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ABSTRACT

Machine learning models can capture and amplify biases present in data, leading
to disparate test performance across social groups. To better understand, evalu-
ate, and mitigate these biases, a deeper theoretical understanding of how model
design choices and data distribution properties contribute to bias is needed. In this
work, we contribute a precise analytical theory in the context of ridge regression,
both with and without random projections, where the former models feedforward
neural networks in a simplified regime. Our theory offers a unified and rigorous
explanation of machine learning bias, providing insights into phenomena such
as bias amplification and minority-group bias in various feature and parameter
regimes. For example, we observe that there may be an optimal regularization
penalty or training time to avoid bias amplification, and there can be differences in
test error between groups that are not alleviated with increased parameterization.
Importantly, our theoretical predictions align with empirical observations reported
in the literature on machine learning bias. We extensively empirically validate our
theory on synthetic and semi-synthetic datasets.

1 INTRODUCTION

Machine learning (ML) datasets can encode a plethora of biases which, when said data is used to
train models, can result in systems that can cause practical harm. Datasets that encode correlations
that only hold for a subset of the data may cause disparate performance when models are used more
broadly, such as an X-ray pneumonia classifier that only functions on images from certain hospitals
(Zech et al., 2018). This issue is magnified when coupled with under-representation, whereby a
dataset fails to adequately reflect parts of the underlying data distribution, often further marginalizing
certain groups. Lack of representation results in systems that might work well on average, but fail
for minoritized groups, including facial recognition systems that fail for darker-skinned women
(Buolamwini & Gebru, 2018), large language models that consistently misgender transgender and
nonbinary people (Ovalle et al., 2023), or image classification technology that only works in Western
contexts (de Vries et al., 2019; Richards et al., 2024).

Unfortunately, contemporary models may exhibit bias amplification, whereby dataset biases are not
only replicated, but exacerbated (Zhao et al., 2017; Hendricks et al., 2018; Wang & Russakovsky,
2021). While previous research has shown that amplification is a function of both dataset properties
and how we choose to construct our models (Hall et al., 2022; Sagawa et al., 2020; Bell & Sagun,
2023), it is not fully clear how bias amplification occurs mechanistically, nor do we precisely
understand which settings lead to its emergence. Thus, in this work, we propose a novel theoretical
framework that explains how model design choices (e.g., number of parameters, regularization
penalty) and data distributional properties (e.g., number of features, group imbalance, label noises)
interact to amplify bias. Moreover, our framework provides an account of prior work on bias
amplification (Bell & Sagun, 2023) and minority-group bias (Sagawa et al., 2020).

A theory of bias amplification is important for several reasons. First, as empirical research necessarily
yields only sparse data points—often focused on only the most common regimes—theory allows us
to interpolate between past findings, and reason about how bias emerges in under-explored settings.
Second, a precise theory gives us the depth of understanding needed in order to intervene, potentially
supporting the development of both novel evaluations and mitigations. Finally, beyond explaining
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already-known phenomena, our theory makes new predictions, suggesting new avenues for future
research.

1.1 MAIN CONTRIBUTIONS

In this work, we develop a unifying and rigorous theory of ML bias in the settings of ridge regression
with and without random projections. In particular, we precisely analyze test error disparities between
groups (e.g., demographic groups or protected categories) with different data distributions when
training on a mixture of data from these groups. We characterize these disparities in high dimensions
using operator-valued free probability theory (OVFPT), thereby avoiding possibly loose bounds on
critical quantities. Our theory encompasses different parameterization regimes, group sizes, label
noises, and data covariance structures. Moreover, our theory has applications to important problems
in ML bias that have recently been empirically investigated:

• Bias amplification. Even in the absence of group imbalance and spurious correlations, a single
model that is trained on a combination of data from different groups can amplify bias beyond
separate models that are trained on data from each group (Bell & Sagun, 2023). With our theory, we
reproduce and analyze the bias amplification findings of Bell & Sagun (2023) in controlled settings.
We further observe how stopping model training early or tuning the regularization hyperparameter
can alleviate bias amplification.

• Minority-group bias. Overparamaterization can hurt test performance on minority groups due
to spurious features (Sagawa et al., 2020; Khani & Liang, 2021). We theoretically analyze how
model size and extraneous features affect minority-group bias.

