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Abstract
Current benchmarks for evaluating neural code
models focus on only a small subset of program-
ming languages, excluding many popular lan-
guages such as Go or Rust. To ameliorate this
issue, we present the BabelCode framework for
execution-based evaluation of any benchmark in
any language. BabelCode enables new investi-
gations into the qualitative performance of mod-
els’ memory, runtime, and individual test case
results. Additionally, we present a new code trans-
lation dataset called Translating Python Program-
ming Puzzles (TP3) from the Python Program-
ming Puzzles (Schuster et al., 2021) benchmark
that involves translating expert-level python func-
tions to any language. With both BabelCode and
the TP3 benchmark, we investigate if balancing
the distributions of 14 languages in a training
dataset improves a large language model’s per-
formance on low-resource languages. Training a
model on a balanced corpus results in, on average,
12.34% higher pass@k across all tasks and lan-
guages compared to the baseline. We find that this
strategy achieves 66.48% better pass@k on low-
resource languages at the cost of only a 12.94%
decrease to high-resource languages. In our three
translation tasks, this strategy yields, on average,
30.77% better low-resource pass@k while having
19.58% worse high-resource pass@k.1

1. Introduction
In the 2022 StackOverflow Developer Survey, Rust was the
14th most popular programming language despite not rank-
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ing in the survey taken five years prior. However, the 13th
most popular language, Go, has nearly doubled Rust’s num-
ber of StackOverflow questions in this time frame. Further,
despite their similar popularity, Go has nearly 350% more
source code available (Kocetkov et al., 2022). These dispar-
ities highlight the problem that many popular programming
languages are starkly low-resource, especially compared to
the most popular languages.

Despite their impressive generative capabilities, especially
in code, Large Language Models (LLM) are adversely im-
pacted by this language resource imbalance. Thus, develop-
ers will likely find minimal utility from LLMs if they are
not using the extremely popular languages. It is therefore
imperative to investigate how to mitigate the discrepancy
between a language’s popularity and the amount of data
available for it. Prior works focusing on code generation
(Ahmad et al., 2021) and multilingual natural language pro-
cessing (Arivazhagan et al., 2019; Conneau et al., 2019)
use temperature-based strategies to balance the training lan-
guages. Such a strategy duplicates extremely low-resource
languages thousands of times, which has been shown to
significantly reduce performance (Allamanis, 2019).

Beyond the the language balancing strategy, evaluating code
LLMs in a multi-lingual setting presents significant chal-
lenges. Existing datasets are either mono-lingual (Chen
et al., 2021; Austin et al., 2021; Lai et al., 2022) or limited to
only a subset of popular programming languages (Roziere
et al., 2020). Each problem in these datasets, which we
henceforth refer to as a benchmark, contains an input, and
a canonical solution along with the test-cases for checking
correctness. Creating a new benchmark for each language of
interest would require insurmountable engineering and mon-
etary costs. To address both of these problems, we present
the BabelCode framework for execution-based evaluation
of any benchmark in any language and use it to investigate
the impact of programming language distribution on code
generation and translation.

BabelCode is open-sourced, has an extensive test suite, and
supports evaluating four benchmarks in 14 languages. It is
designed specifically to enable future research directions
such as the evaluation of custom data-structures. BabelCode
allows investigation of novel research directions through

1

https://insights.stackoverflow.com/survey
https://github.com/google-research/babelcode


Measuring the Impact of Programming Language Distribution 2

Figure 1. Overview of this work’s contributions.

the measurement of memory and runtime usage for a given
prediction, as well as the outcomes of individual test cases.
Furthermore, we can use BabelCode to build multi-lingual
execution based benchmarks from existing mono-lingual
datasets. We demonstrate this functionality by creating a
new dataset called Translating Python Programming Puz-
zles (TP3) from the Python Programming Puzzles (Schuster
et al., 2021) benchmark, where the objective is to trans-
late expert-level python programs to other languages. The
source programs for TP3 are the hand-crafted verification
functions for each problem in P3. As the authors hand-wrote
each function, they are significantly more complex than the
current state-of-the-art code translation benchmarks, such
as Transcoder (Roziere et al., 2020), for which code LLMs
are already achieving highly impressive results.

Our presented framework is closely related to the concur-
rent work of MBXP (Athiwaratkun et al., 2023) and Multi-
PLE(Cassano et al., 2022). While MBXP is quite similar
to BabelCode, it is not open-sourced and requires that the
input benchmarks be in Python. Multi-PLE is open-sourced,
but only supports generation tasks and contains significant
errors in multiple languages. BabelCode addresses these
issues through an extensive test suite that ensures that the
code generated is correct, and that crucial functionality, such
as data structure equivalence, works when executed.

With the BabelCode framework, we investigate remedies
to the problems of programming language imbalance. We
utilize the Unimax algorithm (Chung et al., 2023) to limit
the maximum number of times to duplicate a language’s
data to a constant N . We then train 1B, 2B, and 4B param-
eter decoder-only models on both the natural and Unimax
N distributions. We utilize the UL2 (Tay et al., 2022) and
causal language modeling training objective. We find that
models trained on the balanced dataset significantly outper-
form the baseline models on low-resource languages across
all tasks. Further, we find that the resulting performance
drop on high-resource languages is mitigated by increasing
the model size.

This paper makes the following key contributions:

• We propose and release BabelCode, a new execution-
based evaluation framework that allows for multilin-
gual evaluation of code generation and translation ca-
pabilities of code language models. It also supports the
easy addition of new benchmark tasks and execution-
based metrics.

• We show that the code language models trained on
the natural distributions of GitHub source code have
poor performance on low-resource languages in both
generation and translation tasks.

• We propose a new data balancing strategy for pro-
gramming languages to improve performance on low-
resource languages. We demonstrate that the resulting
models outperform the baseline models across all tasks
by an average of 12.34% pass@k for all languages,
with a further improvement of 39.70% pass@k to low-
resource languages.

• We find that the average improvements on low-resource
languages from training on balanced data do not scale
with model size. But scaling model sizes significantly
helps the average pass@k loss compared to the base-
lines on high-resource languages going from a loss of
39.70% with the 1B model to a loss of 2.47% with the
4B model.

2. The BabelCode Framework
BabelCode enables the evaluation of a collection of prob-
lems, each consisting of a prompt and a set of test cases,
in any language through four stages: 1) represent each test
case in our domain specific language (DSL) defined in Fig-
ure 2, 2) use this generic form to generate the test cases in
the target language from the input and output values, 3) use
a Jinja2 template to generate a testing script in the target lan-
guage, and 4) execute the target script through the command
line. This is done autonomously, requiring minimal human
intervention. We provide an overview of how an example

2https://jinja.palletsprojects.com/en/3.1.x/
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Table 1. Differences between BabelCode and prior works. NL2C is natural language to code, while C2C is code to code datasets.
BabelCode has an extensive test-suite that automatically tests each language’s implementation and correctness when executed.

Open # NL2C C2C Mem. & Test Indiv. Test Lang. Agnostic
Name Sourced Lang. Support Support Time Metrics Suite Case Results Datasets

MultiPL-E ! 18 ! # # # # #

MBXP # 10 ! ! # # ! #

BabelCode ! 14 ! ! ! ! ! !

Figure 2. BabelCode’s domain specific language for representing
the input and output types of a question. Prior works require that
the source dataset be written in Python, while our DSL removes
this restriction and allows users to create datasets in any language.
This enables seamless additions of new languages while simplify-
ing future expansions to features such as custom data structures.

problem is translated in Figure 8. Overall the key novel
elements of BabelCode are: I) the use of a DSL to translate
programming questions, II) type-specific equivalence, III)
the ability to measure the performance of a given program at
a low level (i.e., memory used, runtime, which tests passed),
and IV) a large scale test-suite for ensuring correctness of
generated code.

2.1. Framework Design

BabelCode shares many design similarities to the concur-
rent work from Athiwaratkun et al. (2023). Specifically,
we follow the same approach to inferring argument and re-
turn types. We follow the respective documentation and
tutorials for each language to determine which native types
to use. We also use these docs to determine the docstring
formatting and naming convention. These mappings are
used to generate unit and integration tests for each language
automatically. They ensure that each language’s implemen-
tation is syntactically correct and that, when executed, the
equality comparison is correct. We describe the framework
design and similarities to Athiwaratkun et al. (2023) in Ap-
pendix A.

DSL Representations: Using a DSL in the first phase, we
do not force the inputs to be Python, thus enabling more flex-
ibility to represent more generic tasks. For example, given
the inputs from two test cases: {"a":[[1],[],[80]]}
and {"a":[]}, we only represent the types in our generic
DSL. Thus, the resulting type string for this input is

map<string;list<integer>>. We do not represent
the actual values in the generic form as we can easily trans-
late literals across languages. This allows users to create
a dataset from any language by requiring that they only
represent the types of the inputs and outputs in this generic
form. The language agnostic nature of the DSL enables
future extensions of BabelCode to incorporate complex in-
puts and outputs such as custom data-structures. For exam-
ple, the representation of a node class in a BST could be
BSTNode<integer;integer>.

Equality Checking: We support floating point equivalence
to a precision of ε = 1e−6 for floats and ε = 1e−9 for
doubles. To determine if a given value is a float or a
double, we count the number of digits after the decimal
place. We apply this same logic to int and long by count-
ing the total number of digits. Languages such as C# do
not, by default, support deep equivalence of data structures.
In such cases, we serialize the objects to JSON and check
that the resulting strings are equal. Otherwise, we use the
language built-in deep equality functionality.

Test Statement Execution: We opt to print the result of
each test case (i.e. TEST-0...PASSED) to the standard
output in a parseable format across all languages. Along
with try-catch blocks, this allows the evaluation of every
test case for a given problem. This allows finer analysis
of individual programs when compared to using assert
statements as it identifies if specific corner cases fail.

Prompt Translation: As Wang et al. (2022a) showed,
LLMs are sensitive to the input prompts for code gener-
ation. Therefore BabelCode supports prompt translation
and construction for multiple different problem formula-
tions. We replace the names of languages, such as Python,
with the target language. We use the language-specific nam-
ing convention to properly format the signature in the best
practice style. If an argument uses a reserved keyword, we
append arg to its name so that it retains the same mean-
ing but will no longer conflict. We replace Python-specific
terms with their equivalent names in the target language.
For tasks formulated as code-completion, we support for-
matting the problem description as a native docstring. We
do not translate the import statements in the header. In-
stead, we exclude the headers from all languages to provide
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a language-agnostic format. Translating prompts to a tar-
get language is not novel by itself, as both Athiwaratkun
et al. (2023) and Cassano et al. (2022) proposed methods
to accomplish this. BabelCode’s builds on those works by
translating reserved characters. For example, in Julia, the
”$” in docstrings will raise errors if not properly escaped.
Thus, we implement methods to automatically handle such
cases and ensure correctness.

2.2. Differences To Prior Works

We summarize the high-level differences between Babel-
Code and prior works in Table 1. The MBXP framework
from Athiwaratkun et al. (2023) is the most similar to our
work as discussed in subsection 2.1. Similar to BabelCode,
MBXP does have individual test-case results; however, it
uses assert statements and thus can only determine the
first test-case that fails. MBXP does use language experts to
review the generated code’s quality and discuss the valida-
tion it supports to ensure that generated code parses and/or
compiles for its respective language. BabelCode also has
this functionality but, additionally, it ensures correctness
through a test suite that covers the execution of generated
code. We provide scripts to allow validating that source so-
lutions to a dataset pass the generated code. For languages
that do not have a solution in the respective dataset, we
generate “mock” predictions that return the expected output
type. This allows us to ensure that generated code is correct
in all supported languages even if no solution exists.

