80%
formance with an increase of 6.80%. As shown in[Figure 6]  for the 1B, 2B, and 4B models, respectively. Translating
training a 4B model on the Unimax 2 distribution had a Python to other languages followed this trend with an av-
mean pass@25 improvement of 71.59% in LR languages erage change of -26.04%, 15.1%, and 22.47% for the 1B,
and an improvement of 20.31% on HR languages when com- 2B, and 4B models, respectively. On BC-Transcoder, we
pared to the natural distribution. Training on other Unimax  find similar benefits when translating from Python to other
distributions does not see as large of improvements. For  languages, although the performance on higher resource
the 4B model, we find mean LR improvements of 42.39%,  languages is significantly worse. When translating from
52.91%, and 38.26% when trained on the Unimax 1, 3, and C++ to other languages, we find that training both a 1B and
4 distributions, respectively. This indicates that for TP3, 2B model on the UM 4 distribution improves performance
at least, balancing the training data for each language im-  on 5 of the 7 LR languages. For 4B sized models, the UM
proves translation capabilities. However, less Python data 2 distribution is optimal as LR performance increased by
adversely affects understanding the source code necessary  an average of 20.47% when compared to training on the
to translate it properly. natural distribution. As the source code of BC-Transcoder
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focuses on language-agnostic algorithm implementations,
this scaling trend is most likely due to the importance of a
surface-level understanding of the target language. Further,
the fact that this trend does not appear for BC-HumanEval or
TP3 indicates that neither model size nor duplication of lan-
guage data enables the model to have a deep understanding
of these low-resource languages.

5.3. Effects Of Language Balance on Predictions

We find that, as is expected, decreasing the number of to-
kens for a language negatively impacts its performance on
that language. To compare the overall effects of language
balancing at each size, we focus on the Unimax 1 and Uni-
max 2 distributions as they represent the largest change in
proportions of HR languages when compared to the Nat-
ural distribution. shows that on BC-HumanEval,
training on either UM 1 or UM 2 will cause the model to
generate fewer correct solutions than when the model is
trained on the Natural distribution with respect to HR lan-
guages. However, this is not due to those models generating
more programs with either compilation or run-time errors
as the raw average increase is only 0.40 and 1.15 for the
models trained on the Unimax 1 and Unimax 2 respectively.
Rather, we find that the largest decrease is in the mean % test
cases passed per problem. Training on the Unimax 1 and
Unimax 2 distributions results in 5.50% and 9.09% fewer
test cases respectively when compared to the model trained
on the natural distribution.

On LR languages, the Unimax 1 distribution yielded the best
improvements compared to the other distributions. Specifi-
cally, the programs generated by the model trained on the
Natural distribution passed, on average, 5.13% of the test
cases per problem. In comparison, 9.53% and 10.48% of
average test cases per problem were solved by the models
trained on the Unimax 1 and Unimax 2 distributions. The
less than 1% improvement when going from Unimax 1 to
Unimax 2 suggests that, for generation tasks, multi-lingual
models of code benefit the most from seeing unique data.

In our translation task of TP3, we observe consistent im-
provements in the mean number of test cases passed for
both HR and LR languages. For the former, we observe an
average improvement of 2.58% and 3.06% compared to the
Natural distribution for the UM 1 and 2 distributions respec-
tively. On LR languages, we find average improvements of
3.40% and 4.99% over the Natural distribution for the UM
1 and UM 2 distributions respectively. These results, along
with the performance improvements discussed in
tion 5.2} indicate that translation tasks benefit highly from
uniformly balanced languages. This is, likely, due to the
task formulation where natural language understanding is
not necessary. Higher resource languages are more likely to
contain diverse natural language and code pairs due to the

language’s popularity.

Thus, performance on NL2Code tasks, such as BC-
HumanEval, depends on the unique samples of code and
doc-strings in the training corpus. Translation, on the other
hand, does not have this constraint. Rather, it appears that
uniformly balancing languages is the optimal strategy for
this task.

6. Related Works

Code Evaluation Existing code benchmarks have primar-
ily focused on surface matching evaluation (Lu et al., 2021}
Yin et al., 2018 'Wang et al., 2022b; |Husain et al.| [2019).
Recent works have introduced new execution-based bench-
marks for both generation (Austin et al., [2021; Hendrycks
et al.,[2021} |Chen et al.} 2021} [Lai et al., |2022)) and repair
(Yasunaga & Liang,|2021)) tasks, however, these have been
limited to only Python. Additional works have introduced
generation (Li et al.,|2022) and translation (Roziere et al.,
2020) tasks in multiple-languages, but are limited to only
C++, Java, and Python. We acknowledge concurrent works
by Cassano et al.|(2022) and |Athiwaratkun et al.| (2023)) on
translating HumanEval and MBPP into multiple program-
ming languages. As we note in[subsection 2.2] BabelCode
supports deeper analysis on a wider range of tasks while
including significant methods for ensuring correctness.

Code LLMs Recent years has seen significant interest in
LLMs for code. CodeBERT (Feng et al., [2020) is the first
work to train an encoder only model on code. CodeT5
(Wang et al.| [2021), PLBART (Ahmad et al., 2021}, and
additional works (Clement et al.l [2020; |Orlanski & Gittens,
2021}; |Chakraborty et al.| |2022)) examine training encoder-
decoder models on code. Similar to this work, /Ahmad et al.
(2021)) investigate difference data balancing strategies for
pre-training. Our work differs in that we focus on balancing
many programming languages in pre-training data. Alpha-
Code (L1 et al.l 2022), Codex (Chen et al.| [2021)), PaLM
(Chowdhery et al.,[2022), and other works (Nijkamp et al.,
2022; [Fried et al.} 2022 |Allal et al., 2023; |Christopoulou
et al.,[2022)) have shown that decoder-only code language
models achieve exceptional performance on a wide range of
tasks. Additional works have investigated different training
strategies (Roziere et al.| 2020} |Bavarian et al.,|2022) and
different pre-training data (Roziere et al., 2021} |Orlanski
et al.l [2022; |Austin et al.| 2021).

Language Balancing Choosing a proper sampling distribu-
tion from a mixture of datasets of various size is a difficult
problems. Initial attempts at studying this in the multilingual
natural language processing literature relied on temperature-
based approaches (Conneau et al., 2019; |Arivazhagan et al.|
2019). These approaches oversample the low-resource tasks
and downsample the high-resource ones. Other works have
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Figure 7. Results on BC-HumanEval and BC-TP3 at a prediction level. Left to right: 1) The % of predictions that passed at least one test,

but not all 2) The average, per question, percent of tests passed for each prediction 3) The % of predictions that had either a compilation

error, runtime error, or timed out. Full results for BC-HumanEval and BC-TP3 can be found in [Figure 9|and [Figure 10} respectively.
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adopted more dynamic approaches, adapting the sampling
rates in an online fashion during training 2020).

