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SATPose: Improving Monocular 3D Pose Estimation with
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ABSTRACT
Estimating 3D human poses from monocular images is an impor-
tant research area with many practical applications. However, the
depth ambiguity of 2D solutions limits their accuracy in actions
where occlusion exits or where slight centroid shifts can result
in significant 3D pose variations. In this paper, we introduce a
novel multimodal approach to mitigate the depth ambiguity inher-
ent in monocular solutions by integrating spatial-aware pressure
information. To achieve this, we first establish a data collection
system with a pressure mat and a monocular camera, and con-
struct a large-scale multimodal human activity dataset compris-
ing over 600,000 frames of motion data. Utilizing this dataset, we
propose a pressure image reconstruction network to extract pres-
sure priors from monocular images. Subsequently, we introduce a
Transformer-based multimodal pose estimation network to com-
bine pressure priors with monocular images, achieving a world
mean per joint position error (W-MPJPE) of 51.6mm, outperform-
ing state-of-the-art methods. Extensive experiments demonstrate
the effectiveness of our multimodal 3D human pose estimation
method across various actions and joints, highlighting the sig-
nificance of spatial-aware pressure in improving the accuracy of
monocular 3D pose estimation methods. Our dataset is available at:
https://anonymous.4open.science/r/SATPose-51DD.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; • Computing methodologies →
Motion capture.

KEYWORDS
Multimodal 3D Human Pose Estimation, Pressure Sensor, Multi-
modal Human Activity Dataset, Pressure Image Reconstruction

1 INTRODUCTION
Estimating 3D human poses from monocular images and videos
[21, 42, 48, 53, 62] is a classic and challenging computer vision task,
which involves determining the locations of various body keypoints
to construct a representation of the human skeleton. Thanks to its
wide range of applications in sports and fitness, medical rehabil-
itation, virtual character embodiment in games, etc., significant
efforts have been made to explore advanced network architectures
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Figure 1: We constructed a real-time 3D human pose estima-
tion system, consisting of a monocular camera and an op-
tional pressure mat (left). With pressure images, we mitigate
the inherent depth ambiguity in monocular vision solutions,
enabling accurate prediction of 3D human poses (right).

[20, 29, 43, 56] to improve its accuracy. However, the fact that
monocular vision cannot reliably gauge depth makes it difficult
for these efforts to be fully effective [26, 56]. Specifically, different
body movements can be projected into the image space in the same
2D pose. During certain actions like sideways poses, some parts
of the human body may be occluded by other body parts; slight
shifts in the body centroid that may not be easily discernible from
monocular images can lead to different body poses; deficiencies
in depth information estimation can also detrimentally impact the
effectiveness of global displacement estimation. To alleviate the
impact of depth ambiguity, previous research either resorts to the
temporal context captured by successive action frames [26, 39] or
the spatial context of the input monocular image modeled by Graph
Neural Networks (GNNs) [8, 20]. Although effective, these methods
rely solely on monocular 2D visual cues and lack true 3D spatial
awareness, thus limiting their performance.

Parallel to monocular-vision-based methods, grounding tactility
has also been used to estimate 3D human poses. The benefit of
this approach originates from the large size and flexible nature of
pressure sensors, enabling their embedding into everyday exercise
equipment such as fitness mats. This expands the applicability of
pressure sensors in various domains including sports, fitness and
medical rehabilitation, etc. To achieve these, most existing works
rely on array-type pressure sensors as tactile sensing devices, which
are highly sensitive to external forces and offer precise localization
of force areas and perception of force magnitude. For example,
some prior works [6, 45] utilized pressure insoles and pressure
mats to study the distribution of plantar pressure during human
motion; Luo et al. [32] proposed a method utilizing solely pressure
mat information to estimate 3D human pose. Despite achieving
lower full-body estimation accuracy compared to visual approaches,
pressure sensors demonstrated excellent performance in lower limb
joint estimation, highlighting their potential to address the depth
ambiguity inherent in vision-based solutions. Inspired by this, we
propose an integrative approach that ingeniously leverages the
sensitivity of pressure sensors to grounding positions tomitigate the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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depth ambiguity of monocular vision method, thereby improving
the accuracy of 3D human pose estimation. However, this is a
challenging task as: i) to the best of our knowledge, there are no
existing systems that can simultaneously collect both tactile and
vision data, while collecting this type of multimodal dataset requires
substantial effort. ii) Developing an algorithm to fuse the different
modalities introduced by the new system poses another challenge.
iii) Introducing new hardware increases the system’s complexity.