We extensively empirically validate our theory in controlled and semi-synthetic settings. Specifically,
we show that our theory aligns with practice in the cases of: (1) bias amplification with synthetic
data generated from isotropic covariance matrices and the semi-synthetic dataset Colored MNIST
(Arjovsky et al., 2019), and (2) minority-group bias under different model sizes with synthetic data
generated from diatomic covariance matrices. In these applications, we expose new, interesting
phenomena in various regimes. For example, a larger number of features than samples can amplify
bias under overparameterization, there may be an optimal regularization penalty or training time
to avoid bias amplification, and there can be differences in test error between groups that are not
alleviated with increased parameterization. Our observations of phenomena in Sections 4 and 5 are
largely empirical but are supported by their agreement with our theory. Our theory of ML bias can
inform strategies to evaluate and mitigate unfairness in ML, or be used to caution against the usage of
ML in certain applications.

1.2 RELATED WORK

Bias amplification. A long line of research has explored how ML exacerbates biases in data. For
example, a single model that is trained on a combination of data from different groups can amplify
bias (Zhao et al., 2017; Wang & Russakovsky, 2021), even beyond what would be expected when
separate models are trained on data from each group (Bell & Sagun, 2023). Hall et al. (2022) conduct
a systematic empirical study of bias amplification in the context of image classification, finding that
amplification can vary greatly as a function of model size, training set size, and training time. Further-
more, overparameterization, despite reducing a model’s overall test error, can disproportionately hurt
test performance for minority groups (Sagawa et al., 2020; Khani & Liang, 2021). Models can also
overestimate the importance of poorly-predictive, low-signal features for minority groups, thereby
hurting performance on these groups (Leino et al., 2019). In this paper, we distill a holistic theory of
how model design choices and data distributional properties affect disparate test performance across
groups, which can encompass seemingly disparate bias phenomena.

High-dimensional analysis of ML. A suite of works have analyzed the expected dynamics of ML in
appropriate asymptotic scaling limits, e.g., the rate of features d to samples n converges to a finite
values as d and n respectively scale towards infinity (Adlam & Pennington, 2020b; Tripuraneni et al.,
2021; Lee et al., 2023). Notably, Bach (2023) theoretically analyzes the double descent phenomenon
(Spigler et al., 2019; Belkin et al., 2019) in ridge regression with random projections by computing
deterministic equivalents for relevant random matrix quantities in a proportionate scaling limit. Like
Adlam & Pennington (2020b); Tripuraneni et al. (2021); Lee et al. (2023), we leverage the tools of
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OVFPT (Mingo & Speicher, 2017), which is at the intersection of random matrix theory (RMT) and
functional analysis. However, Adlam & Pennington (2020b) focus on training and testing a random
features model on data from the same Gaussian distribution. Furthermore, Tripuraneni et al. (2021);
Lee et al. (2023) focus on training a random features model on data from one Gaussian distribution
and testing the model on a different Gaussian. In contrast, we study the random features model in the
setting of training on a mixture of Gaussian distributions and testing on each component. Because
a mixture is more expressive than a single Gaussian, our theoretical results cannot be derived as a
special case of these other works. Furthermore, our theory non-trivially generalizes Bach (2023),
which we recover in Corollary J.1 as a special case, and requires more powerful analytical techniques.

Certain prior theoretical work precisely analyzes the bias of models trained on a mixture of data
from different groups in a high-dimensional setting (Mannelli et al., 2024; Jain et al., 2024). Like
Mannelli et al. (2024); Jain et al. (2024), we study linear models and consider bias as the disparity
in test performance of a model between groups. We further consider some similar factors that give
rise to bias amplification (e.g., group imbalance, group data variance, inter-group similarity, dataset
size). We also share some theoretical conclusions, such as bias can occur even when the groups have
the same ground-truth weights (see Section 5) and are balanced (Section 4.1). Additionally, we both
discuss the paradigms of training a single model for both groups vs. separate models for each group.
However, the main distinction between our work and Mannelli et al. (2024); Jain et al. (2024) is that
we precisely characterize how models amplify bias in different parameterization regimes, that is, we
examine the impact of model size on bias. This enables us to expose new, richer insights into the
impact of over- and underparameterization on bias amplification (see Figure 1, Section 4, and Section
5). See Appendix C for further comparison of our work to Mannelli et al. (2024); Jain et al. (2024).