7. Conclusion

We proposed the BabelCode framework for multi-lingual
execution-based evaluation and a new strategy for balancing
programming language distributions. We highlight the ease
of creating new benchmarks with BabelCode by proposing
the Translating Python Programming Puzzles. Our experi-
ments demonstrate that adjusting how much we oversample
low-resource languages and downsample high-resource lan-
guages greatly improves low-resource performance with
minimal impact to to the performance of high-resource lan-
guages in tasks involving either a single or multiple pro-
gramming language. By open-sourcing BabelCode, future
work can investigate improved balancing strategies along
with new multi-lingual programming language questions.
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A. BabelCode Design

Figure 8. Sample problem translated from Python to C++ using BabelCode

Translate The Question (C++) Generate The Testing Code

Bold values are Jinja template inputs

Inputs: bool validateSolution(
= GIFF = Sl return_type actual,
ol -d = ,{(ﬁlz true}}’ ™) return_type expected
’
Outputs: '1.0' ‘ evaluation function
string driver(
signature,
. return_type expected
Input Question Parse The Schema .
ry
Function Name: 'fSol' if (validateSolution
Solution: Parameters: . . Parameters: ¢ fSol(paranms), {
def f_sol(arr: List[int], d): - arr = "list<integer>" - 'arr' expected
- d = "map<string;boolean>" _ g ){
ST return "PASSED";
Lo i 3
lgigiion([l] £ True})==1.0 Retunn=sla L - 'vector<int> arr' return "FAILED";
8 ==1. . o i !
! Evaluation Method: "float" map<st_r1pg, b0?l> d catch (const std::exception& e)
Return Type: 'float
return typeid(e).name();
}
int main
float fSol( For each test_case do:
vector<int> arr, result = driver(test_case);

cout << "TEST-" << test case.idx << "..."
"\n';

map<string, bool> d

) {

<< result <<

n() {
Generated Signature: Seil) (GRS S S

return 0;

BabelCode’s design shares many similarities to[Athiwaratkun et al.| (2023) and [Cassano et al.|(2022)). For translation, we too
implement a recursive visitor pattern to translate input and output values to the corresponding code in the target language.
When converting a coding dataset, we follow prior works by parsing assert statements using AST parsing libraries to
determine the inputs and outputs for a given question. To find the function name for a problem, we once again use AST
parsers to find the function definition located in the ground truth solution. The found tree is additionally used for parsing
the argument names and types. If the types for either the arguments or returns do not exist, we infer them based on the
types found from the literal values of the inputs and outputs. While our implementation differs, the overall process is
similar to [Athiwaratkun et al.| (2023) and [Cassano et al.| (2022)). Following [Cassano et al.| (2022)), we execute the generated
code through the command line using each language’s recommended commands to compile and run a given script. As
[Athiwaratkun et al.| (2023)) is not open sourced, we cannot compare the similarities of this portion.

B. Dataset Changes
B.1. Incompatible Problems

def encode_cyclic(s: str):
nmmwn

returns encoded string by cycling groups of three characters.

nmmwn

# split string to groups. Each of length 3.

groups = [s[(3 * i):min((3 * 1 + 3), len(s))] for i in range((len(s) + 2) // 3)]

# cycle elements in each group. Unless group has fewer elements than 3.

groups = [(group[l:] + group[0]) if len(group) == 3 else group for group in groups]
return "".join (groups)

def decode_cyclic(s: str):
return encode_cyclic (encode_cyclic(s))

from random import randint, choice
import string

letters = string.ascii_lowercase

for _ in range(100) :
str = '’ .join(choice (letters) for i in range(randint (10, 20)))
encoded_str = encode_cyclic(str)
assert decode_cyclic(encoded_str) == str

12
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B.2. Changes To HumanEval

Original:
| def reverse_delete(s,c):
2 nmmwn Ta S k
3 We are given two strings s and c, you have to deleted all the characters in s that are

equal to any character in c

4 then check if the result string is palindrome.
5 A string is called palindrome if it reads the same backward as forward.
6 You should return a tuple containing the result string and True/False for the check.
7 Example
8 For s = "abcde", ¢ = "ae", the result should be ('bcd’,False)
9 For s = "abcdef", ¢ = "b" the result should be (’acdef’,False)
10 For s = "abcdedcba", ¢ = "ab", the result should be (’'cdedc’,True)
11 nmmwn
12 s = '’ .join([char for char in s if char not in c])
13 return (s,s[::-1] == s)
14
15 assert reverse_delete(’abcde’, "ae’) == ('bcd’, False)
16 assert reverse_delete(’abcdef’, 'b’) == ("acdef’, False)
17 assert reverse_delete (' abcdedcba’, "ab’) == (’'cdedc’, True)

Modified:

def reverse_delete(s,c):

nmmwn Ta S k

W =

We are given two strings s and c, you have to deleted all the characters in s that are
equal to any character in c

4 then check if the result string is palindrome.

5 A string is called palindrome if it reads the same backward as forward.

6 You should return a two element list containing the result string and "True" if the
check passed, otherwise "False".

7 Example

8 For s = "abcde", ¢ = "ae", the result should be ('bcd’,False)

9 For s = "abcdef", ¢ = "b" the result should be (’acdef’,False)

10 For s = "abcdedcba", ¢ = "ab", the result should be (’'cdedc’,True)

1 wwn

12 s = '’ .join([char for char in s if char not in c])

13 return [s,str(s[::-1] == s)]

14

15 assert reverse_delete(’abcde’, ’"ae’) == ['bcd’, "False’]

16 assert reverse_delete(’abcdef’, ’'b’) == ["acdef’, '"False’]

17 assert reverse_delete (’abcdedcba’, "ab’) == ['cdedc’, "True’]

B.3. Changes To Transcoder

Original:
I int difference_between_highest_and_least_frequencies_in_an_array ( int arr [ ], int n ) {
2 sort ( arr, arr + n );
3 int count = 0, max_count = 0, min_count = n;
4 for ( int i = 0;
5 i< (n-1);
6 i ++ ) {
7 if (arr [ 1 ] == arr [ 1 + 1 1 ) {
8 count += 1;
9 continue;
10 }
11 else {
12 max_count = max ( max_count, count );
13 min_count = min ( min_count, count );
14 count = 0;