To tackle these challenges, in this paper, we established a hu-
man activity collection system incorporating a pressure mat and
a monocular camera, and introduced a Transformer-based multi-
modal framework designed for accurate 3D human pose estimation
from both monocular images and pressure images (Fig. 1). Com-
pared to monocular methods, our approach enhances the 3D per-
ception of the system by integrating additional spatial knowledge
from ground pressure, resulting in more accurate 3D pose esti-
mation. Specifically, utilizing the data collection system we built,
we first created a large-scale multimodal human activity dataset,
namely the PVM (Pressure, Vision, Mocap) Dataset, which includes
pressure images, monocular images and ground truth 3D poses.
This dataset covers data from 20 volunteers performing 16 different
actions, totaling over 600,000 frames. Particularly, to enhance the
generalizability and performance of our method in various sce-
narios, especially those where a pressure mat is unavailable, we
proposed a test-time adaptation strategy that reconstructs pres-
sure images from monocular images and feeds them into the pose
estimation network. Leveraging the large-scale PVM Dataset, we
can reliably reconstruct ground pressure images from monocu-
lar images, and then achieve accurate 3D human pose estimation
even if no real pressure information is available during testing.
Experimental results show that our multimodal 3D pose estimation
network achieved a world mean per joint position error (W-MPJPE)
of 51.6mm and 51.8mm with real pressure and predicted pressure,
respectively, both surpassing state-of-the-art methods. This demon-
strates the effectiveness and flexibility of our approach, allowing
for choosing whether to use the pressure mat depending on the
requirement for higher accuracy or simpler system complexity.

In summary, our contributions can be summarized as follows:
• A novel human activity collection system including a pres-
sure mat and a monocular camera. Leveraging this system
and optical motion capture cameras, we constructed the PVM
Dataset, a large-scale multimodal human activity dataset.

• A test-time adaptation strategy that predicts pressure data
from monocular images, enabling accurate 3D human pose
estimation solely from monocular images during testing.
This makes our system applicable to more diverse real-world
scenarios, especially those without a pressure mat.

• A Transformer-based multimodal fusion framework that
incorporates spatial-aware pressure information to mitigate
the inherent depth ambiguity of monocular-vision-based 3D
pose estimation methods and improve their accuracy.

2 RELATEDWORK
2.1 Vision-based 3D Human Pose Estimation
3D human pose estimation (HPE) is a traditional computer vision
task [1, 2, 38, 48, 62], existing works of 3D HPE can broadly be

classified into two mainstreams. The first involves the one-stage
estimation [12, 38, 46], where the 3D poses are directly predicted
from the images. The second is the two-stage estimation, where
the 2D poses are first extracted from the images, and then a lift
from 2D to 3D is performed. As for two-stage estimation, bene-
fiting from the excellent performance of state-of-the-art 2D pose
detectors [7, 19, 34], numerous works [25, 29, 39, 44, 49, 59, 61] en-
gage in improving the performance of 2D-3D pose lifting. Most of
them can be divided into TCN (Temporal Convolutional Network)-
basedmethods [29, 39], GCN (Graph Convolutional Network)-based
methods [8, 20, 54–56, 60] , and Transformer-basedmethods [18, 26–
28, 31, 41, 43, 49, 63]. Compared to TCN-and-GCN-based structures,
Transformer-based architecture is better suited for modeling long
sequnences of 2D poses due to its well-designed attention mech-
anism. In this paper, we innovatively incorporate a multimodal
Transformer-based structure to fuse the 2D poses extracted from
monocular images and ground pressure data.

2.2 Application of Pressure Sensors
Pressure sensors can provide comprehensive biomechanical in-
formation. Their integration in various fields such as interactive
control [14, 36, 40], robot touch [24, 57], gesture recognization
[3, 15, 30, 47, 51, 52], etc., highlights their unique advantages. For
example, TouchEditor [58] supports text editing for AR glasses
through tactile gestures on a flexible touchpad. SmartSleeve [36]
enables real-time sensing of surface and deformation gestures on a
textile pressure sensor. In addition to the aforementioned small-area
pressure sensors, studies by Clever et al. [9] and Casas et al. [5]
utilize 2D pressure data to simulate lying postures, while Luo et al.
[32] propose a method for 3D pose estimation using pressure sen-
sors integrated into a mat, showing promising prospects in depth
estimation and lower limb pose estimation. However, it is difficult
to provide effective support for upper limb posture estimation us-
ing a single pressure sensor. Therefore, we integrate visual and
tactile information, leveraging the complementary nature of both
to enhance the pressure-based pose estimation, while addressing
issues such as depth information absence in monocular images and
estimation errors from centroid shifts.

