
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SUPPLEMENTARY MATERIALS OF
BEYOND SIMPLE SUM OF DELAYED REWARDS:
NON-MARKOVIAN REWARD MODELING FOR REIN-
FORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

A IMPLEMENTATION DETAILS

A.1 BENCHMARKS WITH COMPOSITE DELAYED REWARD

In this work, we introduced a new problem setting, called composite delayed rewards, within the
suite of locomotion benchmark tasks in both the MuJoCo environment and the DeepMind Control
Suite. Our experiments were conducted using the OpenAI Gym platform (Brockman et al., 2016)
and the DeepMind Control Suite (Tassa et al., 2018), focusing on tasks with extended horizons
and a fixed maximum trajectory length of T = 1000. We utilized MuJoCo version 2.0 for our
simulations, which can be accessed at http://www.mujoco.org/. MuJoCo operates under
a commercial license, and we ensured full compliance with its licensing terms. Additionally, the
DeepMind Control Suite, distributed under the Apache License 2.0, was used in accordance with its
licensing requirements.

Experiments involving composite delayed rewards with varying delay steps (5, 25, 50, 100, 200, and
500) and different composite types (SumSquare, SquareSum, Max, and the traditional Sum) were
conducted to validate the effectiveness of the proposed method. In the Max experiment, the scaling
parameter β is set to 3. To evaluate its performance, commonly used delayed reward algorithms
were adapted to fit within the composite delayed reward framework, acting as baselines. In these
experiments, each segment with composite delayed rewards was treated as an independent trajectory,
and the modified algorithms were applied accordingly.

A.2 IMPLEMENTATION DETAILS AND HYPER-PARAMETER CONFIGURATION

In our experiments, the policy optimization module was implemented based on soft actor-critic
(SAC) (Haarnoja et al., 2018). We evaluated the performance of our proposed methods with the
same configuration of hyper-parameters in all environments. The back-end SAC followed the JaxRL
implementation (Kostrikov, 2021), which is available under the MIT License.

The proposed CoDeTr was built upon the GPT implementation in JAX (Frostig et al., 2018), avail-
able under the Apache License 2.0. Our experiments employed a Causal Transformer with three
layers and four self-attention heads, followed by an in-sequence bidirectional attention layer with
one self-attention head. For a comprehensive overview of the CoDeTr’s hyper-parameter settings,
please refer to Table 1.

For the baseline methods, the IRCR (Gangwani et al., 2020) method was implemented following the
descriptions provided in the original paper. Both the RRD (Ren et al., 2021) and LIRPG (Zheng
et al., 2018) methods are distributed under the MIT License. The code for HC (Han et al.,
2022) is available in the supplementary material at https://openreview.net/forum?id=
nsjkNB2oKsQ, while the code for RBT (Tang et al., 2024) can be found in the original paper.

To maintain consistency in the policy optimization process across all methods, each was subjected
to 1,000,000 training iterations. For the proposed method, a dataset of 10,000 time steps was first
gathered to pre-train the reward model. This model underwent 100 pre-training iterations, which
was deemed necessary to properly initialize the reward model before commencing the main policy
learning phase. After this warm-up period, the reward model was updated for 10 iterations following

1

http://www.mujoco.org/
https://openreview.net/forum?id=nsjkNB2oKsQ
https://openreview.net/forum?id=nsjkNB2oKsQ


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Hyper-parameters of CoDeTr.

Hyper-parameter Value
Number of Causal Transformer layers 3

Number of in-sequence attention layers 1
Number of attention heads 4

Embedding dimension 256
Batch size 64

Dropout rate 0.1
Learning rate 0.00005

Optimizer AdamW (Loshchilov & Hutter, 2018)
Weight decay 0.0001
Warmup steps 100

Total gradient steps 10000

the addition of each new trajectory. Furthermore, to monitor performance systematically, evaluations
were conducted every 5,000 time steps. During prediction, the sequence length used for prediction
is set to H = 100. All computations were performed on NVIDIA GeForce A100 GPUs with 40GB
of memory, which were dedicated to both training and evaluation tasks.