13
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return ( max_count - min_count );
}
Modified:
int difference_between_highest_and_ least_frequencies_in_an_array (vector<int> arr,
sort (arr.begin(), arr.end());
int count = 0, max_count = 0, min_count = n;
for ( int i = 0;
i< (n-1);
i+ ) {
if (arr [ 1 ] == arr [ 1 + 1 1 ) {
count += 1;
continue;
}
else {
max_count = max ( max_count, count );
min_count = min ( min_count, count );
count = 0;
}
}
return ( max_count — min_count );
}
B.4. TP3 Examples
def sat (inds: List[int], string):

return inds

== sorted (inds)

and '’ .join((string[i]

for i in inds))

assert sat([-10, -5, -1, O, 2, 2, 3, 4, 7, 8, 12], ’'enlightenment’) == True
assert sat([-11, -10, -8, -6, -4, -4, -3, -2, -1, 1, 3], ’"inntGetlige’) == True
assert sat([-10, -5, -1, O, 2, 2, 3, 4, 7, 8, 12], ' einlidSgeteq ne CAlti’) ==

C. Training Languages

int n)

== ’intelligent’

False

{

Table 3. Languages used for training and the extensions we used to filter files. The percentages of the data are calculated after caching and

postprocessing using SeqlO.

Language Extensions % Of Data
C# .cs, .cake, .csx, .linq 0.49%
Cat .cpp. .c+-|.-, .cg, .cp,. .cxxj .h, .h++, .hh, 16.68%
.hpp, .hxx, .inl, .ino, .ipp, .ixX, .re, .tcc, .tpp
Dart .dart 1.85%
Go .go 3.09%
Haskell .hs, .hs-boot, .hsc 0.02%
Java Jjava, .jav, .jsh 36.95%
JavaScript .js, .Cjs, .mjs 3.31%
Julia gl 0.03%
Lua Jua 1.39%
.php, .aw, .ctp, .fcgi, .inc, .php3,
PHP .php4, .php5, .phps, .phpt 14.05%
Python Py, -py3, -pyi, .pyw, .pxi 16.80%
R I, .rd, .rsx 0.11%
Rust IS, .18.1n 0.93%
TypeScript .ts, .cts, .mts 4.28%

14
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D. Training Objective

This paper uses a variant of the UL2 objective (Tay et al.|[2022) for training the code language models. The UL2 objective
consists of a mixture of span corruption and prefix language modeling objectives, as defined in Raffel et al|(2020). In this
work, we select two span corruption instances using the implementation provided in the TS library. E] The only differences
between these two instances consist of different values for the noise_density and mean_noise_span_length
arguments. In particular, we use (3.0, 0.15) and (32, 0.5) for the (noise_density, mean noise_span_length)
arguments for each span corruption instance respectively.

The prefix language modeling objective randomly breaks text into two pieces, and the model is tasked to reconstruct the
latter, given the former. Finally, we add an additional objective which consists of causal language modeling, which can be
considered a special case of prefix language modeling; the first piece consists of the empty string. We assign the probabilities
10%, 10%, 20%, and 60% for each objective, respectively.

E. Prompts Used

E.1. Generation Tasks

You are an expert {{ Language }} programmer, complete the implementation.
Solution in {{ Language }}:
[BEGIN]

{{ Signature With Docstring }}

Each {{...}} represents a field that is filled in.

Example from HumanEval for generating C# code:

You are an expert C# programmer, complete the implementation.
Solution in C#:
[BEGIN]

class Solution {

/ x %
* Return length of given string
* >>> GetStringLength ("")
* 0
* >>> GetStringLength ("abc")
* 3
*/

public int GetStringLength (string s) {

E.2. Translation Tasks

Translate the following {{ Source Language }} program to {{ Target Language }}:
Input:

{{ source Code }}

{{ Target Language }} Translation:
[BEGIN]

{{ Target Signature }}
Each {{...}} represents a field that is filled in. The {{fields}} correspond to the source language we are translating
from, while {{fields}} correspond to the target language to translate too.

Example For TP3 translation from Python to Haskell:

Translate the following Python program to Haskell:
Input:

>See https://github.com/google-research/text-to-text-transfer-transformer/blob/main/t5/data/preprocessors.py#L.1923

15
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def sat(i: int) —-> bool:
return i % 123 == 4 and 1 > 10 xx 10

Haskell Translation:
[BEGIN]

sat :: Integer -> Bool
sat i =

Figure 9. Qualitative Comparison of the 4B model trained on the Natural, the Unimax 1, and Unimax 2 distributions when evaluated on

BC-HumanEval. The results can be found in[Table 16 and [Table 171
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Figure 10. Qualitative Comparison of the 4B model trained on the Natural, the Unimax 1, and Unimax 2 distributions when evaluated on
TP3. The results can be found in [Table 18] and [Table 191
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F. Full Results

Table 4. BC-HumanEval pass@1 values for the different models and training distributions. Used 7" = 0.8 and sampled 200 programs per
problem. UM is Unimax distribution. PaALM-C is the PaLM-Coder distribution. HS is Haskell, JS is JavaSript, Py is Python, and TS is
TypeScript.

Size Dist. C# C++ Dart Go HS Java JS Julia Lua PHP Py R Rust TS
Nat 10 36 23 25 07 38 36 05 18 28 48 05 16 40
UM 1 1.7 30 30 26 13 28 40 21 22 25 39 12 28 44

1B UM2 20 32 30 27 16 27 39 21 21 23 42 14 31 4.3
UM 3 1.6 1.5 26 26 14 28 40 25 22 22 40 18 26 4.1
UM 4 7 27 31 29 15 28 37 26 22 22 35 21 25 41
Nat 26 75 50 54 10 80 76 12 45 62 91 14 39 79
UM 1 53 60 61 51 19 66 76 44 54 56 78 21 64 175
2B UM2 52 6.1 56 45 21 57 64 45 52 48 70 28 58 70
UM 3 55 62 52 47 24 62 68 51 49 48 75 35 6.1 7.0
UM 4 49 6.1 54 47 29 57 65 46 48 46 75 33 56 7.1
Nat 99 127 87 82 1.8 135 123 47 86 101 146 30 87 11.7
UM 1 80 113 92 75 31 116 116 66 92 84 107 35 95 11.7
4B UM2 89 11.1 93 70 36 102 113 68 87 84 119 40 107 113
UM 3 92 99 90 76 45 105 123 89 92 96 112 45 106 11.6
UM 4 104 112 89 77 50 105 106 79 92 80 100 51 110 11.0
PaLM 22 33 25 21 01 25 4l 01 22 26 36 02 10 42
PaLM-C | 26 44 32 33 03 39 58 01 37 49 81 04 15 56
PaLM 59 65 39 53 03 69 85 07 68 62 91 15 18 79
PaLM-C | 76 96 57 66 08 104 107 14 75 72 110 19 35 97

8B

62B

17
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Table 5. BC-TP3 pass@1 values for the different models and training distributions. Used 7" = 0.8 and sampled 50 programs per problem.
Nat is the natural distribution. UM is Unimax distribution. PaLM-C is the PaLM-Coder distribution. HS is Haskell, JS is JavaSript, Py is
Python, and TS is TypeScript.