2.3 Multimodal 3D Human Pose Estimation
Recent research [10, 17, 23, 33, 37, 64] indicates that integrating
data from various sensors can improve the accuracy of 3D human
pose estimation. For instance, Pan et al. [35] merge monocular RGB
and sparse IMU data to facilitate robust motion capture even when
visual signals are unavailable. [16] proposes an architecture fusing
RGB and LiDAR data for precise pedestrian localization and pose
prediction. [37] achieves efficient and accurate pose tracking by
integrating data from LiDAR and IMU sensors. Additionally, Zhou
et al. [65] integrate visual features, skeletal poses, probability maps,
and multi-channel audio signals to create a hybrid representation
for human action analysis. However, these wearable device-based
solutions introduce foreignness and interference to human move-
ment in rehabilitation and sports training. Sensor displacement
during movement can also compromise the effectiveness of pose
estimation. In contrast, our solution can offer users a seamless
training experience while ensuring stable tracking performance.
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3 PVM DATASET
In this section, we detail the experimental setup employed for the
collection of the large-scale multimodal human activity dataset,
PVM (Pressure, Vision, Mocap) Dataset.

Figure 2: Diagram of the multimodal data collection system,
comprising a pressure mat and a monocular camera situated
in an optical motion capture space, and all devices centrally
controlled by a computer.

3.1 Participants and Actions
3.1.1 Participants. Twenty volunteers (10 M and 10 F, mean age =
22.9, SD = 2.86) were invited to participate in our data collection
experiment. The body mass index (BMI) of participants ranged from
18 to 28, ensuring a moderate amount of body shape variability and
different ranges of mobility among them. Participants were outfitted
in a motion capture suit crafted from elastic Velcro fabric, including
a top, pants, hat, and foot covers. The suit was designed to be
flexible and elastic, prioritizing participants comfort andminimizing
interference with their movements to the greatest extent possible.
Our research received Institutional Review Board (IRB) approval
from the local institution of the university. All individuals signed
an informed consent form before the experiment, and they were
remunerated accordingly after the completion of the experiment.

3.1.2 Actions. We focus on 3D human pose estimation for actions
with some body parts being occluded and actions sensitive to slight
shifts in body centroid. It is challenging to address these issues
with monocular images due to depth ambiguity, yet they can im-
pair the effectiveness of applications requiring high-precision pose
estimation, such as sports training. Thus, by filtering and integrat-
ing existing human activity datasets [22, 32] and the functional
movement screen (FMS) action set [11], we designed a set of 16
actions (see Fig.3). Participants performed each action for approxi-
mately 90 seconds (1800 frames), with the flexibility to take breaks
as needed. Prior to the commencement of the experiment, the re-
searcher conducted a brief demonstration of each action for the
participant. Once the experiment began, no additional guidance
was provided, allowing participants the freedom to perform actions
at any location according to their individual preferences.

3.2 Apparatus
3.2.1 Pressure Sensing Mat. The ground pressure images were col-
lected using a commercial, large-format, high-resolution pressure

Figure 3: 16 human actions in the PVM dataset.

sensing mat provide by Matrix Innovation1. As shown in Fig.4, this
mat is equipped with eight independent piezoresistive film sensors.
The application of external pressure leads to a slight change in the
distance between film layers, resulting in variations in the resis-
tance and output voltage of the sensing layer. The pressure sensors
can detect pressures of up to 30 kPa, with a sensitivity of 0.5 kPa.
Each pressure sensor covers an area of 50 × 40cm2 with a resolution
of 64 × 32. Thus, the final assembled pressure sensing mat has an
area of 200 × 80cm2, and the resolution of output pressure image is
256 × 64. The output values for each sensor point fall within the
range of [0, 100]. These eight pressure sensors are wired and con-
nected to an eight-in-one serial module, which is further connected
to a computer. Sensor data is transmitted via serial communication
at a collection frame rate of 20Hz, and data synchronization among
sensors is achieved through broadcast communication.

Figure 4: The pressuremat is composed of eight piezoresistive
film sensors, with each pressure sensor having an area of 0.5
× 0.4m2 and a resolution of 64 × 32.

3.2.2 Monocular Camera. We employed the C93 monocular cam-
era manufactured by AONI2 to record videos of human activities
(Fig.2). The videos were captured at a resolution of 1280 × 720
with a frame rate of 30Hz. The camera was securely mounted on
a tripod, positioned 1.7m directly in front of the pressure sensing
mat at a height of 1.2m. This camera setup was designed to ensure
the capture of the complete body of all participants at any location
on the pressure sensing mat. The camera was connected to a com-
puter through a wired connection, facilitating control over video
recording and the transmission and storage of the video stream.