The MultiPL-E framework from Cassano et al. (2022) sup-
ports 18 languages compared to BabelCode’s 16. However,
we support four datasets, while MultiPL-E only currently
has support for two datasets. In addition, BabelCode also
supports fine-grained evaluation metrics for memory, run-
ning time, and individual test cases. Our extensive test suite
and validation scripts have also exposed many language-
specific idiosyncrasies that naive methods of translation fail
to handle. For example, in Julia, any “$” will be treated
as string interpolation, even if it is in a docstring. Thus,
in the majority of cases, these must be escaped. We auto-
matically rename variables that use reserved keywords. In
languages such as C#, the == operator checks equivalence
by reference instead of value. Besides corner cases, our
DSL and templates allow us to effectively implement proper
floating point equivalence for problems that return a float.
Finally, in many languages, MultiPL-E uses types that are
not considered best practice, such as in Scala, where it relies
on the Java types ArrayList instead of the native List.

3. Low-Resource Code Language Models
Because the data availability can vary greatly by program-
ming language, we can consider the goal of building a multi-
lingual code model as a data-imbalanced multi-task learning

problem. Previous work in the multilingual natural lan-
guage community (Conneau et al., 2019; Arivazhagan et al.,
2019) and in the program synthesis space (Ahmad et al.,
2021) have used sampling strategies relying on temperature-
scaling. In this work, we use the Unimax (Chung et al.,
2023) strategy to address this imbalance. The Unimax algo-
rithm assumes that we are given a budget of how many ex-
amples we plan to consume during training and a maximum
number of times, N , any single example can be duplicated
in the training corpus. Then, we separate the data into buck-
ets by programming language and add N epochs of each of
the lowest-resource languages until we can safely distribute
the remaining budget across all the remaining languages
without exceeding N epochs over any one of these remain-
ing languages. This will allow us to control the number of
epochs N we perform over the low-resource languages to
minimize overfitting while allowing fair distribution of the
compute budget to the remaining high-resource languages.
We will ablate the choice of N in our experiments.

Figure 3. Different distributions for Unimax with different budgets.

4. Experimental Setup
4.1. Models

To understand the impact of training decoder-only models
on the different programming language distributions, we
train models in 3 sizes: 1B, 2B, and 4B. For each of these
sizes, we train 5 different models on each distribution: Natu-
ral and Unimax N , where N ∈ {1, 2, 3, 4}. The parameters
and training differences are listed in Table 2. We follow
Chowdhery et al. (2022) for all other architecture choices.
Every model has a context window of 2048 and is trained
identically with the same vocabulary described in subsec-
tion 4.3. We use a base learning rate of 0.01 and a constant
warmup with a step inverse decay. The number of warmup
steps is kept to 10% of the total training steps per model.
The total number of training steps is 38000, 77000, 190000
for the 1B, 2B, and 4B models, respectively. We use the
Adafactor optimizer (Shazeer & Stern, 2018) and a batch
size of 256. We prepend [code] to the beginning and add
the tag [eod] to the end of each file from our training data.
Finally, we use the T5X and SeqIO (Roberts et al., 2022)
frameworks. We use the UL2 (Tay et al., 2022) objective
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Table 2. Hyperparameters for models trained (BC) compared with
those used to train PaLM-Coder(PC). For PaLM-Coder, we report
the number of code tokens trained on. Each BC model is trained
on each of the naturally occurring distributions of the GitHub
data and each of the distributions is detailed in section 3 where
N ∈ {1, 2, 3, 4}

# of Train
Model Layers Heads dmodel Tokens(B)
BC 1B 16 8 8192 20.2
BC 2B 24 16 10240 40.4
BC 4B 26 16 14336 100

PC 8B 32 16 4096 46.8
PC 62B 64 32 8192 46.8

with an additional causal language modeling objective as
described in Appendix D.

4.2. Training Data

Our curated source code corpus was obtained by collecting
publicly available code data on the web using a custom
code data collection system. We apply a similar license
filter as Kocetkov et al. (2022) to remove any files with
non-permissible licenses, use simple heuristics to filter out
low-quality code and apply near-deduplication to obtain
our corpus of high quality, permissive source code. After
preprocessing, we select 14 programming languages by their
file extensions according to the mapping used by GitHub’s
Linguist library3 to segment the dataset by language. To
calculate the number of examples per language, we use
SeqIO’s caching feature and take the number of examples
after post-processing (Roberts et al., 2022). We list the
percentages of all examples and file extensions used per
language in Appendix C. With these numbers, we consider
the top 7 languages to be high-resource(HR): Java, Python,
C++, PHP, TypeScript, JavaScript, and Go. We further
consider the bottom 7 languages to be low-resource(LR):
Dart, Lua, Rust, C#, R, Julia, and Haskell.

4.3. Vocabulary

The original PaLM (Chowdhery et al., 2022) vocabulary
focuses on multilingual natural language. In contrast, we
trained our SentencePiece (Kudo & Richardson, 2018) vo-
cabulary with 64k tokens from the training data directly.
Each programming language is uniformly sampled to build
the vocabulary. In previous works, such as Chen et al.
(2021), a list of tokens that consists of a different number of
whitespace is manually added to represent code more effi-
ciently. In our work, we rely on the SentencePiece model to
learn the whitespace tokens by allowing extra whitespace to-
kens and whitespace-only tokens. In the end, the model can

3https://github.com/github/linguist/

represent up to 12 whitespaces into one token. In addition,
numbers are split into individual tokens.

4.4. Benchmarks

BabelCode currently supports 4 datasets. To allow the
translation of any dataset to any language, we modify each
benchmark as well as remove problems that were incom-
patible. These changes are described in Appendix B. For
HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021),
and Transcoder (Roziere et al., 2020), we add the pre-
fix BabelCode- (BC) to indicate that we are using the
BabelCode specific version. Further, for Transcoder, we
use the same version as in Chowdhery et al. (2022). BC-
HumanEval (BC-HE) has 161 out of the original 164 Hu-
manEval questions. BC-MBPP has 855 of the original 999
questions. BC-Transcoder (BC-TC) has 524 of the origi-
nal 560 questions.

We additionally introduce a new dataset called Translating
Python Programming Puzzles (TP3). We take the verifi-
cation functions from the questions in the original Python
Programming Puzzles dataset (Schuster et al., 2021) to cre-
ate this dataset. These functions are hand-crafted by the
authors and are used to check if an answer satisfies the
constraints of the puzzle. These puzzles range in difficulty
from basic character checking to competitive programming
problems. Thus, each verification function is written by an
expert python programmer and requires a significant under-
standing of programming to translate. In total, there are 370
python functions to translate. Examples from TP3 can be
found in subsection B.4.

4.5. Evaluation

For BC-HumanEval, we follow Chen et al. (2021) and gener-
ate 200 programs per problem. Further, we use a zero-shot
prompt described in subsection E.1. We use the built-in
docstring translation of BabelCode. We generate 50 pro-
grams per problem on our three translation tasks and use
the prompts described in subsection E.2. We consider these
prompts zero-shot as we do not provide any additional exam-
ples. However, we provide the translated signature without
the docstring in the prompt. We do not consider this to
be data leakage as it is trivial to translate signatures with
libraries such as Treesitter4.

For every dataset, we use T = 0.8, topp = 0.95, and do not
use topk. We use the pass@k estimator (Chen et al., 2021)
to measure the performance. We use k = 100 and k = 25
for generation and translation, respectively.
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Figure 4. Comparison of the models trained with PaLM-Coder models. For each dataset, we use Chen et al. (2021) pass@k estimator
with n = 2 ∗ k. We then generate n samples per problem with T = 0.8. Full results can be found in Appendix F. Languages in the
X-Axis are sorted from high to low resource. HS is Haskell, JS is JavaScript, Py is Python, and TS is TypeScript.

5. Results
5.1. Baseline Models

We report the baseline results for our trained models and
PaLM-Coder in Figure 4. On BC-HumanEval, we find that
the 2B model has a better pass@100 than that of PaLM-
Coder 8B on all but C# and Python. On average, the BC-2B
model trained on the natural distribution of GitHub data has
average improvements of 48.17% compared to PaLM-Coder
8B despite having a quarter of the number of parameters
and training on 6.4B fewer code tokens. Further, we find
that the 4B model outperforms PaLM-Coder 62B on 6 of
the 14 languages evaluated. This likely results from the 4B
model seeing over 53B tokens more than what PaLM-Coder
62B did. Another likely factor in this discrepancy is that the
data PaLM-Coder was fine-tuned on included all languages
on GitHub in contrast to our filtered training dataset.

We also observe that performance on languages do not scale
with respect to their resource level nor the model’s size.
C#, Dart, Julia, and Haskell have significantly higher gains
when scaling to 4B model size when compared to the other
languages. While this may be due to the increased number of
training tokens, it is not consistent across all LR languages
as the increase in performance for R and Lua when scaling
from 1B to 2B is similar to that when scaling from 2B to
4B. Instead, this result is likely due to better transfer from
languages such as Java, Python, and C++.

The importance of scale for multi-lingual code models is

4https://tree-sitter.githcub.io/tree-sitter/

further demonstrated by the results of the translation tasks.
We find that in BC-TP3, the 1B and 2B models’ performance
is similar. However, the most significant gains are from
scaling up to 4B where it beats PaLM-Coder 8B on all but
three languages in this zero-shot translation. We do make
note, though, that while we do not provide any examples for
in-context learning, we do provide the signature in the target
language during generation. This finding is less pronounced
in BC-Transcoder as the scaling observed in all languages
is more akin to that seen in BC-HumanEval.

5.2. Impact of Balancing Programming Languages

Figure 5 shows the mean pass@k scores of different mod-
els trained on each of the 5 distributions for each of the
4 datasets. As expected, the natural distribution is opti-
mal if the focus is solely HR languages as the performance
losses when training on Unimax balanced data are 15.47%,
14.00%, and 9.35% for the 1B, 2B, and 4B models, respec-
tively. However, for any LR language, Unimax is clearly
better given that there is an average pass@100 improve-
ment on these languages of 111.85%, 68.38%, and 19.22%
for the 1B, 2B, and 4B size models, respectively. For gen-
eration tasks, we find that N = 3 is optimal with respect
to the difference between performance gained on LR and
performance lost on HR languages. On the 1B, 2B, and
4B models, the ones trained on the Unimax 3 dataset had
differences of 130.17%, 87.80%, and 36.00%, respectively.

We observe similar scaling trends on TP3, as training on
a Unimax distribution yielded average pass@25 improve-
ments to LR languages of 124.45% for the 1B model,

6
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Figure 5. Effects of scale on the average pass@k of the high and low resource languages for each of four datasets. Full tabulated results
are located in Appendix F.

Figure 6. Mean relative difference of pass@k for each of the models trained on the different Unimax distributions compared to the
pass@k of the same sized model trained on the Natural distribution. The X-Axis is the language sorted from high to low resource. HS is
Haskell and Py is Python. The percent changes for each delta for HR languages are shown in Table 12 and Table 13 for LR languages.