Size Dist. C# C++ Dart Go HS Java JS Juia Lua PHP R Rust TS

Nat 05 1.1 06 10 00 1.7 12 01 02 06 00 06 21
UM 1 01 02 01 05 02 03 07 01 01 01 00 03 07
1B UM 2 03 0.1 01 03 01 04 1.3 03 00 01 00 04 1.0
UM 3 02 0.1 01 03 02 07 1.1 0r 00 00 00 03 07
UM 4 02 03 04 03 08 06 1.1 07 01 02 00 07 21
Nat 1.0 22 13 19 08 29 41 03 01 28 04 22 31
UM1 13 07 07 07 05 19 10 03 03 12 01 1.1 0.4
2B UM 2 1.9 21 28 09 10 27 68 06 02 40 01 18 54
UM 3 1.1 04 02 04 08 19 36 03 0.1 1.7 04 06 1.0
UM 4 32 18 24 27 15 37 55 21 05 28 04 29 41
Nat 59 65 5 39 13 94 109 35 09 104 06 38 73
UM 1 5.8 6.1 78 57 17 77 135 59 42 86 12 58 96
4B UM 2 7.1 4.1 6.1 44 27 83 11.7 61 31 98 13 62 7.7
UM 3 87 58 71 36 26 78 121 29 13 95 21 69 111
UM 4 50 48 57 40 19 68 94 24 13 43 22 63 73
PalLM 1.7 46 49 48 03 26 74 03 29 64 01 22 69
PaLM-C | 34 52 48 42 01 47 86 04 36 77 02 24 73
PaLM 70 79 66 61 13 79 118 13 62 122 10 36 120
PaLM-C (84 83 76 66 15 99 142 16 80 141 26 40 127

8B

62B

Table 6. BC-Transcoder with Python source pass@1 values for the different models and training distributions where the source language
is Python. Used T' = 0.8 and sampled 50 programs per problem. Nat is the natural distribution. UM is Unimax distribution. PaLM-C is
the PaLM-Coder distribution. HS is Haskell, JS is JavaSript, Py is Python, and TS is TypeScript.

Size Dist. C# C++ Dart Go HS Java JS Julia Lua PHP R Rust TS

Nat 1.7 2.1 04 1.3 02 22 20 0.1 06 08 02 10 20
UM 1 0.1 0.1 00 04 02 03 05 00 00 01 O1 08 08
IB UM2 03 0.1 0r 03 04 06 13 02 00 01 02 07 1.1
UM 3 04 03 00 01 03 05 09 01 00 01 02 07 07
UM 4 03 02 02 01 12 06 1.1 02 0.1 04 03 09 1.3
Nat 29 55 10 44 10 49 82 03 04 38 13 35 52
UM 1 29 26 08 12 09 38 25 0.1 0.4 1.5 08 1.8 1.0
2B UM2 44 56 39 32 15 49 1001 10 03 36 23 32 59
UM 3 2.1 10 03 03 14 30 39 00 01 1.7 05 12 1.5
UM 4 48 47 29 35 17 48 84 27 25 26 24 40 57
Nat 237 284 68 117 23 295 279 17 24 234 28 83 153
UM 1 16.7 237 97 186 24 186 353 36 81 208 26 127 224
4B UM2 160 161 84 150 33 16.6 262 5.1 53 174 50 113 174
UM 3 21.8 306 125 146 35 232 371 09 35 203 6.1 170 282
UM 4 145 176 36 130 14 149 266 20 45 50 36 145 147
PalLM 29 11.8 47 73 09 43 163 0.1 5.1 88 1.7 32 116
PaLM-C | 85 108 53 86 1.1 89 242 10 94 137 20 40 143
PalLM 214 291 73 178 19 177 356 34 169 256 43 73 293
PaLM-C | 287 330 96 214 22 236 384 42 221 324 81 73 296

8B

62B
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Table 7. BC-Transcoder with C++ Source pass@1 values for the different models and training distributions. Used 7' = 0.8 and sampled
50 programs per problem. Nat is the natural distribution. UM is Unimax distribution. PaLM-C is the PaLM-Coder distribution. HS is
Haskell, JS is JavaSript, Py is Python, and TS is TypeScript.

Size Dist. C# Dart Go HS Java JS Julia Lua PHP Py R Rust TS
Nat 3.0 01 26 23 01 03 1.0 1.8 01 06 3.7
UM 1 0.4 09 02 1.1 .1 00 01 08 23 02 08 1.9
1B UM2 16 05 04 11 27 00 00 1.1 1.5 01 07 1.9
UM 3 19 16 08 04 16 29 00 00 07 23 01 1.1 1.5
UM 4 1.3 3.7 13 17 30 02 05 24 18 03 16 37
Nat 89 133 1.2 92 160 03 1.5 124 112 14 46 121
UM 1 41 79 34 14 67 62 02 21 50 68 05 36 43
2B UM2 8.6 18.1 26 94 202 04 21 173 84 12 54 152
UM 3 46 120 40 21 46 129 05 20 82 77 11 24 103
UM 4 77 151 59 30 71 144 19 20 96 55 12 54 130
Nat 345 173 206 32 376 329 33 69 340 31.7 25 103 292
UM 1 270 183 235 37 279 412 1.6 99 345 313 26 143 331
4B UM2 19.3 21.1 187 44 220 341 43 64 265 252 40 122 242
UM 3 31.5 208 160 46 323 426 1.0 7.0 399 335 50 164 402
UM 4 250 155 164 31 211 319 13 61 97 204 26 11.6 287
3B PalL.M 17.5 16.0 . 1.3 149 281 07 85 212 148 1.1 50 218
PaLM-C | 204 153 112 14 209 308 06 121 265 232 1.1 53 220
62B PaLM 273 179 206 26 240 424 65 163 413 267 43 86 373
PaLM-C | 357 174 221 3.0 303 443 85 197 46.6 424 89 94 407

Table 8. BC-HumanEval pass@100 values for the different models and training distributions. Used 7" = 0.8 and sampled 200 programs
per problem. Nat is the natural distribution. UM is Unimax distribution. PaALM-C is the PaLM-Coder distribution. HS is Haskell, JS is

JavaSript, Py is Python, and TS is TypeScript.