1https://www.moxiantech.com/
2https://www.aoni.cc/
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3.2.3 Optical Motion Capture System. We utilized a optical motion
capture (Mocap) system manufactured by NOKOV 3, which con-
sists of 12 Mars2H series optical cameras, to record the 3D human
pose (Fig.2). This data serves as the ground truth for subsequent
model training. The Mocap system determines the 3D positions of
the 18 body joints by capturing the reflective markers on human
body, ultimately recording the human motion with millimeter-level
precision (error range of ±0.15 mm) and a frame rate of 60Hz.

3.3 Dataset Structure
The three aforementioned data acquisition devices were connected
to the same computer for data collection and storage control, en-
suring data synchronization. The computer receives eight 64 × 32
pressure matrices from the pressure mat and ultimately concate-
nates them into a 256 × 64 pressure matrix. Mocap data is exported
in .bvh format and further converted into the 3D world coordinates
of various body keypoints, resulting in data of size 18 × 3 for each
frame. For monocular videos, we retain the original image frames,
and extract 2D skeleton keypoints with the open-source human
pose estimation library, OpenPose [4]; Finally, we obtain 2D skele-
ton with 18 keypoints corresponding one-to-one with the 3D one.
After post-processing, data from all modalities were unified to a
frame rate of 20Hz. In the end, we collected over 600,000 frames of
multimodal human activity data from 20 participants performing
16 actions. The dataset was divided into a training set and a test set
with a ratio of 16:4 participants.

4 METHOD
In this section, we introduce our data-driven pressure image re-
construction method along with the multimodal 3D human pose
estimation framework.

4.1 Data-driven Pressure Image Reconstruction

Figure 5: Architecture of the pressure image reconstruction
network, employing a convolutional neural network to pre-
dict the pressure image from input 2D human pose.

4.1.1 Motivation. The spatial-aware grounding tactility is crucial
for enhancing the 3D perception capability of monocular-vision-
based human pose estimation networks. However, the reliance on
the pressure mat may limit the application of this system to more
scenarios. There is a need for an adaptive method that can utilize
pressure information during testing while overcoming the restric-
tions associated with the pressure mat. A dual-pronged strategy
involves extracting pressure priors from 2D poses, and subsequently
utilizing both 2D poses and pressure images reconstructed from
3https://www.nokov.com/

Figure 6: Qualitative evaluation results of the pressure image
reconstruction model.

2D poses to estimate 3D poses. The PVM dataset, a large-scale
multimodal human activity dataset including rich pressure images
corresponding to 2D poses, provides a robust data foundation for
training a high-precision pressure image reconstruction network.

4.1.2 Implementation. We propose a pressure image reconstruc-
tion network based on a multi-layer deconvolution neural network
(Fig.5). Given a 2D pose 𝑃𝑜 ∈ R𝐽 ×2, representing the (x, y) co-
ordinates of 𝐽 (𝐽 = 18) body joints, we first concatenate these
𝐽 2D coordinates to obtain 𝑃𝑜

′ ∈ R𝐽 ·2. Then, through a Multi-
Layer Perception (MLP), we embed 𝑃𝑜

′ into a high-dimensional
feature 𝑍 ∈ R𝑑𝑚 (𝑚 = 128), and further map it to the image space
𝑍 ′ ∈ R𝑑𝑚×1×1 using a fully connected layer. Subsequently, the
feature 𝑍 ′ is input into multiple deconvolution blocks, gradually
reducing its channel number, upsampling its resolution, and finally
obtaining the reconstructed pressure image 𝐼 ∈ R1×𝐻×𝑊 . 𝐻 = 256
represents the height and𝑊 = 64 represents the width of the image.
Each deconvolution block comprises a convolutional layer for chan-
nel transformation, a deconvolutional layer for upsampling image
resolution, three convolutional layers for further feature extrac-
tion, and corresponding batch normalization, dropout, and ReLU
activation operations. Additionally, Mean Squared Error (MSE) is
used as the loss function for model optimization. In this process,
the network learns how to synthesize more detailed pose features,
ultimately successfully reconstructing pressure images of the target
size. This achievement is attributed to the large-scale PVM dataset,
enabling the data-driven network to effectively extract pressure
priors and accurately reconstruct pressure images.

4.1.3 Training. We train the pressure image reconstruction model
for 35 epochs with one 3090 GPU, taking about 12 hours to converge.
We employ the Adam optimizer with a peak learning rate of 1e-3
that gradually decreases following a cosine learning rate schedule.