A.3 DATA NORMALIZATION PROCEDURES

The normalization process for our data varies depending on the type of composite delayed reward.
Specifically:

• For SumSquare, the normalization is calculated as:∑
R̂co

T ·
∑

(rmax)2
.

• For SquareSum, the normalization is given by:∑
R̂co∑(

T
n · (rmax · n)2

) .
• For Max, the normalization is computed as:∑

R̂co∑
rmax

.

Here, R̂co represents the predicted composite delayed reward, T is the total number of time steps
in a trajectory, rmax is the maximum possible reward in the environment, and n is the number of
delayed steps in each segment.

In essence, the normalization process involves scaling
∑
Rco by the maximum achievable reward in

the given environment. This approach ensures that results from experiments with different delayed
steps are on the same scale, enabling meaningful comparisons across varying delayed steps and their
impact on the learning process.

B ALGORITHM

The training process involves alternating between updating the reward model and optimizing the
policy, which creates a continuous loop of mutual improvement. First, the agent collects trajectories
by interacting with the environment according to the current policy. These trajectories are then used
to train the CoDeTr, which learns to predict instance-level rewards and composite delayed rewards
for sequences. The training is done by minimizing the mean squared error (MSE) loss between
the predicted composite reward Rco(τ) and the observed composite delayed reward R̂co(τ). This

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Algorithm 1 Policy Optimization with CoDeTr
1: Initialize: replay buffer D, CoDeTr parameters ψ, and policy π.
2: while training is not complete do
3: Collect a trajectory T by interacting with the environment using the current policy π.
4: Store trajectory T with composite delayed reward information based on sequences

{(τ,Rco(τ))} in replay buffer D..
5: Sample batches from replay buffer D.
6: Compute the mean squared error loss (Rco(τ) − R̂co(τ))

2 for CoDeTr using the sampled
sequences from the replay buffer.

7: Update CoDeTr parameters ψ based on the computed loss.
8: Relabel instance-level rewards in replay buffer D using the updated CoDeTr.
9: Optimize policy π using the relabeled data with an off-the-shelf RL algorithm (e.g.,

SAC (Haarnoja et al., 2018)).
10: end while

loss function allows CoDeTr to accurately capture the relationships and dependencies within each
sequence, ensuring that both individual and sequence-level contributions are effectively represented.
Using the updated CoDeTr model, the rewards for state-action pairs in replay buffer are relabeled,
providing more accurate feedback for policy optimization. The updated rewards are used to further
refine the policy using reinforcement learning algorithms like SAC, enabling the agent to learn
effective strategies even in environments with delayed rewards. This iterative procedure enhances
both the reward model and the policy through each training cycle.

C ADDITIONAL RESULT

Table 2: Performance comparison across different settings, utilizing various delayed steps ranging
from 25 to 200 in the Ant-v2 environment, evaluated over 3 independent trials. The scores presented
are normalized to ensure comparability across different configurations. The methods that demon-
strated the best performance, along with those that were statistically comparable based on a paired
t-test at a significance level of 5%, are highlighted in boldface for emphasis.

Delayed Type SAC LIRPG HC IRCR RRD RBT CoDeTr(ours)

Sum 0.0004 −0.1759 0.0025 0.03364 0.3327 0.5699 0.5493
(0.0002) (0.0631) (0.0058) (0.0281) (0.2095) (0.0162) (0.0187)

SumSquare −0.0067 −0.0159 0.0198 −0.0617 0.0308 0.2821 0.3910
(0.0022) (0.0027) (0.0005) (0.0273) (0.0207) (0.0703) (0.0431)

SquareSum −0.0902 −0.0012 −0.0280 −0.1060 0.0575 0.0890 0.1992
(0.1031) (0.0001) (0.0275) (0.0303) (0.0173) (0.0240) (0.0110)

Max 0.04093 −0.1982 0.0108 −0.0093 0.2193 0.4669 0.5318
(0.0065) (0.0373) (0.0103) (0.0524) (0.0416) (0.1078) (0.0821)

In Table 2, the performance of different methods is compared across various composite delayed re-
ward types: Sum, SumSquare, SquareSum, and Max, on the Ant-v2 environment. Our proposed
method, CoDeTr, consistently performed well across all composite delayed reward configurations,
either achieving the best results or performing comparably to the top baseline methods. In particu-
lar, CoDeTr showed strong performance under different composite delayed reward settings, demon-
strating its ability to handle complex reward structures effectively. These results indicate that our
approach is robust and adaptable, providing high-quality performance across a range of composite
delayed reward scenarios.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