Size Dist. C# C++ Dart Go HS Java JS Julia Lwva PHP Py R  Rust TS
Nat 73 232 144 149 24 243 190 44 98 171 233 4.0 139 224
UM 1 123 162 140 120 75 173 182 130 131 150 199 79 145 178
1B UM2 145 169 138 119 83 196 191 158 135 148 21.2 104 165 19.1
UM 3 137 135 134 154 100 214 184 142 128 146 21.1 104 160 18.6
UM 4 158 166 138 123 97 197 181 166 143 153 206 10.6 159 19.6
Nat 179 378 213 278 49 378 368 9.7 233 353 388 109 265 379
UM 1 285 318 246 262 122 320 338 238 229 293 309 140 299 349
2B UM2 30.6 30.8 25.8 226 129 321 321 265 219 274 335 158 274 33.0
UM 3 319 33.0 239 259 137 314 341 265 253 295 315 185 287 348
UM 4 305 304 267 249 128 313 33.0 290 232 265 346 162 28.0 34.6
Nat 479 51.1 396 379 125 534 53.0 270 387 485 529 167 434 50.7
UM 1 424 466 423 383 146 506 479 338 420 440 462 20.1 446 50.6
4B UM2 443 412 406 349 160 409 442 359 388 42.0 489 241 431 446
UM 3 448 444 433 373 213 499 508 400 432 458 488 279 498 515
UM 4 479 435 377 36.1 203 46.1 473 391 422 417 463 234 448 46.1
3B PalL.M 16.8 197 147 143 1.1 199 209 20 132 178 21.0 29 96 225
PaLM-C | 27.1 30.1 194 209 25 298 31.0 24 207 296 395 73 134 325
62B PalL.M 439 408 269 314 69 483 462 83 364 41.6 447 138 243 446
PaLM-C | 492 500 376 387 9.0 570 567 121 41.1 469 64.1 169 31.7 548

19
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Table 9. BC-TP3 pass@25 values for the different models and training distributions where the source language is Python. Used 7" = 0.8
and sampled 50 programs per problem. Nat is the natural distribution. UM is Unimax distribution. PaLM-C is the PaLM-Coder
distribution. HS is Haskell, JS is JavaSript, Py is Python, and TS is TypeScript.

Size Dist. C# C++ Dart Go HS Java IS Julia Lua PHP R Rust TS

Nat 82 165 9.6 146 03 234 138 1.1 37 106 0.8 10.6 1938
UM 1 23 32 28 90 26 65 93 2.0 1.1 1.6 02 55 98
1B UM 2 52 1.3 1.7 54 17 82 98 43 1.2 1.1 04 62 113
UM 3 45 21 23 44 37 126 116 12 04 04 0.1 54 9.2
UM 4 34 46 59 52 54 108 114 8.6 1.7 46 07 83 170
Nat 83 182 83 11.1 57 245 244 38 14 183 34 153 157
UM 1 158 119 63 87 52 232 109 54 46 11.1 21 137 4.6
2B UM 2 207 200 19.1 11.7 69 263 329 8.1 32 206 1.7 18.6 278
UM 3 169 7.7 44 77 59 212 257 53 23 162 44 112 139
UM 4 243 188 153 140 96 321 281 139 39 173 35 218 215
Nat 29.1 319 166 146 7.7 422 395 173 119 401 37 241 329
UM 1 289 300 300 220 88 37.6 492 225 182 40.7 69 325 417
4B UM 2 355 31.0 302 237 130 437 495 246 173 46.1 106 373 39.0
UM 3 352 248 255 162 130 343 419 164 119 337 106 352 388
UM 4 255 297 239 195 121 385 405 186 83 267 9.8 328 29.0
PalLM 194 226 190 172 28 267 266 40 170 317 19 107 259
PaLM-C | 259 262 179 167 20 301 341 59 226 403 32 11.8 293
PalLM 389 352 272 248 6.1 430 484 106 283 482 7.2 18.0 426
PaLM-C | 41.8 387 312 267 72 452 558 113 338 565 114 205 487

&B

62B

Table 10. BC-Transcoder pass@25 values for the different models and training distributions where the source language is Python. Used
T = 0.8 and sampled 50 programs per problem. Nat is the natural distribution. UM is Unimax distribution. PaLM-C is the PaLM-Coder
distribution. HS is Haskell, JS is JavaSript, Py is Python, and TS is TypeScript.

Size Dist. C# C++ Dart Go HS Java ]S Julia Lua PHP R Rust TS

Nat 140 184 54 103 21 173 153 28 74 87 29 103 144
UM 1 3.1 1.3 1.1 57 33 49 55 0.9 1.0 1.3 1.8 67 7.6
IB UM2 43 27 22 35 39 82 110 33 04 29 26 69 104
UM 3 58 5.1 08 21 39 68 94 1.7 09 12 26 63 72
UM 4 5.1 38 26 1.0 66 7.6 114 26 1.3 54 36 7.8 106
Nat 209 347 110 175 63 300 370 50 59 294 7.6 119 243
UM 1 214 223 108 125 52 277 230 25 56 159 64 152 109
2B UM2 294 36.1 207 200 69 315 436 9.1 42 287 58 193 29.1
UM 3 186 128 41 49 78 226 290 0.7 1.7 149 56 13.0 139
UM 4 283 297 191 182 9.0 300 399 120 122 217 7.6 201 272
Nat 684 825 340 455 9.0 802 776 135 237 759 1277 384 66.1
UM 1 59.8 758 402 562 11.6 705 806 160 379 738 113 539 745
4B UM2 58.6 667 369 571 142 644 764 212 31.1 693 19.7 512 68.0
UM 3 64.6 772 391 502 145 734 790 84 248 69.1 21.8 589 748
UM 4 593 725 254 515 114 650 727 137 271 472 194 542 628
PaLM 26.8 486 21.0 2777 3.6 297 518 25 224 442 59 150 421
PaLM-C | 44.0 520 267 296 54 459 656 90 397 580 97 175 544
PalLM 70.6 785 327 509 84 651 803 156 534 794 17.1 275 76.6
PaLM-C | 77.1 837 398 574 88 722 826 203 622 840 237 266 793

8B

62B
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Table 11. BC-Transcoder pass@25 values for the different models and training distributions where the source language is C++. Used
T = 0.8 and sampled 50 programs per problem. Nat is the natural distribution. UM is Unimax distribution. PaALM-C is the PaLM-Coder
distribution. HS is Haskell, JS is JavaSript, Py is Python, and TS is TypeScript.

