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1 SOURCE CODE
We will release the source code and pretrained models of the pres-
sure image reconstruction network and the multimodal 3D human
pose estimation network upon acceptance.

2 DATA COLLECTION DETAILS
2.1 Action Explanations
Table 1 provides a detailed description of the 16 human actions and
their distribution within the dataset. Throughout the experiments,
we strategically arranged the sequence of high-intensity and low-
intensity actions to interleave, thus mitigating excessive fatigue
from continuous exercises.

Table 1: Explanation of the 16 human actions in the PVM
dataset, along with their respective number of frames in the
training and testing sets.

Actions Explanation Duration Train Test

Deep Squat Raise both hands overhead and
squat down until thighs are par-
allel to the ground.

90s 28041 7038

Standing on
Toes

Lift the heels to balance on the
balls of the feet.

90s 29319 7216

Hurdle Step Lift one leg over an obstacle while
maintaining balance and stability.

L/R leg each
6 times in
L/R dir.

33843 7580

Inline Lunge Extend one leg forward and kneel
down with the other leg, keep
both legs in a line.

L/R leg each
6 times in
L/R dir.

34351 7836

Marching in
Place

Lift the knees alternately while
staying in the same spot.

90s 21469 5524

Arm-waving Rhythmically swing the arms
back and forth accompanied by
slight knee bending.

90s 31206 7125

Direction Hand movements accompanied
by tilting the body towards the
direction of the hand.

90s 40437 11072

Waist Turning Twist the waist in a circular mo-
tion.

90s 29909 7585

Twisting Twist the body back and forth
from left to right while keeping
both feet in place.

90s 30335 7682

Bending Bend the body alternately toward
the left and right toes.

90s 30380 7882

Sitting Sit on the pressure mat in any
comfortable position.

90s 29405 7577

Active Straight-
Leg Raise

Lie on the back and alternately
lift the legs straight up.

45s each in
L/R dir.

31511 7798

Rotary Stability Lift and extend the arms and legs
in opposite directions in a kneel-
ing prone position.

L/R leg each
6 times in
L/R dir.

28939 6489

Push-ups Push-ups / kneeling push-ups. 45s each in
L/R dir.

27763 6790

Posing Casually strike poses as if being
photographed.

90s 28640 6883

Waiting Stand straight or shift weight to-
wards one leg.

90s 30188 7710

Total 485736 119787

2.2 Reflective Markers on the Mocap Suit
As shown in Fig.1, we utilized the 53-point human body mark-
ing method to label various joints of the human body, ultimately
recording the 3D position information of 18 body joints.

Figure 1: An illustration of the 53-point humanbodymarking
method and the 18-joint human skeleton.

2.3 2D Skeleton Construction
The open-source human pose estimation library, OpenPose [1], is
utilized to extract 2D skeletons from monocular images. Specifi-
cally, we use the OpenPose model with 25 skeleton keypoints, as it
exhibits greater overlap with the ground truth 3D skeleton. For the
extracted 25 skeleton keypoints, we:

• Remove 6 keypoints corresponding to eyes, ears, and heels;
• Remove 4 keypoints corresponding to big toes and little toes;
• Add 2 keypoints for the toes calculated from the midpoints
of the left and right big toes and little toes;

• Add a new spine keypoint calculated as the midpoint be-
tween the neck and hip keypoints.

Finally, we obtain 2D skeleton with 18 keypoints corresponding
one-to-one with the 3D skeleton keypoints.

3 COMPARISONWITH SOTAS ON PROTOCOL #1
Another variant of MPJPE (mean per joint position error), i.e., Pro-
tocol #1, is a commonly used metric in previous works to measure
the accuracy of 3D human pose estimation. It calculates the av-
erage error of each joint of the human body without considering
global displacement. Specifically, it computes the Euclidean dis-
tance between the predicted joints and ground truth joints in the
local coordinate system after aligning the root joint of the predicted
skeleton with the root joint of the ground truth skeleton.
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Table 2: Quantitative comparison results with state-of-the-art methods on protocol #0. Bold and underline indicate the best
and second-best values.

Protocol #1 D.S. S.T. H.S. I.L. M.P. A.W. Direction W.T. Twisting Bending Sitting A.S.L.R. R.S. P.U. Posing Waiting Avg.