D DISCUSSION

Limitation. Our experimental results demonstrate that the proposed approach performs effectively
across various types of composite delayed rewards, showing notable improvements over baseline
methods. However, we also observed increasing difficulty in efficiently learning the policy as the
delay length grew longer. This challenge arises because longer delays weaken the temporal connec-
tion between specific actions and their resulting outcomes, increasing uncertainty when attempting
to determine which actions contributed to the observed reward. Consequently, the diminished ability
to effectively assign credit to individual actions complicates the policy training process, leading to
slower convergence and reduced overall performance in scenarios with extended delay lengths, as
evidenced in our experiments.

Future Direction. A key area for future work lies in addressing the challenges posed by longer
reward delays. Our experiments have shown that increasing the delay length significantly compli-
cates credit assignment to individual actions. To better capture long-range dependencies in such
settings, future research could focus on developing advanced temporal credit assignment methods,
such as improved attention mechanisms or memory-augmented neural networks. These techniques
may enhance the model’s ability to trace rewards back to responsible actions, even in situations with
extended delays.

Expanding the use of composite delayed rewards to broader application scenarios represents another
promising direction. Domains such as healthcare, autonomous vehicles, and industrial robotics often
involve delayed and complex feedback that makes instance-level rewards impractical. Investigating
how our proposed approach can generalize to these real-world applications would demonstrate its
practical utility and robustness. Moreover, such exploration could help identify potential modifica-
tions required to adapt the framework to specific challenges, such as safety and real-time require-
ments inherent in these domains.

In addition, integrating human-in-the-loop feedback with composite delayed rewards could signif-
icantly enhance the learning process. Human evaluators often assign feedback based on pivotal
events and use non-linear reasoning, which traditional reward models may fail to capture. Incor-
porating human feedback more directly, possibly through preference learning models aligned with
composite delayed rewards, could improve the agent’s ability to learn behaviors that align with hu-
man expectations. This approach would be particularly valuable in interactive environments where
understanding human intent is crucial for the agent’s success.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

REFERENCES

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Roy Frostig, Matthew James Johnson, and Chris Leary. Compiling machine learning programs via
high-level tracing. Systems for Machine Learning, 4(9), 2018.

Tanmay Gangwani, Yuan Zhou, and Jian Peng. Learning guidance rewards with trajectory-space
smoothing. In The Thirty-third Annual Conference on Advances in Neural Information Processing
Systems, 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In The Thirty-fifth Inter-
national Conference on Machine Learning. PMLR, 2018.

Beining Han, Zhizhou Ren, Zuofan Wu, Yuan Zhou, and Jian Peng. Off-policy reinforcement learn-
ing with delayed rewards. In The Thirty-ninth International Conference on Machine Learning.
PMLR, 2022.

Ilya Kostrikov. JAXRL: Implementations of Reinforcement Learning algorithms in JAX, 10 2021.
URL https://github.com/ikostrikov/jaxrl.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In The Sixth International
Conference on Learning Representations, 2018.

Zhizhou Ren, Ruihan Guo, Yuan Zhou, and Jian Peng. Learning long-term reward redistribution via
randomized return decomposition. In The Ninth International Conference on Learning Represen-
tations, 2021.

Yuting Tang, Xin-Qiang Cai, Yao-Xiang Ding, Qiyu Wu, Guoqing Liu, and Masashi Sugiyama.
Reinforcement learning from bagged reward. In ICML 2024 Workshop: Aligning Reinforcement
Learning Experimentalists and Theorists, 2024.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Bud-
den, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite, 2018.

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy gradient
methods. In The Thirty-first Annual Conference on Advances in Neural Information Processing
Systems, 2018.

5

https://github.com/ikostrikov/jaxrl

	Implementation Details
	Benchmarks with Composite Delayed Reward
	Implementation Details and Hyper-parameter Configuration
	Data Normalization Procedures

	Algorithm
	Additional Result
	Discussion