4.1.4 Reconstruction Performance. We assessed the performance
of the pressure image reconstruction model on the PVM test set.
Fig.6 presents visual results illustrating the qualitative evaluation
of the reconstruction model. The model demonstrated outstanding
reconstruction performance in various scenarios, including actions
with both feet on the ground, actions with a single foot on the
ground, and actions involving multiple body parts in contact with
the ground. Notably, the model excelled in actions with a frontal
stance and both feet on the ground, accurately reconstructing the
position and shape of footprints, and capturing differences in pres-
sure distribution caused by changes in the body centroid (Deep
Squat and Waiting). For lateral and single-footed actions, recon-
structed pressure images also accurately reflected the body centroid
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Figure 7: Architecture of the 3D human pose estimation network, employing a Transformer-based neural network to predict
the 3D human pose of the target frame from input sequences of pressure images and monocular images.

and provided a reasonably accurate depiction of the contact position
(Inline Lunge and Hurdle Step). Even for actions involving multiple
body parts in contact with the ground, such as Push-ups, the model
achieved satisfactory reconstruction results. In more flexible ac-
tions with greater individual variations, such as Sitting, the model
appropriately reconstructed the pressure distribution. In summary,
the reconstructed pressure images possess the capability to provide
the necessary spatial and pressure magnitude information for 3D
pose estimation.

4.2 Multimodal 3D Human Pose Estimation
We propose a Transformer-based framework (Fig.7) for estimating
3D pose from sequences of 2D keypoints and pressure images.

4.2.1 Pose Embedding. The encoding of 2D poses is executed with
a convolutional network. The input consists of multiple frames of
2D poses, denoted as 𝑃𝑜 ∈ R𝑁× 𝐽 ×2, where 𝑁 = 351 represents
the number of frames, and 𝐽 = 18 represents the number of body
joints. The 𝑁 frames encompass the current frame along with the
past 𝑁−1

2 frames and future 𝑁−1
2 frames. The pose embedding

concatenates the 2D coordinates (𝑥,𝑦) of the 𝐽 joints for each
frame, resulting in 𝑁 tokens 𝑃𝑜′ ∈ R𝑁×( 𝐽 ·2) . Subsequently, a 1D
convolutional layer embeds each token into a high-dimensional
feature 𝑍𝑝𝑜 ∈ R𝑁×𝑑𝑚 , (𝑚 = 256).

4.2.2 Pressure Embedding. The encoding of pressure images is
realized through a Vision Transformer (ViT)-based architecture
[13]. The input pressure images, denoted as 𝑃𝑟 ∈ R𝑁×𝐻×𝑊 , have
𝑁 frames in the sequence, with 𝐻 = 256 representing the height
and𝑊 = 64 representing the width of each pressure image. Prior
to the encoding, pressure images are resized from 256 × 64 to
120 × 120, aligning them with the input format of Transformer.
Subsequently, each pressure image is divided into a sequence of
tokens, which are then fed into Transformer’s encoder. ViT encodes
this information into a high-dimensional feature representation,

resulting in 𝑍𝑝𝑟 ∈ R𝑁×𝑑𝑚 . Leveraging the global relationship
modeling capability of ViT for sequential data, it effectively captures
spatial relationships within pressure images.

4.2.3 Pure Transformer. The 2D pose embedding and pressure
image embedding are added to obtain a fused feature vector, de-
noted as 𝑍 0 ∈ R𝑁×𝑑𝑚 = 𝑍𝑝𝑜 + 𝑍𝑝𝑟 . 𝑍 0 is further encoded using
Vanilla Transformer [50] to obtain an intermediate feature vector
𝑍 1 ∈ R𝑁×𝑑𝑚 . Vanilla Transformer operates based on self-attention
mechanisms, allowing it to better understand the spatial relation-
ships between different joints and contextual information between
different frames. By stacking these layers, the network can effec-
tively encode information about multi-frame human movements,
capturing the spatiotemporal correlations between body keypoints.

4.2.4 Stride Transformer. Our ultimate goal is to estimate the 3D
human pose for the current frame. Therefore, we use Stride Trans-
former [26] to compress the frame dimension of the features 𝑍 1.
Unlike Pure Transformer, Stride Transformer replaces the feedfor-
ward neural network (FFN) layer with a convolutional feedforward
neural network (CFFN) layer. This involves downsampling the in-
put vector through convolutional operations, resulting in the final
feature representation 𝑍 2 ∈ R1×𝑑𝑚 for the current frame.