Size Dist. C# Dart Go HS Java JS Julia Lua PHP Py R Rust TS

Nat 242 224 104 15 212 220 19 47 149 154 23 64 279
UM 1 81 214 8.1 26 144 123 06 25 120 124 24 76 162
1B UM 2 163 182 57 35 139 160 03 05 128 104 12 67 146
UM 3 219 185 83 39 175 177 02 02 91 132 16 76 164
UM 4 170 237 103 7.0 180 176 34 47 183 119 35 88 179
Nat 386 297 196 6.6 452 499 55 125 487 405 75 149 451
UM 1 309 265 193 7.6 388 330 32 114 351 318 38 169 28.0
2B UM 2 403 273 180 98 461 504 53 109 528 344 45 161 484
UM 3 341 284 189 99 339 445 64 122 359 341 53 147 405
UM 4 413 299 255 122 41.1 492 144 122 413 301 72 195 445
Nat 713 332 607 107 819 773 208 363 805 799 133 384 76.0
UM 1 69.6 381 639 127 779 778 16.1 38.6 764 747 120 525 765
4B UM 2 663 370 608 153 738 776 273 334 710 735 187 50.7 752
UM 3 752 348 544 143 783 790 12.1 348 77.6 767 209 564 794
UM 4 70.7 33.0 59.7 150 737 741 143 337 61.1 728 16.1 470 747
PalLM 505 31.7 321 45 480 605 85 244 622 423 51 158 582
PaLM-C | 548 347 379 53 605 689 78 396 68.6 643 49 203 653
PalLM 72.0 358 552 84 747 774 230 513 825 73.0 168 259 754
PaLM-C | 76.2 415 589 84 795 809 31.6 565 843 831 235 275 784

8B

62B
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Table 12. % changes in passQk compared to the models trained on the natural distribution for High Resource languages. For BC-
HumanEval(HE), k£ = 100. For BC-TP3(TP3), BC-Transcoder Python(TC-Py), and BC-Transcoder C++(TC-C++), k = 25. The cells
represent the worst value for that language for that size and dataset. The cells represent the best value for that language for that size and
dataset.

DS Size Dist. | Java Python C++ PHP TS IS Go | Mean
UM 1 303 -12.4 41 -19.6
g UM2 134 -147 -20.1
UM 3 . VTARSYYE 167 -3.3
UM 4 -5.1
UM 1 159 -17.1
UM 2 SEYRYY 127 -127 -186 -162
HE 2B M3 8.0 6.7
UM 4 SRR 86  -104 -104
UM 1 2.6 .
45 UM2 -19.5 119 -164  -80  -14.3
UM 3 . . -13.1 1.7
UM 4 -14.9 9.0 -10.6 -47
N/A  -80.5 -848 -50.8 59.9
N/A 898 -43.1 -288 -62.7
N/A 962  -53.5 69.8
N/A
N/A 394 704 -55.4
N/A 54
TP3 N/A 116 -11.0 55 [EDR
NA 31 56 373 153 17.9
NA 58 14
N/A 18.6
NA BERRN -162 180 62 IR
/N 334 -118 26
N/A  -19.1 -41.9 [JEVE
NA  -13.6 BFGER 276 A
N/A
NIA
N/A 0 -378 -338
N/A -8.0
TC-Ca+ N/A 262 -10.1 -109 -33
N/A  -152  -14  -13
N/A 52 07 06
N/A  -118  -1.0 04
N/A
I 241 -7 -4l
UM 1 N/A 854 473
g UM2 N/A  -852 -668 279 279 -66.1
UM 3 N/A 865 -49.9 ERIKIEEEIN)
UM4 | 560 N/A  -79.1 -90.3
UM 1 N/A 358  -45.7 ERKOEERN)
UM 2 N/A
TC-Py 2B M3 NA BEERITYN 107 217
UM4 | 0. N/A  -146 259 120 7.6
UM | -i121  NA 8.1
UM 2 N/A
B UuMm3 N/A
UM 4 N/A
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Table 13. % change of pass@k compared to the models trained on the natural distribution for low resource languages languages. For
BC-HumanEval(HE), k = 100. For BC-TP3(TP3), BC-Transcoder Python(TC-Py), and BC-Transcoder C++(TC-C++), k = 25. The
cells represent the worst value for that language for that size and dataset. The cells represent the best value for that language for that size

and dataset.

DS Size Dist. | Dart Lua  Rust C# R Julia HS | Mean
UM 1 33.8 68.5 100.0 191.9 205.9 86.0
B UM 2 38.3 254.7 238.7
UM 3 2184
UM 4 294.5
UM 1 . 59.4 28.6 145.2 147.7
UM 2 -59 34 71.2 449 172.9 161.5
HE 2B UM 3 8.2 173.5
UM 4 04 5.6 70.8 48.6 160.5
-11.5 20.4 25.3 16.8
AB UM 2 0.2 -0.6 -7.5 44.0 329 27.6
UM 3 -6.5
UM 4 9.0 3.2 40.3 44 .8 62.2
UM1 | -71.1 -70.0  -48.4 -72.0 X3 80.5 660.5 58.4
B UM 2 -82.1 -69.1 -41.6 -50.0  297.0
UM 3 891 -49.1 EEE 992.0
UM 4
UM 1 10,1 381 402 PR
UM 2 128.3 22.0 I 109.9 21.6
TP3 2B UM 3 -46.8 63.5 -26.4 3.5
UM 4 85.7 172.4 4.2
UM | 803 349 EEEM 556 13.9
g M2 187.5
UM 3 0.1 46.2 20.7 5.2
UM 4 36.1 7.3
UM 1 -47.2 18.3 -66.7 . -69.8
UM 2 337 [EE Ty 848 1304
B ums SOl 157.1

TC-C++ 2B

UM 4

UM 2
UM 3

-8.4
. -12.5
-4.5

13.8 -20.1 -49.6 -41.9 14.9
8.6 4.2 -40.6 34 47.6
-1.2 -11.9 -29.8 17.7 48.6

36.6 2.4 [JEOX) 18.5

g M2 114 EEEE 319 IRE ’
UM3 | 48 -4l -42.1 XK
UM 4 71 2y 08 212 312 405 6.3
UM1 | -798 -86.1 -349 IEEIEEEECEIER

g UM2 | -60.0 333 -69.6 -10.9 83.7

TC-Py 2B

4B

UM 3
UM 4

UM2

-9.0 -39.7

=17

83.0

27.8 23
62.2

-16.5
-23.4

UM 3 -62.2 -72.1 9.3 -10.9 -25.9
3.

UM 2
UM 3
UM 4

8.5 31.4
15.0 4.7
RWN  14.4

403  -12.5 BEWAE 18.4 28.7

33.1  -143 58.0

-38.0
-13.3 52.0 . 26.7

41.0
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Table 14. Number of Questions passed for BC-HumanEval(HE) and TP3. BC-HE has 161 total problems and TP3 has 370 total problems.
S is the size of the model, and D is the distribution it was trained on. P is the PaLM distribution while PC is the PaLM-Coder distribution.
Languages are sorted from high to low resource. Green values are the best values for that language, while red values are the worst.