64.51% for the 2B model, and 51.29% for the 4B model
when compared to the same sized models trained on the
natural distribution. Unlike BC-HumanEval, training the
4B on Unimax Distributions yielded better average HR per-
formance with an increase of 6.80%. As shown in Figure 6,
training a 4B model on the Unimax 2 distribution had a
mean pass@25 improvement of 71.59% in LR languages
and an improvement of 20.31% on HR languages when com-
pared to the natural distribution. Training on other Unimax
distributions does not see as large of improvements. For
the 4B model, we find mean LR improvements of 42.39%,
52.91%, and 38.26% when trained on the Unimax 1, 3, and
4 distributions, respectively. This indicates that for TP3,
at least, balancing the training data for each language im-
proves translation capabilities. However, less Python data
adversely affects understanding the source code necessary
to translate it properly.

When evaluated on BC-Transcoder, we find that LR perfor-
mance increased with size. When the source language is
C++, training on the Unimax distributions yielded an aver-
age pass@25 improvements of 7.57%, 6.76%, and 11.80%
for the 1B, 2B, and 4B models, respectively. Translating
Python to other languages followed this trend with an av-
erage change of -26.04%, 15.1%, and 22.47% for the 1B,
2B, and 4B models, respectively. On BC-Transcoder, we
find similar benefits when translating from Python to other
languages, although the performance on higher resource
languages is significantly worse. When translating from
C++ to other languages, we find that training both a 1B and
2B model on the UM 4 distribution improves performance
on 5 of the 7 LR languages. For 4B sized models, the UM
2 distribution is optimal as LR performance increased by
an average of 20.47% when compared to training on the
natural distribution. As the source code of BC-Transcoder

7
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focuses on language-agnostic algorithm implementations,
this scaling trend is most likely due to the importance of a
surface-level understanding of the target language. Further,
the fact that this trend does not appear for BC-HumanEval or
TP3 indicates that neither model size nor duplication of lan-
guage data enables the model to have a deep understanding
of these low-resource languages.

5.3. Effects Of Language Balance on Predictions

We find that, as is expected, decreasing the number of to-
kens for a language negatively impacts its performance on
that language. To compare the overall effects of language
balancing at each size, we focus on the Unimax 1 and Uni-
max 2 distributions as they represent the largest change in
proportions of HR languages when compared to the Nat-
ural distribution. Figure 7 shows that on BC-HumanEval,
training on either UM 1 or UM 2 will cause the model to
generate fewer correct solutions than when the model is
trained on the Natural distribution with respect to HR lan-
guages. However, this is not due to those models generating
more programs with either compilation or run-time errors
as the raw average increase is only 0.40 and 1.15 for the
models trained on the Unimax 1 and Unimax 2 respectively.
Rather, we find that the largest decrease is in the mean % test
cases passed per problem. Training on the Unimax 1 and
Unimax 2 distributions results in 5.50% and 9.09% fewer
test cases respectively when compared to the model trained
on the natural distribution.

On LR languages, the Unimax 1 distribution yielded the best
improvements compared to the other distributions. Specifi-
cally, the programs generated by the model trained on the
Natural distribution passed, on average, 5.13% of the test
cases per problem. In comparison, 9.53% and 10.48% of
average test cases per problem were solved by the models
trained on the Unimax 1 and Unimax 2 distributions. The
less than 1% improvement when going from Unimax 1 to
Unimax 2 suggests that, for generation tasks, multi-lingual
models of code benefit the most from seeing unique data.

In our translation task of TP3, we observe consistent im-
provements in the mean number of test cases passed for
both HR and LR languages. For the former, we observe an
average improvement of 2.58% and 3.06% compared to the
Natural distribution for the UM 1 and 2 distributions respec-
tively. On LR languages, we find average improvements of
3.40% and 4.99% over the Natural distribution for the UM
1 and UM 2 distributions respectively. These results, along
with the performance improvements discussed in subsec-
tion 5.2, indicate that translation tasks benefit highly from
uniformly balanced languages. This is, likely, due to the
task formulation where natural language understanding is
not necessary. Higher resource languages are more likely to
contain diverse natural language and code pairs due to the

language’s popularity.

Thus, performance on NL2Code tasks, such as BC-
HumanEval, depends on the unique samples of code and
doc-strings in the training corpus. Translation, on the other
hand, does not have this constraint. Rather, it appears that
uniformly balancing languages is the optimal strategy for
this task.

6. Related Works
Code Evaluation Existing code benchmarks have primar-
ily focused on surface matching evaluation (Lu et al., 2021;
Yin et al., 2018; Wang et al., 2022b; Husain et al., 2019).
Recent works have introduced new execution-based bench-
marks for both generation (Austin et al., 2021; Hendrycks
et al., 2021; Chen et al., 2021; Lai et al., 2022) and repair
(Yasunaga & Liang, 2021) tasks, however, these have been
limited to only Python. Additional works have introduced
generation (Li et al., 2022) and translation (Roziere et al.,
2020) tasks in multiple-languages, but are limited to only
C++, Java, and Python. We acknowledge concurrent works
by Cassano et al. (2022) and Athiwaratkun et al. (2023) on
translating HumanEval and MBPP into multiple program-
ming languages. As we note in subsection 2.2, BabelCode
supports deeper analysis on a wider range of tasks while
including significant methods for ensuring correctness.

Code LLMs Recent years has seen significant interest in
LLMs for code. CodeBERT (Feng et al., 2020) is the first
work to train an encoder only model on code. CodeT5
(Wang et al., 2021), PLBART (Ahmad et al., 2021), and
additional works (Clement et al., 2020; Orlanski & Gittens,
2021; Chakraborty et al., 2022) examine training encoder-
decoder models on code. Similar to this work, Ahmad et al.
(2021) investigate difference data balancing strategies for
pre-training. Our work differs in that we focus on balancing
many programming languages in pre-training data. Alpha-
Code (Li et al., 2022), Codex (Chen et al., 2021), PaLM
(Chowdhery et al., 2022), and other works (Nijkamp et al.,
2022; Fried et al., 2022; Allal et al., 2023; Christopoulou
et al., 2022) have shown that decoder-only code language
models achieve exceptional performance on a wide range of
tasks. Additional works have investigated different training
strategies (Roziere et al., 2020; Bavarian et al., 2022) and
different pre-training data (Rozière et al., 2021; Orlanski
et al., 2022; Austin et al., 2021).

Language Balancing Choosing a proper sampling distribu-
tion from a mixture of datasets of various size is a difficult
problems. Initial attempts at studying this in the multilingual
natural language processing literature relied on temperature-
based approaches (Conneau et al., 2019; Arivazhagan et al.,
2019). These approaches oversample the low-resource tasks
and downsample the high-resource ones. Other works have

8
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Figure 7. Results on BC-HumanEval and BC-TP3 at a prediction level. Left to right: 1) The % of predictions that passed at least one test,
but not all 2) The average, per question, percent of tests passed for each prediction 3) The % of predictions that had either a compilation
error, runtime error, or timed out. Full results for BC-HumanEval and BC-TP3 can be found in Figure 9 and Figure 10, respectively.

adopted more dynamic approaches, adapting the sampling
rates in an online fashion during training (Wang et al., 2020).

7. Conclusion
We proposed the BabelCode framework for multi-lingual
execution-based evaluation and a new strategy for balancing
programming language distributions. We highlight the ease
of creating new benchmarks with BabelCode by proposing
the Translating Python Programming Puzzles. Our experi-
ments demonstrate that adjusting how much we oversample
low-resource languages and downsample high-resource lan-
guages greatly improves low-resource performance with
minimal impact to to the performance of high-resource lan-
guages in tasks involving either a single or multiple pro-
gramming language. By open-sourcing BabelCode, future
work can investigate improved balancing strategies along
with new multi-lingual programming language questions.
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A. BabelCode Design

Figure 8. Sample problem translated from Python to C++ using BabelCode

BabelCode’s design shares many similarities to Athiwaratkun et al. (2023) and Cassano et al. (2022). For translation, we too
implement a recursive visitor pattern to translate input and output values to the corresponding code in the target language.
When converting a coding dataset, we follow prior works by parsing assert statements using AST parsing libraries to
determine the inputs and outputs for a given question. To find the function name for a problem, we once again use AST
parsers to find the function definition located in the ground truth solution. The found tree is additionally used for parsing
the argument names and types. If the types for either the arguments or returns do not exist, we infer them based on the
types found from the literal values of the inputs and outputs. While our implementation differs, the overall process is
similar to Athiwaratkun et al. (2023) and Cassano et al. (2022). Following Cassano et al. (2022), we execute the generated
code through the command line using each language’s recommended commands to compile and run a given script. As
Athiwaratkun et al. (2023) is not open sourced, we cannot compare the similarities of this portion.

B. Dataset Changes
B.1. Incompatible Problems

1 def encode_cyclic(s: str):
2 """
3 returns encoded string by cycling groups of three characters.
4 """
5 # split string to groups. Each of length 3.
6 groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
7 # cycle elements in each group. Unless group has fewer elements than 3.
8 groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
9 return "".join(groups)

10

11

12 def decode_cyclic(s: str):
13 return encode_cyclic(encode_cyclic(s))
14

15 from random import randint, choice
16 import string
17 letters = string.ascii_lowercase
18 for _ in range(100):
19 str = ’’.join(choice(letters) for i in range(randint(10, 20)))
20 encoded_str = encode_cyclic(str)
21 assert decode_cyclic(encoded_str) == str

12
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B.2. Changes To HumanEval

Original:

1 def reverse_delete(s,c):
2 """ Task
3 We are given two strings s and c, you have to deleted all the characters in s that are

equal to any character in c
4 then check if the result string is palindrome.
5 A string is called palindrome if it reads the same backward as forward.
6 You should return a tuple containing the result string and True/False for the check.
7 Example
8 For s = "abcde", c = "ae", the result should be (’bcd’,False)
9 For s = "abcdef", c = "b" the result should be (’acdef’,False)

10 For s = "abcdedcba", c = "ab", the result should be (’cdedc’,True)
11 """
12 s = ’’.join([char for char in s if char not in c])
13 return (s,s[::-1] == s)
14

15 assert reverse_delete(’abcde’, ’ae’) == (’bcd’, False)
16 assert reverse_delete(’abcdef’, ’b’) == (’acdef’, False)
17 assert reverse_delete(’abcdedcba’, ’ab’) == (’cdedc’, True)

Modified:

1 def reverse_delete(s,c):
2 """ Task
3 We are given two strings s and c, you have to deleted all the characters in s that are

equal to any character in c
4 then check if the result string is palindrome.
5 A string is called palindrome if it reads the same backward as forward.
6 You should return a two element list containing the result string and "True" if the

check passed, otherwise "False".
7 Example
8 For s = "abcde", c = "ae", the result should be (’bcd’,False)
9 For s = "abcdef", c = "b" the result should be (’acdef’,False)

10 For s = "abcdedcba", c = "ab", the result should be (’cdedc’,True)
11 """
12 s = ’’.join([char for char in s if char not in c])
13 return [s,str(s[::-1] == s)]
14

15 assert reverse_delete(’abcde’, ’ae’) == [’bcd’, ’False’]
16 assert reverse_delete(’abcdef’, ’b’) == [’acdef’, ’False’]
17 assert reverse_delete(’abcdedcba’, ’ab’) == [’cdedc’, ’True’]

B.3. Changes To Transcoder

Original:

1 int difference_between_highest_and_least_frequencies_in_an_array ( int arr [ ], int n ) {
2 sort ( arr, arr + n );
3 int count = 0, max_count = 0, min_count = n;
4 for ( int i = 0;
5 i < ( n - 1 );
6 i ++ ) {
7 if ( arr [ i ] == arr [ i + 1 ] ) {
8 count += 1;
9 continue;

10 }
11 else {
12 max_count = max ( max_count, count );
13 min_count = min ( min_count, count );
14 count = 0;
15 }
16 }

13
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17 return ( max_count - min_count );
18 }

Modified:

1 int difference_between_highest_and_least_frequencies_in_an_array(vector<int> arr, int n) {
2 sort(arr.begin(), arr.end());
3 int count = 0, max_count = 0, min_count = n;
4 for ( int i = 0;
5 i < ( n - 1 );
6 i ++ ) {
7 if ( arr [ i ] == arr [ i + 1 ] ) {
8 count += 1;
9 continue;

10 }
11 else {
12 max_count = max ( max_count, count );
13 min_count = min ( min_count, count );
14 count = 0;
15 }
16 }
17 return ( max_count - min_count );
18 }

B.4. TP3 Examples

1 def sat(inds: List[int], string):
2 return inds == sorted(inds) and ’’.join((string[i] for i in inds)) == ’intelligent’
3

4 assert sat([-10, -5, -1, 0, 2, 2, 3, 4, 7, 8, 12], ’enlightenment’) == True
5 assert sat([-11, -10, -8, -6, -4, -4, -3, -2, -1, 1, 3], ’inntGetlige’) == True
6 assert sat([-10, -5, -1, 0, 2, 2, 3, 4, 7, 8, 12], ’ einliJSgeteq ne CAlti’) == False

C. Training Languages

Table 3. Languages used for training and the extensions we used to filter files. The percentages of the data are calculated after caching and
postprocessing using SeqIO.

Language Extensions % Of Data

C# .cs, .cake, .csx, .linq 0.49%

C++ .cpp, .c++, .cc, .cp, .cxx, .h, .h++, .hh, 16.68%.hpp, .hxx, .inl, .ino, .ipp, .ixx, .re, .tcc, .tpp
Dart .dart 1.85%
Go .go 3.09%
Haskell .hs, .hs-boot, .hsc 0.02%
Java .java, .jav, .jsh 36.95%
JavaScript .js, .cjs, .mjs 3.31%
Julia .jl 0.03%
Lua .lua 1.39%

PHP .php, .aw, .ctp, .fcgi, .inc, .php3, 14.05%.php4, .php5, .phps, .phpt
Python .py, .py3, .pyi, .pyw, .pxi 16.80%
R .r, .rd, .rsx 0.11%
Rust .rs, .rs.in 0.93%
TypeScript .ts, .cts, .mts 4.28%
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D. Training Objective
This paper uses a variant of the UL2 objective (Tay et al., 2022) for training the code language models. The UL2 objective
consists of a mixture of span corruption and prefix language modeling objectives, as defined in Raffel et al. (2020). In this
work, we select two span corruption instances using the implementation provided in the T5 library. 5 The only differences
between these two instances consist of different values for the noise density and mean noise span length
arguments. In particular, we use (3.0, 0.15) and (32, 0.5) for the (noise density, mean noise span length)
arguments for each span corruption instance respectively.

The prefix language modeling objective randomly breaks text into two pieces, and the model is tasked to reconstruct the
latter, given the former. Finally, we add an additional objective which consists of causal language modeling, which can be
considered a special case of prefix language modeling; the first piece consists of the empty string. We assign the probabilities
10%, 10%, 20%, and 60% for each objective, respectively.

E. Prompts Used
E.1. Generation Tasks

1 You are an expert {{ Language }} programmer, complete the implementation.
2 Solution in {{ Language }}:
3 [BEGIN]
4

5 {{ Signature With Docstring }}

Each {{. . .}} represents a field that is filled in.

Example from HumanEval for generating C# code:

1 You are an expert C# programmer, complete the implementation.
2 Solution in C#:
3 [BEGIN]
4

5 class Solution {
6 /**
7 * Return length of given string
8 * >>> GetStringLength("")
9 * 0

10 * >>> GetStringLength("abc")
11 * 3
12 */
13 public int GetStringLength(string s) {

E.2. Translation Tasks

1 Translate the following {{ Source Language }} program to {{ Target Language }}:
2 Input:
3

4 {{ Source Code }}
5

6 {{ Target Language }} Translation:
7 [BEGIN]
8

9 {{ Target Signature }}

Each {{. . .}} represents a field that is filled in. The {{fields}} correspond to the source language we are translating
from, while {{fields}} correspond to the target language to translate too.

Example For TP3 translation from Python to Haskell:

1 Translate the following Python program to Haskell:
2 Input:

5See https://github.com/google-research/text-to-text-transfer-transformer/blob/main/t5/data/preprocessors.py#L1923
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3

4 def sat(i: int) -> bool:
5 return i % 123 == 4 and i > 10 ** 10
6

7 Haskell Translation:
8 [BEGIN]
9

10 sat :: Integer -> Bool
11 sat i =

Figure 9. Qualitative Comparison of the 4B model trained on the Natural, the Unimax 1, and Unimax 2 distributions when evaluated on
BC-HumanEval. The results can be found in Table 16 and Table 17.

Figure 10. Qualitative Comparison of the 4B model trained on the Natural, the Unimax 1, and Unimax 2 distributions when evaluated on
TP3. The results can be found in Table 18 and Table 19.
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F. Full Results

Table 4. BC-HumanEval pass@1 values for the different models and training distributions. Used T = 0.8 and sampled 200 programs per
problem. UM is Unimax distribution. PaLM-C is the PaLM-Coder distribution. HS is Haskell, JS is JavaSript, Py is Python, and TS is
TypeScript.

Size Dist. C# C++ Dart Go HS Java JS Julia Lua PHP Py R Rust TS

1B

Nat 1.0 3.6 2.3 2.5 0.7 3.8 3.6 0.5 1.8 2.8 4.8 0.5 1.6 4.0
UM 1 1.7 3.0 3.0 2.6 1.3 2.8 4.0 2.1 2.2 2.5 3.9 1.2 2.8 4.4
UM 2 2.0 3.2 3.0 2.7 1.6 2.7 3.9 2.1 2.1 2.3 4.2 1.4 3.1 4.3
UM 3 1.6 1.5 2.6 2.6 1.4 2.8 4.0 2.5 2.2 2.2 4.0 1.8 2.6 4.1
UM 4 1.7 2.7 3.1 2.9 1.5 2.8 3.7 2.6 2.2 2.2 3.5 2.1 2.5 4.1

2B

Nat 2.6 7.5 5.0 5.4 1.0 8.0 7.6 1.2 4.5 6.2 9.1 1.4 3.9 7.9
UM 1 5.3 6.0 6.1 5.1 1.9 6.6 7.6 4.4 5.4 5.6 7.8 2.1 6.4 7.5
UM 2 5.2 6.1 5.6 4.5 2.1 5.7 6.4 4.5 5.2 4.8 7.0 2.8 5.8 7.0
UM 3 5.5 6.2 5.2 4.7 2.4 6.2 6.8 5.1 4.9 4.8 7.5 3.5 6.1 7.0
UM 4 4.9 6.1 5.4 4.7 2.9 5.7 6.5 4.6 4.8 4.6 7.5 3.3 5.6 7.1

4B

Nat 9.9 12.7 8.7 8.2 1.8 13.5 12.3 4.7 8.6 10.1 14.6 3.0 8.7 11.7
UM 1 8.0 11.3 9.2 7.5 3.1 11.6 11.6 6.6 9.2 8.4 10.7 3.5 9.5 11.7
UM 2 8.9 11.1 9.3 7.0 3.6 10.2 11.3 6.8 8.7 8.4 11.9 4.0 10.7 11.3
UM 3 9.2 9.9 9.0 7.6 4.5 10.5 12.3 8.9 9.2 9.6 11.2 4.5 10.6 11.6
UM 4 10.4 11.2 8.9 7.7 5.0 10.5 10.6 7.9 9.2 8.0 10.0 5.1 11.0 11.0

8B PaLM 2.2 3.3 2.5 2.1 0.1 2.5 4.1 0.1 2.2 2.6 3.6 0.2 1.0 4.2
PaLM-C 2.6 4.4 3.2 3.3 0.3 3.9 5.8 0.1 3.7 4.9 8.1 0.4 1.5 5.6

62B PaLM 5.9 6.5 3.9 5.3 0.3 6.9 8.5 0.7 6.8 6.2 9.1 1.5 1.8 7.9
PaLM-C 7.6 9.6 5.7 6.6 0.8 10.4 10.7 1.4 7.5 7.2 11.0 1.9 3.5 9.7
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Table 5. BC-TP3 pass@1 values for the different models and training distributions. Used T = 0.8 and sampled 50 programs per problem.
Nat is the natural distribution. UM is Unimax distribution. PaLM-C is the PaLM-Coder distribution. HS is Haskell, JS is JavaSript, Py is
Python, and TS is TypeScript.

Size Dist. C# C++ Dart Go HS Java JS Julia Lua PHP R Rust TS

1B

Nat 0.5 1.1 0.6 1.0 0.0 1.7 1.2 0.1 0.2 0.6 0.0 0.6 2.1
UM 1 0.1 0.2 0.1 0.5 0.2 0.3 0.7 0.1 0.1 0.1 0.0 0.3 0.7
UM 2 0.3 0.1 0.1 0.3 0.1 0.4 1.3 0.3 0.0 0.1 0.0 0.4 1.0
UM 3 0.2 0.1 0.1 0.3 0.2 0.7 1.1 0.1 0.0 0.0 0.0 0.3 0.7
UM 4 0.2 0.3 0.4 0.3 0.8 0.6 1.1 0.7 0.1 0.2 0.0 0.7 2.1

2B

Nat 1.0 2.2 1.3 1.9 0.8 2.9 4.1 0.3 0.1 2.8 0.4 2.2 3.1
UM 1 1.3 0.7 0.7 0.7 0.5 1.9 1.0 0.3 0.3 1.2 0.1 1.1 0.4
UM 2 1.9 2.1 2.8 0.9 1.0 2.7 6.8 0.6 0.2 4.0 0.1 1.8 5.4
UM 3 1.1 0.4 0.2 0.4 0.8 1.9 3.6 0.3 0.1 1.7 0.4 0.6 1.0
UM 4 3.2 1.8 2.4 2.7 1.5 3.7 5.5 2.1 0.5 2.8 0.4 2.9 4.1

4B

Nat 5.9 6.5 5.1 3.9 1.3 9.4 10.9 3.5 0.9 10.4 0.6 3.8 7.3
UM 1 5.8 6.1 7.8 5.7 1.7 7.7 13.5 5.9 4.2 8.6 1.2 5.8 9.6
UM 2 7.1 4.1 6.1 4.4 2.7 8.3 11.7 6.1 3.1 9.8 1.3 6.2 7.7
UM 3 8.7 5.8 7.1 3.6 2.6 7.8 12.1 2.9 1.3 9.5 2.1 6.9 11.1
UM 4 5.0 4.8 5.7 4.0 1.9 6.8 9.4 2.4 1.3 4.3 2.2 6.3 7.3

8B PaLM 1.7 4.6 4.9 4.8 0.3 2.6 7.4 0.3 2.9 6.4 0.1 2.2 6.9
PaLM-C 3.4 5.2 4.8 4.2 0.1 4.7 8.6 0.4 3.6 7.7 0.2 2.4 7.3

62B PaLM 7.0 7.9 6.6 6.1 1.3 7.9 11.8 1.3 6.2 12.2 1.0 3.6 12.0
PaLM-C 8.4 8.3 7.6 6.6 1.5 9.9 14.2 1.6 8.0 14.1 2.6 4.0 12.7

Table 6. BC-Transcoder with Python source pass@1 values for the different models and training distributions where the source language
is Python. Used T = 0.8 and sampled 50 programs per problem. Nat is the natural distribution. UM is Unimax distribution. PaLM-C is
the PaLM-Coder distribution. HS is Haskell, JS is JavaSript, Py is Python, and TS is TypeScript.