4.2.5 Regression Head and Loss Function. To better model multi-
frame pose information, we supervise the model at both the full
sequence scale and the single target frame scale. Specifically, regres-
sion is performed on the outputs 𝑍 1 and 𝑍 2 of Pure Transformer
and Stride Transformer, respectively, to obtain the estimated 3D
poses 𝑋 1 ∈ R𝑁× 𝐽 ×3 and 𝑋 2 ∈ R𝐽 ×3. 𝑋 1 and 𝑋 2 represent the
estimation results for the 3D poses across 𝑁 frames and the 3D
pose for the current frame, respectively. The regression head con-
sists of a batch normalization layer and a 1D convolutional layer.
Given the 3D pose sequence ground truth 𝑌 1 ∈ R𝑁× 𝐽 ×3 and the
target frame 3D pose ground truth 𝑌 2 ∈ R𝐽 ×3, the L2 norm is com-
puted between 𝑋 1 and 𝑌 1, and between 𝑋 2 and 𝑌 2, serving as two
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Table 1: Quantitative comparison results with state-of-the-art methods on protocol #0. Bold and underline indicate the best
and second-best values.

Protocol #0 D.S. S.T. H.S. I.L. M.P. A.W. Direction W.T. Twisting Bending Sitting A.S.L.R. R.S. P.U. Posing Waiting Avg.

Shan et al. [44] MM2021 56.7 47.1 57.5 60.7 55.0 60.5 52.4 52.6 51.3 57.7 52.4 54.6 87.8 76.2 70.1 62.3 59.7
Li et al. [26] ToMM2022 49.8 43.1 58.5 65.8 54.5 56.2 50.9 46.9 55.5 60.4 52.2 50.9 73.9 70.4 65.1 49.7 56.5
Shan et al. [43] ECCV2022 48.7 46.4 55.7 60.0 49.3 55.2 51.5 44.4 50.7 57.7 50.4 50.9 71.2 68.1 62.8 70.1 55.8
Li et al. [27] CVPR2022 52.8 47.2 58.2 61.6 55.5 56.1 57.3 47.3 58.1 59.4 55.5 53.8 76.3 67.4 63.8 72.2 58.9
Zhang et al. [59] CVPR2022 64.0 62.1 60.0 64.1 66.0 59.6 64.0 63.9 55.5 55.4 50.7 54.0 72.5 57.7 80.1 69.6 62.5
Zhao et al. [61] CVPR2023 53.6 48.5 56.6 64.1 58.8 61.2 58.1 47.9 52.1 64.6 51.6 53.6 81.3 65.9 74.1 67.3 60.0
Yu et al. [56] ICCV2023 50.3 44.7 56.2 64.4 52.7 54.2 51.5 50.2 58.1 57.5 52.3 56.1 79.2 70.0 60.4 48.9 56.7

Ours (pred. pressure) 47.1 41.4 57.0 63.0 48.1 48.4 46.2 43.1 45.4 54.7 49.8 47.7 68.5 62.9 56.4 45.4 51.8
Ours 44.4 41.2 56.5 61.6 47.4 53.8 46.9 40.5 44.2 56.4 47.2 46.1 70.7 63.6 58.8 46.9 51.6

separate loss functions, i.e., 𝐿1 (𝑌1, 𝑋1) =
∑𝑁
𝑛=1

∑𝐽
𝑗=1




𝑌1𝑛𝑗 − 𝑋1𝑛𝑗





2
,

𝐿2 (𝑌2, 𝑋2) =
∑𝐽

𝑗=1


𝑌2 𝑗 − 𝑋2 𝑗




2. Therefore, the total loss for the

3D pose estimation network is 𝐿 = 𝐿1 + 𝐿2.

4.2.6 Training. We train the pose estimation model for 25 epochs
with one 3090 GPU, which takes about 20 hours to converge. We
employ the Adam optimizer with a peak learning rate of 1e-3 that
gradually decreases following a cosine learning rate schedule.

4.3 Metrics
MPJPE (mean per joint position error) is a commonly used metric
for evaluating the performance of human pose estimation networks.
In this paper, the variant of MPJPE is used, i.e., W-MPJPE (proto-
col #0), measured in millimeters (mm). It indicates the Euclidean
distance between the predicted joint positions and the true joint
positions in the world coordinate system.

5 EXPERIMENTS
5.1 Comparison with State-of-the-Art Results
We compared our multimodal method for 3D human pose estima-
tion with state-of-the-art (SOTA) monocular-vision-based methods.
Utilizing the official code of these methods, we performed training
and testing on our PVM dataset. Table 1 presents the results of the
16 actions for these SOTA methods and our method on protocol
#0. The results of our method encompass estimations based on real
pressure and predicted pressure.