2 PRELIMINARIES

2.1 DATA DISTRIBUTIONS

We consider a ridge regression problem on a dataset from the following multivariate Gaussian mixture
with two groups s = 1 and s = 2. These groups could represent different demographic groups or
protected categories.

(Group ID) Law(s) = Bernoulli(p), (1)
(Features) Law(x | s) = N (0,Σs), (2)
(Ground-truth weights) Law(w∗

1) = N (0,Θ/d), Law(w∗
2 − w∗

1) = N (0,∆/d), (3)

(Labels) Law(y | s, x) = N (f⋆s (x), σ
2
s), with f⋆s (x) := x⊤w∗

s . (4)

The scalar p ∈ (0, 1) controls for the relative size of the two groups (e.g., p = 1/2 in the balanced
setting). For simplicity of notation, we define p1 = p and p2 = 1− p. The d× d positive-definite
matrices Σ1 and Σ2 are the covariance matrices for the different groups. The d-dimensional vectors
w∗

1 and w∗
2 are the ground-truth weights vectors for each group. w∗

1 and w∗
2 − w∗

1 are independently
sampled from zero-mean Gaussian distributions with covariances Θ/d and ∆/d, respectively. In
particular, setting ∆ = 0 corresponds to the case that both groups have identical ground-truth weights.
We define Θ1 = Θ,Θ2 = Θ+∆. Finally, σ2

s corresponds to the label noise for each group s. While
we consider the case of two groups only for conciseness, our theoretical methods readily extend to
any finite number of groups.

2.2 MODELS AND METRICS

Learning. A learner is given an IID sample D = {(x1, y1), . . . , (xn, yn)} ≡ (X ∈ Rn×d, Y ∈ Rn)
of data from the above distribution and it learns a model for predicting the label y from the feature
vector x. Thus, X is the total design matrix with ith row xi, and y the total response vector with
ith component yi. Let Ds = (X ∈ Rns×d, Y ∈ Rns) be the data pertaining only to group s, so that
D = D1 ∪ D2 is a partitioning of the entire dataset. Two choices are available to the learner: (1)
learn a model a f̂s ∈ F on each dataset Ds, or (2) learn a single model f̂ ∈ F on the entire dataset
D. In practice, a choice is made based on scaling vs. personalization considerations.

We consider two solvable settings for linear models: classical ridge regression in the ambient input
space, and ridge regression in a feature space given by random projections. The latter allows us to
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study the role of model size in ML bias, by varying the output dimension of the random projection
mapping. This output dimension m controls the size of a feedforward neural network in a simplified
regime (Maloney et al., 2022; Bach, 2023).

Classical Ridge Regression. We will first consider the function class F ⊆ {Rd → R} of linear ridge
regression models without random projections. For any vector w ∈ Rd, the model f with parameters
w is defined by f(x) = x⊤w, for all x ∈ Rd, and is learned with ℓ2-regularization. We define the
generalization error or risk of any model f with respect to group s as:

Rs(f) = E [(f(x)− f⋆s (x))
2 | s]. (5)

We consider ridge regression because in addition to its analytical tractability, it can be viewed as the
asymptotic limit of many learning problems (Dobriban & Wager, 2018; Richards et al., 2021; Hastie
et al., 2022). We now formally define some metrics related to bias amplification.
Definition 2.1 (Bias Amplification). We isolate the contribution of the model to bias when learning
from data with different groups. This intuitive conceptualization of bias amplification allows us to
quantify the phenomenon. Grounded in the literature (Bell & Sagun, 2023), we define the Expected
Difficulty Disparity (EDD) as:

EDD = |ER2(f̂2)− ER1(f̂1)|, (6)

where the expectations are w.r.t. randomness in the training data and any other sources of randomness
in the models. The EDD captures the difference in test risk between models trained and evaluated
on each group separately. In contrast, we define the Observed Difficulty Disparity (ODD) as:

ODD = |ER2(f̂)− ER1(f̂)|. (7)

The ODD captures the bias (i.e., difference in test risk between groups) of a model trained on both
groups. Finally, we define the Amplification of Difficulty Disparity (ADD) as ADD = ODD

EDD . We say
that bias amplification occurs when ADD > 1. See Appendix C for further motivation of ADD.