Size Dist. C# C++ Dart Go HS Java JS Julia Lua PHP R Rust TS

1B

Nat 1.7 2.1 0.4 1.3 0.2 2.2 2.0 0.1 0.6 0.8 0.2 1.0 2.0
UM 1 0.1 0.1 0.0 0.4 0.2 0.3 0.5 0.0 0.0 0.1 0.1 0.8 0.8
UM 2 0.3 0.1 0.1 0.3 0.4 0.6 1.3 0.2 0.0 0.1 0.2 0.7 1.1
UM 3 0.4 0.3 0.0 0.1 0.3 0.5 0.9 0.1 0.0 0.1 0.2 0.7 0.7
UM 4 0.3 0.2 0.2 0.1 1.2 0.6 1.1 0.2 0.1 0.4 0.3 0.9 1.3

2B

Nat 2.9 5.5 1.0 4.4 1.0 4.9 8.2 0.3 0.4 3.8 1.3 3.5 5.2
UM 1 2.9 2.6 0.8 1.2 0.9 3.8 2.5 0.1 0.4 1.5 0.8 1.8 1.0
UM 2 4.4 5.6 3.9 3.2 1.5 4.9 10.1 1.0 0.3 3.6 2.3 3.2 5.9
UM 3 2.1 1.0 0.3 0.3 1.4 3.0 3.9 0.0 0.1 1.7 0.5 1.2 1.5
UM 4 4.8 4.7 2.9 3.5 1.7 4.8 8.4 2.7 2.5 2.6 2.4 4.0 5.7

4B

Nat 23.7 28.4 6.8 11.7 2.3 29.5 27.9 1.7 2.4 23.4 2.8 8.3 15.3
UM 1 16.7 23.7 9.7 18.6 2.4 18.6 35.3 3.6 8.1 20.8 2.6 12.7 22.4
UM 2 16.0 16.1 8.4 15.0 3.3 16.6 26.2 5.1 5.3 17.4 5.0 11.3 17.4
UM 3 21.8 30.6 12.5 14.6 3.5 23.2 37.1 0.9 3.5 20.3 6.1 17.0 28.2
UM 4 14.5 17.6 3.6 13.0 1.4 14.9 26.6 2.0 4.5 5.0 3.6 14.5 14.7

8B PaLM 2.9 11.8 4.7 7.3 0.9 4.3 16.3 0.1 5.1 8.8 1.7 3.2 11.6
PaLM-C 8.5 10.8 5.3 8.6 1.1 8.9 24.2 1.0 9.4 13.7 2.0 4.0 14.3

62B PaLM 21.4 29.1 7.3 17.8 1.9 17.7 35.6 3.4 16.9 25.6 4.3 7.3 29.3
PaLM-C 28.7 33.0 9.6 21.4 2.2 23.6 38.4 4.2 22.1 32.4 8.1 7.3 29.6
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Table 7. BC-Transcoder with C++ Source pass@1 values for the different models and training distributions. Used T = 0.8 and sampled
50 programs per problem. Nat is the natural distribution. UM is Unimax distribution. PaLM-C is the PaLM-Coder distribution. HS is
Haskell, JS is JavaSript, Py is Python, and TS is TypeScript.

Size Dist. C# Dart Go HS Java JS Julia Lua PHP Py R Rust TS

1B

Nat 3.0 3.1 1.3 0.1 2.6 2.3 0.1 0.3 1.0 1.8 0.1 0.6 3.7
UM 1 0.4 3.1 0.9 0.2 1.1 1.1 0.0 0.1 0.8 2.3 0.2 0.8 1.9
UM 2 1.1 1.6 0.5 0.4 1.1 2.7 0.0 0.0 1.1 1.5 0.1 0.7 1.9
UM 3 1.9 1.6 0.8 0.4 1.6 2.9 0.0 0.0 0.7 2.3 0.1 1.1 1.5
UM 4 1.3 3.7 1.8 1.3 1.7 3.0 0.2 0.5 2.4 1.8 0.3 1.6 3.7

2B

Nat 8.9 13.3 5.5 1.2 9.2 16.0 0.3 1.5 12.4 11.2 1.4 4.6 12.1
UM 1 4.1 7.9 3.4 1.4 6.7 6.2 0.2 2.1 5.0 6.8 0.5 3.6 4.3
UM 2 8.6 18.1 6.8 2.6 9.4 20.2 0.4 2.1 17.3 8.4 1.2 5.4 15.2
UM 3 4.6 12.0 4.0 2.1 4.6 12.9 0.5 2.0 8.2 7.7 1.1 2.4 10.3
UM 4 7.7 15.1 5.9 3.0 7.1 14.4 1.9 2.0 9.6 5.5 1.2 5.4 13.0

4B

Nat 34.5 17.3 20.6 3.2 37.6 32.9 3.3 6.9 34.0 31.7 2.5 10.3 29.2
UM 1 27.0 18.3 23.5 3.7 27.9 41.2 1.6 9.9 34.5 31.3 2.6 14.3 33.1
UM 2 19.3 21.1 18.7 4.4 22.0 34.1 4.3 6.4 26.5 25.2 4.0 12.2 24.2
UM 3 31.5 20.8 16.0 4.6 32.3 42.6 1.0 7.0 39.9 33.5 5.0 16.4 40.2
UM 4 25.0 15.5 16.4 3.1 21.1 31.9 1.3 6.1 9.7 20.4 2.6 11.6 28.7

8B PaLM 17.5 16.0 8.3 1.3 14.9 28.1 0.7 8.5 21.2 14.8 1.1 5.0 21.8
PaLM-C 20.4 15.3 11.2 1.4 20.9 30.8 0.6 12.1 26.5 23.2 1.1 5.3 22.0

62B PaLM 27.3 17.9 20.6 2.6 24.0 42.4 6.5 16.3 41.3 26.7 4.3 8.6 37.3
PaLM-C 35.7 17.4 22.1 3.0 30.3 44.3 8.5 19.7 46.6 42.4 8.9 9.4 40.7

Table 8. BC-HumanEval pass@100 values for the different models and training distributions. Used T = 0.8 and sampled 200 programs
per problem. Nat is the natural distribution. UM is Unimax distribution. PaLM-C is the PaLM-Coder distribution. HS is Haskell, JS is
JavaSript, Py is Python, and TS is TypeScript.

Size Dist. C# C++ Dart Go HS Java JS Julia Lua PHP Py R Rust TS

1B

Nat 7.3 23.2 14.4 14.9 2.4 24.3 19.0 4.4 9.8 17.1 23.3 4.0 13.9 22.4
UM 1 12.3 16.2 14.0 12.0 7.5 17.3 18.2 13.0 13.1 15.0 19.9 7.9 14.5 17.8
UM 2 14.5 16.9 13.8 11.9 8.3 19.6 19.1 15.8 13.5 14.8 21.2 10.4 16.5 19.1
UM 3 13.7 13.5 13.4 15.4 10.0 21.4 18.4 14.2 12.8 14.6 21.1 10.4 16.0 18.6
UM 4 15.8 16.6 13.8 12.3 9.7 19.7 18.1 16.6 14.3 15.3 20.6 10.6 15.9 19.6

2B

Nat 17.9 37.8 21.3 27.8 4.9 37.8 36.8 9.7 23.3 35.3 38.8 10.9 26.5 37.9
UM 1 28.5 31.8 24.6 26.2 12.2 32.0 33.8 23.8 22.9 29.3 30.9 14.0 29.9 34.9
UM 2 30.6 30.8 25.8 22.6 12.9 32.1 32.1 26.5 21.9 27.4 33.5 15.8 27.4 33.0
UM 3 31.9 33.0 23.9 25.9 13.7 31.4 34.1 26.5 25.3 29.5 31.5 18.5 28.7 34.8
UM 4 30.5 30.4 26.7 24.9 12.8 31.3 33.0 29.0 23.2 26.5 34.6 16.2 28.0 34.6

4B

Nat 47.9 51.1 39.6 37.9 12.5 53.4 53.0 27.0 38.7 48.5 52.9 16.7 43.4 50.7
UM 1 42.4 46.6 42.3 38.3 14.6 50.6 47.9 33.8 42.0 44.0 46.2 20.1 44.6 50.6
UM 2 44.3 41.2 40.6 34.9 16.0 40.9 44.2 35.9 38.8 42.0 48.9 24.1 43.1 44.6
UM 3 44.8 44.4 43.3 37.3 21.3 49.9 50.8 40.0 43.2 45.8 48.8 27.9 49.8 51.5
UM 4 47.9 43.5 37.7 36.1 20.3 46.1 47.3 39.1 42.2 41.7 46.3 23.4 44.8 46.1

8B PaLM 16.8 19.7 14.7 14.3 1.1 19.9 20.9 2.0 13.2 17.8 21.0 2.9 9.6 22.5
PaLM-C 27.1 30.1 19.4 20.9 2.5 29.8 31.0 2.4 20.7 29.6 39.5 7.3 13.4 32.5

62B PaLM 43.9 40.8 26.9 31.4 6.9 48.3 46.2 8.3 36.4 41.6 44.7 13.8 24.3 44.6
PaLM-C 49.2 50.0 37.6 38.7 9.0 57.0 56.7 12.1 41.1 46.9 64.1 16.9 31.7 54.8
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Table 9. BC-TP3 pass@25 values for the different models and training distributions where the source language is Python. Used T = 0.8
and sampled 50 programs per problem. Nat is the natural distribution. UM is Unimax distribution. PaLM-C is the PaLM-Coder
distribution. HS is Haskell, JS is JavaSript, Py is Python, and TS is TypeScript.