Our estimations based on real pressure (51.6mm) and predicted
pressure (51.8mm) both outperform SOTA methods, achieving op-
timal results in terms of the mean values and for the majority
of actions. Despite the challenges in some complex actions, such
as “Rotation Stability”, where various methods exhibit poor per-
formance (around 80mm), our approach consistently delivers a
relatively favorable result (below 70mm). This underscores the su-
periority of our multimodal pose estimation method. Additionally,
the test results based on predicted pressure demonstrate perfor-
mance comparable to those based on real pressure. This presents a
reliable approach for obtaining prior pressure information during
testing, mitigating the constraints of pressure mats and allowing
adaptation to a broader range of scenarios.

Fig.8 illustrates qualitative comparison results for four actions.
The causes of estimation errors include: i) Information loss due to
body parts being obscured (e.g. the knee joints during bending); ii)

Depth ambiguity resulting in errors in estimating joint positions
in depth (e.g. the feet joints during bending and waiting), while
our method has achieved significant improvement in the z-axis
direction (depth direction) of 4.7mm compared with the monocular
method; iii) Subtle variations in the body centroid that are challeng-
ing to capture from 2D vision (e.g. the shoulder-neck joints during
bending and the hip joints during waist turning), while our method
has achieved significant improvement ranging from 5 to 10mm in
these joints compared with the monocular method; iv) Occasional
deviations in the horizontal direction due to global displacement,
such as the feet joints during waist turning.

In summary, the spatial perception characteristics of pressure
images offer significant gains in the depth information required for
3D human pose estimation through the following mechanisms: i)
Facilitating the localization of various body joints in contact with
the ground and providing accurate global displacement information
by utilizing the position distribution of pressure; ii) Reflecting the
body centroid through the differences in pressure magnitude across
these distributions, aiding in inferring the spatial relationships
between different body joints.

5.2 Accuracy across Joints
Fig.9 depicts box plots illustrating estimation errors for various
joints across different action distributions, showcasing errors along
the x, y, and z axes for each joint. The multimodal human pose
estimation network was adjusted by separately removing pressure
embedding and 2D pose embedding, and models were trained with
only 2D poses and only pressure inputs on the PVM dataset.

Methods excel in estimating lower limb joints compared to upper
limb joints. This is attributed to the more complex joint structure
and increased degrees of freedom in the upper body. Additionally,
for upper limb joints, estimation errors gradually increase from the
root joint (hip joint) to the middle joints (shoulder, elbow joints),
and then to the end joints (wrist joints). Similarly, the end joints
exhibit a larger error range, showing significant performance vari-
ations under different actions. This complexity stems from the
motion transfer through the multi-joint chain, involving rotations,
translations, or their combinations, making end joints more flexible
in terms of degrees of freedom.

Methods based on real pressure (see Fig.9a) and predicted pres-
sure (see Fig.9b) exhibit comparable performance, both outperform-
ing results of the monocular-vision-based method in Fig.9c. This is
primarily evident in the following aspects: i) Significant reduction
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Figure 8: Qualitative comparison results with state-of-the-art methods, Pose3D-RIE [44], P-STMO [43], MHFormer [27], GLA-
GCN [56]. Skeletons drawn with black line represent the ground truth poses.

in estimation errors across all joints, notably with a 5.9mm decrease
in the upper limb joints and a 4.2mm decrease in the lower limb
joints; ii) Error reduction is more noticeable in joints closer to the
root node, with a 6.0mm decrease in the hip, followed by sequential
decreases from the knees to the toes (3.4mm, 3.3mm, and 3.1mm)
and from the shoulders to the wrists (6.0mm, 3.4mm, and 2.5mm);
iii) The z-axis direction, representing the depth dimension, demon-
strates the most substantial error reduction (4.7mm) in predictions
compared to the other two axes (1.7mm and 2.3mm).

On one hand, ground pressure sensors capture pose-related in-
formation by sensing the contact between the human body and
the ground. As a result, they complements reliable and stable data
for pose estimation of the feet and leg joints. When it comes to
upper limb joints, it plays a significant role in estimating the posi-
tional relationships between joints, thereby substantially enhancing
the accuracy of upper limb joints. On the other hand, introduc-
ing spatial-aware pressure knowledge helps mitigate the inherent
limitation of depth information loss, resulting in notable reduc-
tion in estimation errors along the z-axis. In addition, the purely
pressure-based method demonstrates the weakest performance
overall (120.9mm) but exhibits relatively superior and stable perfor-
mance for lower limb joints (83.6mm) compared to upper limb joints
(158.3mm) (see Fig.9d). This showcases its potential for estimating
lower limb joints.