N S D ‘Java Py C++ PHP TS JS Go Dart Lua Rust C# R Julia HS

N 46 44 44 32 4 38 31 28 27
Ul 32 30 36 23 27 24 26 17 23 13
IB U2 | 38 39 33 38 38 26 26 32 28 20 30 17
U3 | 43 41 29 38 37 31 24 29 28 20 25 19
U4 | 41 40 32 31 39 23 26 28 32 32 19 32 18
N 69 70 70 69 71 70 53 43 52
Ul 56 60 55 64 53 46 42 58 53 27 47 21
2B U2 | 60 61 54 51 56 31 50 25
U3 64 57 67 62 49 46 49 54 59 35 51 27
HE U4 64 57 66 62 46 51 46 53 58 30 54 25
N 95 96 93 89 94 98 09 71 70 81 88
Ul | 91 84 80 96 &7 67 76 79 81 38 61 26
4B U2 90 66 74 80 45 65 28
U3 | % 89 80 85 95 92 65 81 77 93 80 53 72 39
U4 | 84 78 84 86 78 81 88 46 70 38

P 37 41 39 35 46 41 29 28 26 18 30 6 5 2

8B PC | 57 74 60 56 65 58 40 37 39 27 55 15 5 6
62B P 91 81 76 76 8 8 6l 50 68 49 88 26 16 14
PC | 104 119 92 8 105 108 71 72 77 62 92 32 25 17
N 122 89 61 102 73 78 55 18 62 45 6
Ul 20 11 52 50 53 17 7 14 14
IB U2 ]| 54 6 60 32 8 38 34 3 26 10
u3 | 72 14 58 14 33 29 8 21
U4 | 62 28 30 84 6l 32 34 9 46 22 5 47 29
N 127 94 95 81 127 56 43 76 16
Ul | 120 66 49 35 25 73 8 10 33 29
2B U2 | 132 105 107 137 158 65 93 19 98 107 45 36
U3 89 77 124 14 95 23 32 32
TP3 U4 | 153 99 84 104 133 73 71 18 110 119 17 67 49
N 190 149 182 150 64 140 81
ul | 177 144 182 185 211 109 139 89 158 141 33 99 43
4B U2 | 199 153 208 178 217 118 143 86 175 165 54 113 61
U3 162 176 189 77 119 60 167 169 50 64
U4 | 181 143 188 95 114 156 43 87 60
3B P 130 106 149 123 121 85 93 88 53 100 9 20 14
PC | 148 126 182 140 161 80 86 109 6l 129 17 32 11
62B P 189 161 213 192 218 115 132 129 88 181 31 49 26
PC | 204 175 247 218 243 124 145 156 100 192 50 51 33
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Table 15. Number of Questions passed for Transcoder. There are a total of 524 questions, and N represents the source language. S is
the size of the model, and D is the distribution it was trained on. P is the PaLLM distribution while PC is the PaLM-Coder distribution.

Languages are sorted from high to low resource. values are the best values for that language, while values are the worst.
N S D ‘ Java . Py C++ PHP TS JS Go Dart Lua Rust C# R Julia HS
N 20 24
Ul 41 10 10 25
1B U2 | 62 25 25 73 78 28 19 46 33 17 26
U3 | 51 43 52 66 17 9 46 19 17 30
U4 | 58 34 43 70 81 21 12 51 40 22
N 191 225 160 231 114 76 47 140 36 41
Ul | 182 154 115 89 78 43 102 144 41 22
2B U2 190 33 132 61 45
U3 98 196 94 40 50
Py U4 | 195 196 152 172 248 119 123 185
N 388 437 206 161 80 85
Ul | 408 427 420 327 330 354 100 75
4B U2 402 396 429 222 202 307 121 90
U3 | 417 430 397 417 431 300 229 369
U4 | 383 412 306 174 321 346 119 84 82
3B P 192 291 270 246 301 168 134 143 99 191 35 22 25
PC | 280 314 336 324 371 175 169 233 115 267 62 57 34
62B P 379 438 441 429 444 303 199 308 171 400 101 99 56
PC | 421 459 463 442 457 332 237 359 157 432 142 127 55
N 112 137 50 18 18
Ul | 104 78 92 104 49 125 20 50 18 5 20
1B U2 88 102 5 122 3 25
U3 | 121 82 112 112 57 123 48 162 12 28
u4 | 120 77 112 112 65 32 121
N 278 295 269 285 127 171 97 226 41
Ul | 242 202 129 75 111 51
2B U2 218 105 244 31 37 63
U3 218 239 264 124 161 80 213 35 47 64
C++ U4 | 260 247 263 288 78 46
N 423 348 194 217 393 81 133
Ul | 437 422 419 425 315 391 112 79
4B U2 | 424 416 396 418 428 349 213 213 308 117 92
U3 | 435 434 428 431 202 88
U4 414 350 216 285 399 104 103
3B P 283 253 352 328 335 191 176 151 94 288 34 58 28
PC | 350 370 379 367 382 228 197 236 126 319 37 58 33
62B P 424 407 451 411 420 323 202 300 157 405 100 141 49
PC | 441 462 454 427 441 336 240 326 163 420 137 191 49
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Table 16. Metrics for HR languages on BC-HumanEval for all models. A is the mean change of each of the displayed langauges when
compared to the natural.% Failed tests is the percent of predictions that did not have any errors, but failed a test. % Error is the percent of
predictions that had either a runtime or compilation error. % Timed Out is the percent of predictions that timed out. The time out was set
to 10 for all languages except for Java and TS, which was 15. % Passed is the percent of predictions that passed all test cases. % Passed
One is the percent of predictions that passed at least one test case, but failed.% Tests Passed is the mean percent of test cases passed per
problem for all predictions.