Size Dist. C# C++ Dart Go HS Java JS Julia Lua PHP R Rust TS

1B

Nat 8.2 16.5 9.6 14.6 0.3 23.4 13.8 1.1 3.7 10.6 0.8 10.6 19.8
UM 1 2.3 3.2 2.8 9.0 2.6 6.5 9.3 2.0 1.1 1.6 0.2 5.5 9.8
UM 2 5.2 1.3 1.7 5.4 1.7 8.2 9.8 4.3 1.2 1.1 0.4 6.2 11.3
UM 3 4.5 2.1 2.3 4.4 3.7 12.6 11.6 1.2 0.4 0.4 0.1 5.4 9.2
UM 4 3.4 4.6 5.9 5.2 5.4 10.8 11.4 8.6 1.7 4.6 0.7 8.3 17.0

2B

Nat 8.3 18.2 8.3 11.1 5.7 24.5 24.4 3.8 1.4 18.3 3.4 15.3 15.7
UM 1 15.8 11.9 6.3 8.7 5.2 23.2 10.9 5.4 4.6 11.1 2.1 13.7 4.6
UM 2 20.7 20.0 19.1 11.7 6.9 26.3 32.9 8.1 3.2 20.6 1.7 18.6 27.8
UM 3 16.9 7.7 4.4 7.7 5.9 21.2 25.7 5.3 2.3 16.2 4.4 11.2 13.9
UM 4 24.3 18.8 15.3 14.0 9.6 32.1 28.1 13.9 3.9 17.3 3.5 21.8 21.5

4B

Nat 29.1 31.9 16.6 14.6 7.7 42.2 39.5 17.3 11.9 40.1 3.7 24.1 32.9
UM 1 28.9 30.0 30.0 22.0 8.8 37.6 49.2 22.5 18.2 40.7 6.9 32.5 41.7
UM 2 35.5 31.0 30.2 23.7 13.0 43.7 49.5 24.6 17.3 46.1 10.6 37.3 39.0
UM 3 35.2 24.8 25.5 16.2 13.0 34.3 41.9 16.4 11.9 33.7 10.6 35.2 38.8
UM 4 25.5 29.7 23.9 19.5 12.1 38.5 40.5 18.6 8.3 26.7 9.8 32.8 29.0

8B PaLM 19.4 22.6 19.0 17.2 2.8 26.7 26.6 4.0 17.0 31.7 1.9 10.7 25.9
PaLM-C 25.9 26.2 17.9 16.7 2.0 30.1 34.1 5.9 22.6 40.3 3.2 11.8 29.3

62B PaLM 38.9 35.2 27.2 24.8 6.1 43.0 48.4 10.6 28.3 48.2 7.2 18.0 42.6
PaLM-C 41.8 38.7 31.2 26.7 7.2 45.2 55.8 11.3 33.8 56.5 11.4 20.5 48.7

Table 10. BC-Transcoder pass@25 values for the different models and training distributions where the source language is Python. Used
T = 0.8 and sampled 50 programs per problem. Nat is the natural distribution. UM is Unimax distribution. PaLM-C is the PaLM-Coder
distribution. HS is Haskell, JS is JavaSript, Py is Python, and TS is TypeScript.

Size Dist. C# C++ Dart Go HS Java JS Julia Lua PHP R Rust TS

1B

Nat 14.0 18.4 5.4 10.3 2.1 17.3 15.3 2.8 7.4 8.7 2.9 10.3 14.4
UM 1 3.1 1.3 1.1 5.7 3.3 4.9 5.5 0.9 1.0 1.3 1.8 6.7 7.6
UM 2 4.3 2.7 2.2 3.5 3.9 8.2 11.0 3.3 0.4 2.9 2.6 6.9 10.4
UM 3 5.8 5.1 0.8 2.1 3.9 6.8 9.4 1.7 0.9 1.2 2.6 6.3 7.2
UM 4 5.1 3.8 2.6 1.0 6.6 7.6 11.4 2.6 1.3 5.4 3.6 7.8 10.6

2B

Nat 20.9 34.7 11.0 17.5 6.3 30.0 37.0 5.0 5.9 29.4 7.6 11.9 24.3
UM 1 21.4 22.3 10.8 12.5 5.2 27.7 23.0 2.5 5.6 15.9 6.4 15.2 10.9
UM 2 29.4 36.1 20.7 20.0 6.9 31.5 43.6 9.1 4.2 28.7 5.8 19.3 29.1
UM 3 18.6 12.8 4.1 4.9 7.8 22.6 29.0 0.7 1.7 14.9 5.6 13.0 13.9
UM 4 28.3 29.7 19.1 18.2 9.0 30.0 39.9 12.0 12.2 21.7 7.6 20.1 27.2

4B

Nat 68.4 82.5 34.0 45.5 9.0 80.2 77.6 13.5 23.7 75.9 12.7 38.4 66.1
UM 1 59.8 75.8 40.2 56.2 11.6 70.5 80.6 16.0 37.9 73.8 11.3 53.9 74.5
UM 2 58.6 66.7 36.9 57.1 14.2 64.4 76.4 21.2 31.1 69.3 19.7 51.2 68.0
UM 3 64.6 77.2 39.1 50.2 14.5 73.4 79.0 8.4 24.8 69.1 21.8 58.9 74.8
UM 4 59.3 72.5 25.4 51.5 11.4 65.0 72.7 13.7 27.1 47.2 19.4 54.2 62.8

8B PaLM 26.8 48.6 21.0 27.7 3.6 29.7 51.8 2.5 22.4 44.2 5.9 15.0 42.1
PaLM-C 44.0 52.0 26.7 29.6 5.4 45.9 65.6 9.0 39.7 58.0 9.7 17.5 54.4

62B PaLM 70.6 78.5 32.7 50.9 8.4 65.1 80.3 15.6 53.4 79.4 17.1 27.5 76.6
PaLM-C 77.1 83.7 39.8 57.4 8.8 72.2 82.6 20.3 62.2 84.0 23.7 26.6 79.3
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Table 11. BC-Transcoder pass@25 values for the different models and training distributions where the source language is C++. Used
T = 0.8 and sampled 50 programs per problem. Nat is the natural distribution. UM is Unimax distribution. PaLM-C is the PaLM-Coder
distribution. HS is Haskell, JS is JavaSript, Py is Python, and TS is TypeScript.

Size Dist. C# Dart Go HS Java JS Julia Lua PHP Py R Rust TS

1B

Nat 24.2 22.4 10.4 1.5 21.2 22.0 1.9 4.7 14.9 15.4 2.3 6.4 27.9
UM 1 8.1 21.4 8.1 2.6 14.4 12.3 0.6 2.5 12.0 12.4 2.4 7.6 16.2
UM 2 16.3 18.2 5.7 3.5 13.9 16.0 0.3 0.5 12.8 10.4 1.2 6.7 14.6
UM 3 21.9 18.5 8.3 3.9 17.5 17.7 0.2 0.2 9.1 13.2 1.6 7.6 16.4
UM 4 17.0 23.7 10.3 7.0 18.0 17.6 3.4 4.7 18.3 11.9 3.5 8.8 17.9

2B

Nat 38.6 29.7 19.6 6.6 45.2 49.9 5.5 12.5 48.7 40.5 7.5 14.9 45.1
UM 1 30.9 26.5 19.3 7.6 38.8 33.0 3.2 11.4 35.1 31.8 3.8 16.9 28.0
UM 2 40.3 27.3 18.0 9.8 46.1 50.4 5.3 10.9 52.8 34.4 4.5 16.1 48.4
UM 3 34.1 28.4 18.9 9.9 33.9 44.5 6.4 12.2 35.9 34.1 5.3 14.7 40.5
UM 4 41.3 29.9 25.5 12.2 41.1 49.2 14.4 12.2 41.3 30.1 7.2 19.5 44.5

4B

Nat 71.3 33.2 60.7 10.7 81.9 77.3 20.8 36.3 80.5 79.9 13.3 38.4 76.0
UM 1 69.6 38.1 63.9 12.7 77.9 77.8 16.1 38.6 76.4 74.7 12.0 52.5 76.5
UM 2 66.3 37.0 60.8 15.3 73.8 77.6 27.3 33.4 71.0 73.5 18.7 50.7 75.2
UM 3 75.2 34.8 54.4 14.3 78.3 79.0 12.1 34.8 77.6 76.7 20.9 56.4 79.4
UM 4 70.7 33.0 59.7 15.0 73.7 74.1 14.3 33.7 61.1 72.8 16.1 47.0 74.7

8B PaLM 50.5 31.7 32.1 4.5 48.0 60.5 8.5 24.4 62.2 42.3 5.1 15.8 58.2
PaLM-C 54.8 34.7 37.9 5.3 60.5 68.9 7.8 39.6 68.6 64.3 4.9 20.3 65.3

62B PaLM 72.0 35.8 55.2 8.4 74.7 77.4 23.0 51.3 82.5 73.0 16.8 25.9 75.4
PaLM-C 76.2 41.5 58.9 8.4 79.5 80.9 31.6 56.5 84.3 83.1 23.5 27.5 78.4
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Table 12. % changes in pass@k compared to the models trained on the natural distribution for High Resource languages. For BC-
HumanEval(HE), k = 100. For BC-TP3(TP3), BC-Transcoder Python(TC-Py), and BC-Transcoder C++(TC-C++), k = 25. The cells
represent the worst value for that language for that size and dataset. The cells represent the best value for that language for that size and
dataset.

DS Size Dist. Java Python C++ PHP TS JS Go Mean

HE

1B

UM 1 -29.0 -15.0 -30.3 -12.4 -20.3 -4.1 -19.6 -18.7
UM 2 -19.6 -9.2 -27.0 -13.4 -14.7 0.2 -20.1 -14.8
UM 3 -12.1 -9.7 -41.7 -14.6 -16.7 -3.3 3.8 -13.5
UM 4 -18.9 -11.9 -28.2 -10.8 -12.1 -5.1 -17.2 -14.9

2B

UM 1 -15.2 -20.3 -15.9 -17.1 -7.9 -8.3 -5.6 -12.9
UM 2 -15.2 -13.7 -18.6 -22.2 -12.7 -12.7 -18.6 -16.2
UM 3 -16.9 -18.7 -12.7 -16.3 -8.0 -7.3 -6.7 -12.4
UM 4 -17.2 -10.6 -19.5 -24.8 -8.6 -10.4 -10.4 -14.5

4B

UM 1 -5.3 -12.6 -8.9 -9.4 -0.1 -9.5 1.1 -6.4
UM 2 -23.4 -7.5 -19.5 -13.4 -11.9 -16.4 -8.0 -14.3
UM 3 -6.6 -7.7 -13.1 -5.7 1.5 -4.0 -1.7 -5.3
UM 4 -13.7 -12.5 -14.9 -13.9 -9.0 -10.6 -4.7 -11.3

TP3

1B

UM 1 -72.3 N/A -80.5 -84.8 -50.8 -32.5 -38.6 -59.9
UM 2 -65.2 N/A -92.0 -89.8 -43.1 -28.8 -62.7 -63.6
UM 3 -46.3 N/A -87.3 -96.2 -53.5 -16.1 -69.8 -61.5
UM 4 -53.9 N/A -72.3 -56.9 -14.1 -17.1 -64.3 -46.5

2B

UM 1 -5.5 N/A -34.6 -39.4 -70.4 -55.4 -21.2 -37.7
UM 2 7.3 N/A 9.4 12.4 77.5 35.1 5.4 24.5
UM 3 -13.4 N/A -57.6 -11.6 -11.0 5.5 -30.2 -19.7
UM 4 31.0 N/A 3.1 -5.6 37.3 15.3 26.5 17.9

4B

UM 1 -10.8 N/A -5.8 1.4 26.7 24.6 50.8 14.5
UM 2 3.5 N/A -2.9 14.9 18.6 25.3 62.5 20.3
UM 3 -18.6 N/A -22.2 -16.2 18.0 6.2 11.3 -3.6
UM 4 -8.7 N/A -6.9 -33.4 -11.8 2.6 34.2 -4.0

TC-C++

1B

UM 1 -31.9 -19.3 N/A -19.1 -41.9 -44.3 -22.0 -29.7
UM 2 -34.6 -32.7 N/A -13.6 -47.7 -27.6 -45.1 -33.5
UM 3 -17.4 -14.5 N/A -38.6 -41.0 -19.9 -20.5 -25.3
UM 4 -15.2 -22.9 N/A 23.2 -35.7 -20.2 -1.4 -12.0