5.3 Ablation Studies
5.3.1 Different Modal Combinations. In Table 2, we have summa-
rized the 3D human pose estimation errors for different modal com-
binations. The method that integrates 2D poses with reconstructed
pressure and the one that integrates 2D poses with real pressure

achieved comparable results, surpassing the performance of the
purely monocular-vision-based approach. This outcome strongly
validates the efficacy of introducing spatial-aware pressure infor-
mation in enhancing the performance of monocular-vision-based
3D human pose estimation methods.

Table 2: Pose estimation errors across modal combinations.

Modal
Combinations Pressure 2D Pose 2D Pose &

Pred. Pressure
2D Pose &
Pressure

Protocol #0 (mm) 120.9 56.7 51.8 51.6

5.3.2 Different Pressure Image Resolutions. We conducted tests on
pressure images with varying resolutions. Specifically, we trained
four models, each utilizing a different size when resizing the input
pressure images originally at a resolution of 256 × 64. The four
sizes employed for resizing were 40 × 40, 80 × 80, 120 × 120, and
160 × 160. The results in Table 3 indicate that as the resolution of
the pressure images increases, there is a general trend of decreasing
error in 3D human pose estimation. Higher-resolution pressure
images provide more detailed information, enabling the model to
capture the nuances of human pose more accurately. However, it is
noteworthy that when the image resolution increases from 120 ×
120 to 160 × 160, the estimation error does not decrease but rather
increases. Beyond a certain resolution level, additional details in
the images may not be crucial for the pose estimation task and
could instead lead to difficulties in network convergence. Moreover,
higher-resolution images may escalate computational costs and
model complexity. Therefore, we ultimately adopted the 120 × 120
resolution scheme for optimal performance.
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Figure 9: Estimation errors for each joint (calculated using Euclidean distance) and estimation errors along the x, y, and z axes
for each joint (calculated using Manhattan distance) for different modal combinations, all computed as global distances.

Table 3: Pose estimation errors across pressure resolutions.

Pressure Resolutions 40*40 80*80 120*120 160*160

Protocol #0 (mm) 54.0 53.1 51.6 52.7

5.3.3 Different Dataset Sizes. We also conducted ablation studies
on different dataset sizes. To mitigate the impact of individual and
action variations on the results, we retained data for 16 actions
from 20 participants in the sub-datasets. Random sampling was per-
formed at different proportions for each action of each individual
in the PVM dataset, namely 0.1, 0.25, 0.5, 0.75, and 1.0. As depicted
in Table 4, the pose estimation network trained on a larger-scale
dataset achieved superior results. This outcome underscores the
significance of a large dataset for accurate 3D human pose esti-
mation. A large dataset can provide ample samples, diverse pose
variations, and detailed information, enabling the model to learn
and generalize more effectively.

Table 4: Pose estimation errors across data sizes.

Data Sizes 0.1 0.25 0.5 0.75 1

Protocol #0 (mm) 61.2 58.6 54.9 52.5 51.6

6 CONCLUSION
In this paper, we propose a novel 3D human pose estimationmethod
that integrates ground pressure images with monocular images.
As a foundation, we construct a large-scale multimodal dataset in-
corporating pressure images, monocular images, and ground truth
3D poses recorded during 16 distinct actions from 20 participants,
totaling over 600,000 frames. Furthermore, to accommodate situa-
tions where a pressure mat is unavailable, we propose a pressure
image reconstruction network capable of reconstructing ground
pressure images from monocular images. Experimental results indi-
cate that both combining monocular vision with real pressure and
combining monocular vision with predicted pressure outperformed
all monocular-vision-based SOTA methods. This demonstrates the
exceptional performance of pressure information in enhancing the
accuracy of 3D human pose estimation task, and provides viable
new directions for future research in this field.
Limitations and Future Work: For pressure embedding, we con-
duct image-wide feature extraction, which, although effective, en-
tails redundant information. Exploring more compact feature ex-
traction methods may enhance information density, potentially
improving estimation accuracy and efficiency for the multimodal
pose estimation network. For pressure image reconstruction, there
are various methods to introduce pressure priors. In this paper, we
employ a data-driven image reconstruction approach, yet future ex-
ploration could involve biomechanical analysis to understand force
relationships and generate pressure images, offering an intriguing
and promising direction for future research.
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