Shan et al. [5] MM2021 49.7 39.3 47.7 49.9 44.3 53.3 47.9 54.6 47.1 55.0 42.4 46.8 68.9 57.3 52.8 45 50.1
Li et al. [2] ToMM2022 44.2 35.6 51.2 51.1 44.7 49.0 42.6 43.3 48.4 44.8 43.7 46.3 68.1 56.6 51.0 42.3 47.7
Shan et al. [4] ECCV2022 43.7 36.0 47.0 49.6 42.2 48.0 42.7 41.7 44.3 47.9 44.6 62.8 69.4 62.3 49.0 42.0 48.3
Li et al. [3] CVPR2022 41.8 37.1 48.8 49.0 48.1 48.7 40.6 44.2 49.2 57.4 46.6 48.2 74.2 54.4 48.6 39.5 48.5
Zhang et al. [7] CVPR2022 46.4 35.6 54.0 59.7 46.0 56.5 45.2 57.6 52.9 52.6 46.7 55.4 77.1 56.3 52.7 42.5 52.3
Zhao et al. [8] CVPR2023 50.6 37.0 48.3 51.2 47.0 55.0 47.2 43.4 47.5 57.9 44.1 46.6 69.0 58.4 53.3 43.1 50.0
Yu et al. [6] ICCV2023 40.8 37.1 49.2 52.4 42.7 45.6 48.8 47.4 46.3 52.3 49.4 52.0 80.8 59.8 53.9 42.2 50.0

Ours (pred. pressure) 42.8 33.9 48.3 53 43.5 51.9 44.0 42.8 43.7 45.3 42.0 46.9 66.8 55.6 49.4 37.8 46.7
Ours 41.4 33.8 47.4 51.5 41.7 51.3 42.8 40.3 43.9 47.4 42.1 47.9 66.9 54.8 49.7 37.6 46.3

In comparison to protocol #0, protocol #1 eliminates the global
displacement bias, focusing solely on the error in the pose itself.
This results in a reduced error gap between different methods,
yet our method still outperforms others. The position of pressure
traces provides significant gains in depth information, enabling
substantial improvements over monocular methods, especially in
challenging actions like sitting and rotary stability amidst occlu-
sions. The pressure distribution within these traces offers finer
guidance on centroid shifts, aiding in achieving high-precision esti-
mation of actions such as standing on toes, waist turning, twisting,
and waiting. Additionally, the disparity between results from pro-
tocol #0 and protocol #1 reflects the exceptional spatial perception
capabilities of pressure images, offering robust guidance for global
3D pose estimation.

4 LIVE DEMO
To illustrate the viability of our multimodal 3D human pose esti-
mation approach, we implemented a real-time demonstration. The
workflow encompasses i) the real-time acquisition of 2D pose and
pressure image sequence, ii) the input of these data into the 3D
human pose estimation network to derive the output 3D pose, and
iii) the transmission of the predicted 3D pose to the web interface
for real-time visualization.

Two distinct implementations are employed for acquiring pres-
sure images: one entails the real-time collection of sensor data from
a pressure mat, and the other reconstructs pressure images in real-
time from the 2D poses. As shown in Fig.2, the former achieves
relatively precise pose estimation but necessitates a more intricate
hardware setup (comprising a monocular camera and a pressure
mat); the latter compromises a slight degree of accuracy to accom-
modate a lighter hardware system (solely requiring a monocular
camera). These alternative implementations cater to diverse scenar-
ios and applications, ensuring the adaptability of our methodology.
Additionally, as real-time prediction lacks access to future data, and
considering that the input to the pose estimation network during
training comprises information from future frames, we address
this limitation by duplicating future frames based on the content
available in the current frame.

The real-time system estimates poses at a frame of approximately
10Hz. The time consumption for 2D pose extraction, pressure image
reconstruction, and 3D pose prediction is reported to be approxi-
mately 0.098 seconds, 0.002 seconds, and 0.017 seconds, respectively.
The most notable delay stems from the 2D pose extraction with

OpenPose, and future endeavors may explore swifter alternatives.
Overall, our approach demonstrates reliable pose prediction results
while ensuring a smooth user experience in system usage.

Figure 2: Real-time demonstration with monocular images
and real (a) / reconstructed (b) pressure images as input.

5 VIDEO
We provide a video containing the action demonstrations from the
dataset, the dynamic visualizations of the pressure image recon-
struction and 3D pose estimation results, as well as the live demo
of the multimodal pose tracking system.
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