2B

UM 1 -14.3 -21.3 N/A -28.0 -37.8 -33.8 -1.4 -22.8
UM 2 1.9 -15.0 N/A 8.5 7.3 1.0 -8.0 -0.7
UM 3 -25.0 -15.7 N/A -26.2 -10.1 -10.9 -3.3 -15.2
UM 4 -9.1 -25.6 N/A -15.2 -1.4 -1.3 30.3 -3.7

4B

UM 1 -4.9 -6.6 N/A -5.2 0.7 0.6 5.3 -1.7
UM 2 -9.9 -8.0 N/A -11.8 -1.0 0.4 0.1 -5.0
UM 3 -4.4 -4.0 N/A -3.6 4.5 2.1 -10.4 -2.6
UM 4 -10.1 -8.9 N/A -24.1 -1.7 -4.1 -1.7 -8.4

TC-Py

1B

UM 1 -71.5 N/A -92.7 -85.4 -47.3 -63.9 -44.9 -67.6
UM 2 -52.7 N/A -85.2 -66.8 -27.9 -27.9 -66.1 -54.4
UM 3 -60.8 N/A -72.0 -86.5 -49.9 -38.3 -80.0 -64.6
UM 4 -56.0 N/A -79.1 -38.4 -26.5 -25.2 -90.3 -52.6

2B

UM 1 -7.6 N/A -35.8 -45.7 -55.0 -38.0 -28.9 -35.1
UM 2 5.3 N/A 4.0 -2.3 20.0 17.6 14.0 9.8
UM 3 -24.7 N/A -63.2 -49.4 -42.7 -21.7 -72.0 -45.6
UM 4 0.0 N/A -14.6 -25.9 12.0 7.6 3.7 -2.9

4B

UM 1 -12.1 N/A -8.1 -2.9 12.6 3.8 23.6 2.8
UM 2 -19.6 N/A -19.1 -8.7 2.8 -1.5 25.6 -3.4
UM 3 -8.4 N/A -6.4 -9.0 13.1 1.8 10.5 0.3
UM 4 -19.0 N/A -12.1 -37.9 -5.0 -6.3 13.4 -11.1
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Table 13. % change of pass@k compared to the models trained on the natural distribution for low resource languages languages. For
BC-HumanEval(HE), k = 100. For BC-TP3(TP3), BC-Transcoder Python(TC-Py), and BC-Transcoder C++(TC-C++), k = 25. The
cells represent the worst value for that language for that size and dataset. The cells represent the best value for that language for that size
and dataset.

DS Size Dist. Dart Lua Rust C# R Julia HS Mean

HE

1B

UM 1 -2.8 33.8 4.6 68.5 100.0 191.9 205.9 86.0
UM 2 -4.1 38.3 19.0 98.1 161.7 254.7 238.7 115.2
UM 3 -6.4 30.8 15.5 87.1 162.7 218.4 308.9 116.7
UM 4 -3.9 46.5 14.8 115.2 166.9 272.6 294.5 129.5

2B

UM 1 15.6 -1.6 12.7 59.4 28.6 145.2 147.7 58.2
UM 2 21.6 -5.9 3.4 71.2 44.9 172.9 161.5 67.1
UM 3 12.2 8.9 8.2 78.6 68.9 173.5 177.9 75.4
UM 4 25.6 -0.4 5.6 70.8 48.6 198.7 160.5 72.8

4B

UM 1 7.0 8.6 3.0 -11.5 20.4 25.3 16.8 9.9
UM 2 2.6 0.2 -0.6 -7.5 44.0 32.9 27.6 14.2
UM 3 9.5 11.5 14.7 -6.5 66.9 48.2 70.3 30.7
UM 4 -4.7 9.0 3.2 -0.1 40.3 44.8 62.2 22.1

TP3

1B

UM 1 -71.1 -70.0 -48.4 -72.0 -70.6 80.5 660.5 58.4
UM 2 -82.1 -69.1 -41.6 -36.3 -50.0 297.0 389.8 58.2
UM 3 -75.7 -89.1 -49.1 -44.9 -83.3 9.0 992.0 94.1
UM 4 -38.4 -53.9 -21.1 -58.6 -16.7 693.3 1504.5 287.0

2B

UM 1 -23.2 221.6 -10.1 90.3 -38.1 40.2 -9.4 38.8
UM 2 131.9 128.3 22.0 149.1 -49.5 109.9 21.6 73.3
UM 3 -46.8 63.5 -26.4 103.5 30.6 39.0 3.5 23.9
UM 4 85.7 172.4 43.1 192.1 4.2 260.5 68.6 118.1

4B

UM 1 80.3 53.2 34.9 -0.9 85.6 29.9 13.9 42.4
UM 2 81.6 45.7 55.0 21.7 187.5 42.4 67.3 71.6
UM 3 53.3 0.1 46.2 20.7 187.8 -5.2 67.5 52.9
UM 4 43.9 -29.8 36.1 -12.5 166.7 7.3 56.1 38.3

TC-C++

1B

UM 1 -4.5 -47.2 18.3 -66.7 7.0 -69.8 67.3 -13.6
UM 2 -18.6 -88.7 3.8 -32.8 -46.4 -84.8 130.4 -19.6
UM 3 -17.1 -94.9 18.8 -9.5 -28.5 -89.9 157.1 -9.1
UM 4 6.2 1.5 36.9 -29.7 53.8 82.3 357.7 72.7

2B

UM 1 -10.8 -8.4 13.8 -20.1 -49.6 -41.9 14.9 -14.6
UM 2 -8.3 -12.5 8.6 4.2 -40.6 -3.4 47.6 -0.6
UM 3 -4.5 -2.3 -1.2 -11.9 -29.8 17.7 48.6 2.4
UM 4 0.5 -2.6 31.0 7.0 -4.2 163.2 84.2 39.9

4B

UM 1 14.8 6.4 36.6 -2.4 -10.0 -22.9 18.5 5.9
UM 2 11.4 -7.8 31.9 -6.9 40.6 30.9 42.8 20.4
UM 3 4.8 -4.1 46.8 5.6 57.5 -42.1 33.8 14.6
UM 4 -0.8 -7.1 22.4 -0.8 21.2 -31.2 40.5 6.3

TC-Py

1B

UM 1 -79.8 -86.1 -34.9 -78.0 -35.9 -69.9 55.1 -47.1
UM 2 -60.0 -94.2 -33.3 -69.6 -10.9 14.5 83.7 -24.3
UM 3 -85.1 -88.4 -38.3 -58.8 -9.0 -39.7 83.0 -33.7
UM 4 -52.0 -82.1 -24.5 -63.5 25.6 -7.7 210.6 0.9

2B

UM 1 -1.3 -4.8 27.8 2.3 -16.5 -48.8 -17.0 -8.3
UM 2 88.9 -28.6 62.2 40.5 -23.4 83.9 9.3 33.3
UM 3 -62.2 -72.1 9.3 -10.9 -25.9 -86.5 25.1 -31.9
UM 4 74.6 106.5 69.4 35.2 -0.8 142.2 44.0 67.3

4B

UM 1 18.3 60.2 40.3 -12.5 -11.2 18.4 28.7 20.3
UM 2 8.5 31.4 33.1 -14.3 54.9 57.4 58.0 32.7
UM 3 15.0 4.7 53.4 -5.6 71.0 -38.0 61.0 23.1
UM 4 -25.4 14.4 41.0 -13.3 52.0 1.3 26.7 13.8

23



Measuring the Impact of Programming Language Distribution 24

Table 14. Number of Questions passed for BC-HumanEval(HE) and TP3. BC-HE has 161 total problems and TP3 has 370 total problems.
S is the size of the model, and D is the distribution it was trained on. P is the PaLM distribution while PC is the PaLM-Coder distribution.
Languages are sorted from high to low resource. Green values are the best values for that language, while red values are the worst.

N S D Java Py C++ PHP TS JS Go Dart Lua Rust C# R Julia HS

HE

1B

N 46 44 44 32 44 38 31 28 18 27 13 8 9 5
U1 33 38 32 30 34 36 23 27 24 26 26 17 23 13
U2 38 39 33 28 38 38 21 26 26 32 28 20 30 17
U3 43 41 25 29 38 37 31 25 24 29 28 20 25 19
U4 41 40 32 31 39 34 23 26 28 32 32 19 32 18

2B

N 69 70 70 69 71 70 53 40 43 52 33 21 18 9
U1 58 56 60 55 64 61 53 46 42 58 53 27 47 21
U2 60 61 56 54 60 61 43 51 40 51 56 31 50 25
U3 58 55 64 57 67 62 49 46 49 54 59 35 51 27
U4 58 64 57 53 66 62 46 51 46 53 58 30 54 25

4B

N 95 96 93 89 94 98 69 71 70 81 88 35 50 23
U1 91 82 84 80 96 87 67 76 79 81 76 38 61 26
U2 74 90 71 77 80 81 66 74 68 79 80 45 65 28
U3 94 89 80 85 95 92 65 81 77 93 80 53 72 39
U4 84 82 78 77 84 86 64 67 78 81 88 46 70 38

8B P 37 41 39 35 46 41 29 28 26 18 30 6 5 2
PC 57 74 60 56 65 58 40 37 39 27 55 15 5 6

62B P 91 81 76 76 85 85 61 50 68 49 88 26 16 14
PC 104 119 92 85 105 108 71 72 77 62 92 32 25 17

TP3

1B

N 122 89 61 102 73 78 55 18 62 45 6 6 2
U1 41 20 11 52 50 53 17 7 31 15 1 14 14
U2 54 8 6 60 49 32 9 8 38 34 3 26 10
U3 72 14 3 49 58 26 14 3 33 29 1 8 21
U4 62 28 30 84 61 32 34 9 46 22 5 47 29

2B

N 127 94 95 81 127 56 43 10 76 43 16 20 26
U1 120 66 57 23 56 49 35 25 73 87 10 33 29
U2 132 105 107 137 158 65 93 19 98 107 9 45 36
U3 110 48 89 77 124 48 26 14 66 95 23 32 32
U4 153 99 84 104 133 73 77 18 110 119 17 67 49

4B

N 190 149 182 150 181 72 81 64 123 140 16 81 37
U1 177 144 182 185 211 109 139 89 158 141 33 99 43
U2 199 153 208 178 217 118 143 86 175 165 54 113 61
U3 162 120 162 176 189 77 119 60 167 169 50 80 64
U4 181 143 126 134 188 95 114 41 156 123 43 87 60

8B P 130 106 149 123 121 85 93 88 53 100 9 20 14
PC 148 126 182 140 161 80 86 109 61 129 17 32 11

62B P 189 161 213 192 218 115 132 129 88 181 31 49 26
PC 204 175 247 218 243 124 145 156 100 192 50 51 33
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Table 15. Number of Questions passed for Transcoder. There are a total of 524 questions, and N represents the source language. S is
the size of the model, and D is the distribution it was trained on. P is the PaLM distribution while PC is the PaLM-Coder distribution.
Languages are sorted from high to low resource. Green values are the best values for that language, while red values are the worst.