Metric D ‘ Java Py C++ PHP TS IS Go ‘ A
N |2532 1936 17.80 8.61 2153 11.66 49.02
% Error Ul | 2885 1745 19.83 10.25 21.53 11.00 47.23 | 0.40

U2 | 3408 18.16 1980 865 2087 9.67 50.13 | 1.15
N |[5994 6512 6494 7845 6392 74.60 42.02
% Failed Test Ul | 5812 71.33 63.03 7932 6441 7644 4485 | 1.22
U2 | 5434 68.89 6697 80.25 66.59 7756 4234 | 1.13
N 13.45 1460 1270 10.12 11.71 1229 8.15
% Passed Ul | 11,57 10.68 1129 841 11.69 11.64 7.50 | -1.46
U2 | 1016 1193 11.05 837 11.29 1130 696 | -1.71
N | 4726 4620 4377 46.70 4532 49.87 28.82
% Passed One U1 | 44.68 42.83 4280 43.60 4595 4847 30.39 | -1.32
U2 | 41.69 4392 4338 43.02 46.13 47.87 28.69 | -1.89
N 3346 33777 31.07 2884 30.71 32778 20.03
% Tests Passed U1 | 3045 28.69 29.25 2629 3142 31.78 20.21 | -1.79
U2 | 27.44 29.58 28.64 2549 3044 30.61 18.75 | -2.81
N 1.29 093 457 282 284 145 0.80
% Timed Out Ul | 145 054 586 202 237 092 042 | -0.16
U2 | 142 102 218 274 125 1.47 057 | -0.58

Table 17. Metrics for LR languages on BC-HumanEval for all models. A is the mean change of each of the displayed langauges when
compared to the natural.% Failed tests is the percent of predictions that did not have any errors, but failed a test. % Error is the percent of
predictions that had either a runtime or compilation error. % Timed Out is the percent of predictions that timed out. The time out was set
to 10 for all languages except for Java and TS, which was 15. % Passed is the percent of predictions that passed all test cases. % Passed
One is the percent of predictions that passed at least one test case, but failed.% Tests Passed is the mean percent of test cases passed per
problem for all predictions.

Metric D | Dart Lua Rust C# R Juia HS | A
N | 6206 3131 51.61 4380 70.08 6890 85.70
% Error Ul | 56.05 2339 4820 4440 5424 50.51 70.80 | -9.41

U2 | 5464 20.28 4262 41.11 5207 47.10 69.75 | -12.27
N 28.71 5798 38.51 4542 26.66 2572 11.67
% Failed Test Ul | 3437 66.01 4150 46.84 4205 4228 24.69 | 9.01
U2 | 3526 69.21 4562 4856 4326 4492 2552 | 11.10
N 874 860 874 994 299 475 1.81
% Passed Ul | 919 923 947 797 346 657 3.08 0.49
U2] 927 874 1073 886 398 683 3.57 0.92
N 25.51 4039 2848 36.26 15.62 2507 8.29
% Passed One U1 | 3095 4298 3094 36.57 2329 3448 1690 | 5.21
U2 | 3158 35.78 3345 36.41 2642 33.11 17.55 | 4.95
N 1943 2431 20.53 2549 870 1379 5.13
% Tests Passed U1 | 22.31 26.00 2231 2345 12.03 1959 9353 2.55
U2 ] 2232 2279 2436 2392 13.68 1925 1048 | 2.77
N 049 210 .13 085 028 063 0.82
% Timed Out Ul | 039 138 082 0.80 025 0.64 1.43 -0.09
U2 | 0.83 1.78 1.04 146 0.69 1.14 1.16 0.26

26



Measuring the Impact of Programming Language Distribution 27

Table 18. Metrics for HR languages on TP3 for all models. A is the mean change of each of the displayed langauges when compared to
the natural.% Failed tests is the percent of predictions that did not have any errors, but failed a test. % Error is the percent of predictions
that had either a runtime or compilation error. % Timed Out is the percent of predictions that timed out. The time out was set to 10 for all
languages except for Java and TS, which was 15. % Passed is the percent of predictions that passed all test cases. % Passed One is the
percent of predictions that passed at least one test case, but failed.% Tests Passed is the mean percent of test cases passed per problem for
all predictions.

Metric D | Java C++ PHP TS JS Go | A
N | 6094 49.05 59.66 62.13 6044 9253
% Error Ul | 65.04 56.15 5808 5267 4727 86.54 | -3.17

U2 | 52771 31.20 50.03 56.74 47.73 82.85 | -10.58
N 25.09 1637 29.14 1231 2845 3.54
% Failed Test Ul | 2317 17.19 3255 19.78 3894 7.71 4.07
U2 | 3295 19.17 3792 1792 3945 12.63 | 7.52
N 940 654 1039 733 1091 391
% Passed Ul | 767 610 8.62 956 1352 5.66 0.44
U2 | 830 412 980 7.73 11.68 436 | -042
N 28.57 1597 27.25 1220 31.76 3.77
% Passed One U1 | 27.17 1699 2946 1959 43.19 845 4.22
U2 | 3795 1798 3496 17.14 4092 1297 | 7.07
N | 2331 14.69 2417 13.66 2644 5381
% Tests Passed U1 | 20.82 1476 23.62 19.67 34.89 9.80 2.58
U2 | 2681 1321 2744 16.55 31.70 10.72 | 3.06
N 457 28.03 0.81 1823 020 0.02
% Timed Out Ul | 413 2056 076 1798 0.28 0.09 | -1.34
U2 ] 604 4551 224 17.61 1.14 0.16 3.47

Table 19. Metrics for LR languages on TP3 for all models. A is the mean change of each of the displayed langauges when compared to
the natural.% Failed tests is the percent of predictions that did not have any errors, but failed a test. % Error is the percent of predictions
that had either a runtime or compilation error. % Timed Out is the percent of predictions that timed out. The time out was set to 10 for all
languages except for Java and TS, which was 15. % Passed is the percent of predictions that passed all test cases. % Passed One is the
percent of predictions that passed at least one test case, but failed.% Tests Passed is the mean percent of test cases passed per problem for
all predictions.

Metric D | Dart Lua Rust C# R Juia HS | A
N 9012 9345 8447 80.85 9734 8943 89.60
% Error Ul | 79.83 8522 7793 80.02 9520 83.65 89.39 | -4.86

U2 | 8096 86.36 72.00 71.00 92.17 81.19 84.96 | -8.09
N 478 542 1154 13.10 2.00 423 7.96
% Failed Test Ul | 1224 1025 1607 14.06 3.60 673 798 | 3.13
U2 | 1273 982 21.21 2130 638 920 11.34 | 6.13
N 507 094 377 587 0.62 3.5l1 1.31
% Passed Ul | 783 422 584 5.6 120 592 1.74 | 1.63
U2 | 6.09 3.11 6.18 7.14 .32 610 275 1.65
N 528 551 1177 1487 095 7.15 7.83
% Passed One U1 | 1396 1143 1651 1631 183 11.11 797 | 3.68
U2 | 1457 988 22.00 2470 534 1485 1145 | 7.06
N 776 355 959 1323 110 6.87 5.18
% Tests Passed U1 | 1474 9.62 14.10 13.74 211 11.03 577 | 3.40
U2 | 1333 7.78 17.00 19.01 392 1277 840 | 4.99
N 002 020 022 018 0.03 282 1.12
% Timed Out Ul | o011 031 0.16 0.16 0.01 370  0.89 | 0.11
v2| 022 071 060 056 013 351 096 | 030
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