N S D Java Py C++ PHP TS JS Go Dart Lua Rust C# R Julia HS

Py

1B

N 118 124 62 96 103 70 41 52 68 99 20 24 15
U1 41 13 11 51 40 41 10 10 43 28 14 9 25
U2 62 25 25 73 78 28 19 4 46 33 17 27 26
U3 51 43 11 52 66 17 8 9 43 46 19 17 30
U4 58 34 43 70 81 8 21 12 51 40 25 22 42

2B

N 191 225 197 160 231 114 76 47 78 140 46 36 41
U1 182 154 115 80 160 89 78 43 102 144 41 22 36
U2 205 233 190 188 271 133 130 33 132 192 35 61 45
U3 152 100 103 98 196 42 33 14 94 132 40 7 50
U4 195 196 152 172 248 119 123 73 134 185 46 70 59

4B

N 449 457 434 388 437 272 206 161 244 384 80 85 56
U1 408 427 420 424 445 327 237 239 330 354 70 100 75
U2 380 385 402 396 429 337 222 202 307 344 121 133 90
U3 417 430 397 417 431 300 229 159 347 369 132 54 95
U4 383 412 304 367 409 306 161 174 321 346 119 84 82

8B P 192 291 270 246 301 168 134 143 99 191 35 22 25
PC 280 314 336 324 371 175 169 233 115 267 62 57 34

62B P 379 438 441 429 444 303 199 308 171 400 101 99 56
PC 421 459 463 442 457 332 237 359 157 432 142 127 55

C++

1B

N 143 100 112 182 143 71 137 33 50 163 18 18 12
U1 104 78 92 104 82 49 125 20 50 66 18 5 20
U2 98 64 88 95 102 39 120 5 45 122 10 3 25
U3 121 82 65 112 112 57 123 2 48 162 12 2 28
U4 120 77 123 112 112 65 143 32 56 121 25 25 48

2B

N 278 245 295 269 285 127 171 86 97 226 48 41 42
U1 242 202 224 183 207 129 153 75 111 196 26 25 51
U2 285 218 311 282 299 121 153 68 105 244 31 37 63
U3 225 218 224 239 264 124 161 80 96 213 35 47 64
U4 260 190 247 263 288 163 174 78 131 255 46 94 80

4B

N 448 446 446 423 433 348 194 217 235 393 81 133 65
U1 437 410 422 419 425 365 224 234 315 391 73 112 79
U2 424 416 396 418 428 349 213 213 308 382 117 168 92
U3 435 434 428 433 431 322 202 212 334 418 129 86 88
U4 415 414 363 412 413 350 188 216 285 399 104 103 95

8B P 283 253 352 328 335 191 176 151 94 288 34 58 28
PC 350 370 379 367 382 228 197 236 126 319 37 58 33

62B P 424 407 451 411 420 323 202 300 157 405 100 141 49
PC 441 462 454 427 441 336 240 326 163 420 137 191 49
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Table 16. Metrics for HR languages on BC-HumanEval for all models. ∆ is the mean change of each of the displayed langauges when
compared to the natural.% Failed tests is the percent of predictions that did not have any errors, but failed a test. % Error is the percent of
predictions that had either a runtime or compilation error. % Timed Out is the percent of predictions that timed out. The time out was set
to 10 for all languages except for Java and TS, which was 15. % Passed is the percent of predictions that passed all test cases. % Passed
One is the percent of predictions that passed at least one test case, but failed.% Tests Passed is the mean percent of test cases passed per
problem for all predictions.

Metric D Java Py C++ PHP TS JS Go ∆

% Error
N 25.32 19.36 17.80 8.61 21.53 11.66 49.02
U1 28.85 17.45 19.83 10.25 21.53 11.00 47.23 0.40
U2 34.08 18.16 19.80 8.65 20.87 9.67 50.13 1.15

% Failed Test
N 59.94 65.12 64.94 78.45 63.92 74.60 42.02
U1 58.12 71.33 63.03 79.32 64.41 76.44 44.85 1.22
U2 54.34 68.89 66.97 80.25 66.59 77.56 42.34 1.13

% Passed
N 13.45 14.60 12.70 10.12 11.71 12.29 8.15
U1 11.57 10.68 11.29 8.41 11.69 11.64 7.50 -1.46
U2 10.16 11.93 11.05 8.37 11.29 11.30 6.96 -1.71

% Passed One
N 47.26 46.20 43.77 46.70 45.32 49.87 28.82
U1 44.68 42.83 42.80 43.60 45.95 48.47 30.39 -1.32
U2 41.69 43.92 43.38 43.02 46.13 47.87 28.69 -1.89

% Tests Passed
N 33.46 33.77 31.07 28.84 30.71 32.78 20.03
U1 30.45 28.69 29.25 26.29 31.42 31.78 20.21 -1.79
U2 27.44 29.58 28.64 25.49 30.44 30.61 18.75 -2.81

% Timed Out
N 1.29 0.93 4.57 2.82 2.84 1.45 0.80
U1 1.45 0.54 5.86 2.02 2.37 0.92 0.42 -0.16
U2 1.42 1.02 2.18 2.74 1.25 1.47 0.57 -0.58

Table 17. Metrics for LR languages on BC-HumanEval for all models. ∆ is the mean change of each of the displayed langauges when
compared to the natural.% Failed tests is the percent of predictions that did not have any errors, but failed a test. % Error is the percent of
predictions that had either a runtime or compilation error. % Timed Out is the percent of predictions that timed out. The time out was set
to 10 for all languages except for Java and TS, which was 15. % Passed is the percent of predictions that passed all test cases. % Passed
One is the percent of predictions that passed at least one test case, but failed.% Tests Passed is the mean percent of test cases passed per
problem for all predictions.

Metric D Dart Lua Rust C# R Julia HS ∆

% Error
N 62.06 31.31 51.61 43.80 70.08 68.90 85.70
U1 56.05 23.39 48.20 44.40 54.24 50.51 70.80 -9.41
U2 54.64 20.28 42.62 41.11 52.07 47.10 69.75 -12.27

% Failed Test
N 28.71 57.98 38.51 45.42 26.66 25.72 11.67
U1 34.37 66.01 41.50 46.84 42.05 42.28 24.69 9.01
U2 35.26 69.21 45.62 48.56 43.26 44.92 25.52 11.10

% Passed
N 8.74 8.60 8.74 9.94 2.99 4.75 1.81
U1 9.19 9.23 9.47 7.97 3.46 6.57 3.08 0.49
U2 9.27 8.74 10.73 8.86 3.98 6.83 3.57 0.92

% Passed One
N 25.51 40.39 28.48 36.26 15.62 25.07 8.29
U1 30.95 42.98 30.94 36.57 23.29 34.48 16.90 5.21
U2 31.58 35.78 33.45 36.41 26.42 33.11 17.55 4.95

% Tests Passed
N 19.43 24.31 20.53 25.49 8.70 13.79 5.13
U1 22.31 26.00 22.31 23.45 12.03 19.59 9.53 2.55
U2 22.32 22.79 24.36 23.92 13.68 19.25 10.48 2.77

% Timed Out
N 0.49 2.10 1.13 0.85 0.28 0.63 0.82
U1 0.39 1.38 0.82 0.80 0.25 0.64 1.43 -0.09
U2 0.83 1.78 1.04 1.46 0.69 1.14 1.16 0.26
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Table 18. Metrics for HR languages on TP3 for all models. ∆ is the mean change of each of the displayed langauges when compared to
the natural.% Failed tests is the percent of predictions that did not have any errors, but failed a test. % Error is the percent of predictions
that had either a runtime or compilation error. % Timed Out is the percent of predictions that timed out. The time out was set to 10 for all
languages except for Java and TS, which was 15. % Passed is the percent of predictions that passed all test cases. % Passed One is the
percent of predictions that passed at least one test case, but failed.% Tests Passed is the mean percent of test cases passed per problem for
all predictions.

Metric D Java C++ PHP TS JS Go ∆

% Error
N 60.94 49.05 59.66 62.13 60.44 92.53
U1 65.04 56.15 58.08 52.67 47.27 86.54 -3.17
U2 52.71 31.20 50.03 56.74 47.73 82.85 -10.58

% Failed Test
N 25.09 16.37 29.14 12.31 28.45 3.54
U1 23.17 17.19 32.55 19.78 38.94 7.71 4.07
U2 32.95 19.17 37.92 17.92 39.45 12.63 7.52

% Passed
N 9.40 6.54 10.39 7.33 10.91 3.91
U1 7.67 6.10 8.62 9.56 13.52 5.66 0.44
U2 8.30 4.12 9.80 7.73 11.68 4.36 -0.42

% Passed One
N 28.57 15.97 27.25 12.20 31.76 3.77
U1 27.17 16.99 29.46 19.59 43.19 8.45 4.22
U2 37.95 17.98 34.96 17.14 40.92 12.97 7.07

% Tests Passed
N 23.31 14.69 24.17 13.66 26.44 5.81
U1 20.82 14.76 23.62 19.67 34.89 9.80 2.58
U2 26.81 13.21 27.44 16.55 31.70 10.72 3.06

% Timed Out
N 4.57 28.03 0.81 18.23 0.20 0.02
U1 4.13 20.56 0.76 17.98 0.28 0.09 -1.34
U2 6.04 45.51 2.24 17.61 1.14 0.16 3.47

Table 19. Metrics for LR languages on TP3 for all models. ∆ is the mean change of each of the displayed langauges when compared to
the natural.% Failed tests is the percent of predictions that did not have any errors, but failed a test. % Error is the percent of predictions
that had either a runtime or compilation error. % Timed Out is the percent of predictions that timed out. The time out was set to 10 for all
languages except for Java and TS, which was 15. % Passed is the percent of predictions that passed all test cases. % Passed One is the
percent of predictions that passed at least one test case, but failed.% Tests Passed is the mean percent of test cases passed per problem for
all predictions.

Metric D Dart Lua Rust C# R Julia HS ∆

% Error
N 90.12 93.45 84.47 80.85 97.34 89.43 89.60
U1 79.83 85.22 77.93 80.02 95.20 83.65 89.39 -4.86
U2 80.96 86.36 72.00 71.00 92.17 81.19 84.96 -8.09

% Failed Test
N 4.78 5.42 11.54 13.10 2.00 4.23 7.96
U1 12.24 10.25 16.07 14.06 3.60 6.73 7.98 3.13
U2 12.73 9.82 21.21 21.30 6.38 9.20 11.34 6.13

% Passed
N 5.07 0.94 3.77 5.87 0.62 3.51 1.31
U1 7.83 4.22 5.84 5.76 1.20 5.92 1.74 1.63
U2 6.09 3.11 6.18 7.14 1.32 6.10 2.75 1.65

% Passed One
N 5.28 5.51 11.77 14.87 0.95 7.15 7.83
U1 13.96 11.43 16.51 16.31 1.83 11.11 7.97 3.68
U2 14.57 9.88 22.00 24.70 5.34 14.85 11.45 7.06

% Tests Passed
N 7.76 3.55 9.59 13.23 1.10 6.87 5.18
U1 14.74 9.62 14.10 13.74 2.11 11.03 5.77 3.40
U2 13.33 7.78 17.00 19.01 3.92 12.77 8.40 4.99

% Timed Out
N 0.02 0.20 0.22 0.18 0.03 2.82 1.12
U1 0.11 0.31 0.16 0.16 0.01 3.70 0.89 0.11
U2 0.22 0.71 0.60 0.56 0.13 3.51 0.96 0.30
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