Ridge Regression with Random Projections. We consider feedforward neural networks in a
simplified regime which can be approximated via random projections, i.e., a one-hidden-layer
neural network f(x) = v⊤Sx with a linear activation function. In particular, we extend classical
ridge regression by transforming our learned weights as ŵ = Sη̂ ∈ Rd, where S ∈ Rd×m is a
random projection with entries that are IID sampled from N (0, 1/d). Ridge regression with random
projections offers analytical tractability while exposing bias amplification phenomena related to model
size; such phenomena are not exposed by classical ridge regression (see Figure 1). Moreover, it has
been shown that in high dimensions, training a one-hidden-layer neural network with gradient descent
effectively learns a linear predictor over random features (Yehudai & Shamir, 2019). Furthermore,
Adlam & Pennington (2020a); Bach (2023); inter alia are able to reproduce interesting phenomena
like double descent using the random features model. Nevertheless, Yehudai & Shamir (2019) have
shown that the model often cannot learn even a ReLU neuron, suggesting that some mechanisms of
bias amplification could be different in nonlinear networks.

3 THEORETICAL ANALYSIS

Assumptions. Some of our theorems will require standard technical assumptions that we detail here
and in Appendix B. Assumption 3.1 describes the proportionate scaling limits, standard in RMT,
in which we will work. These limits enable us to derive deterministic analytical formulae for the
expected test risk of models. Our experiments (see Sections 4 and 5) validate our theory.
Assumption 3.1. In the case of ridge regression with random projections, we will work in the
following proportionate scaling limit:

n, n1, n2, d→ ∞, n1/n→ p1, n2/n→ p2, d/n→ ϕ, m/n→ ψ, m/d→ γ, (8)
d/n1 → ϕ1, m/n1 → ψ1, d/n2 → ϕ2, m/n2 → ψ2, (9)

for some constants ϕ1, ϕ2, ϕ, ψ1, ψ2, ψ ∈ (0,∞). The scalar ϕ captures the rate of features to
samples. Observe that ϕ = p1ϕ1 and ϕ = p2ϕ2. We note that ϕγ = ψ and ϕsγ = ψs. The scalar
ψ captures the rate of parameters to samples. The setting ψ > 1 (resp. ψ < 1) corresponds to the
overparameterized (resp. underparameterized) regime.
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3.1 MAIN RESULT: RIDGE REGRESSION WITH RANDOM PROJECTIONS

To provide a mechanistic understanding of how ML models may amplify bias, our theory elucidates
differences in the test error between groups when a single model is trained on a combination of data
from both groups vs. when separate models are trained on data from each group. We first consider
the classical ridge regression model in Appendix D before studying ridge regression with random
projections below, which is a more realistic but still analytically solvable setup.

Single Random Projections Model Learned for Both Groups. We first consider the ridge regression
model f̂ with random projections, which is learned using empirical risk minimization and ℓ2-
regularization with penalty λ. The parameter ŵ of the linear model f̂ is given by the following
optimization problem:

ŵ = Sη̂ ∈ Rd, with ŵ = arg min
η∈Rm

L(η) =

2∑
s=1

n−1∥XsSη − Ys∥22 + λ∥η∥22. (10)

Explicitly, one can write ŵ = S(Z⊤Z + nλIm)−1Z⊤Y , where Z := XS. Before presenting our
result for the random projections model, we provide some relevant definitions.
Definition 3.1. Let t̄rA := (1/d) tr A be the normalized trace operator and (e1, e2, τ, u1, u2, ρ) be
the unique positive solution to the following fixed-point equations:

1/τ = 1 + t̄rLK−1, 1/es = 1 + ψτ t̄r ΣsK
−1, for s ∈ {1, 2}, (11)

ρ = τ2t̄r (γρL2 + λ2D)K−2, us = ψe2s t̄r Σs(γτ
2D + ρId)K

−2, for s ∈ {1, 2}, (12)
where: L = p1e1Σ1 + p2e2Σ2, K = γτL+ λId, D = p1u1Σ1 + p2u2Σ2 +B. (13)

For deterministic d× d PSD matrices A and B, we define the following auxiliary quantities:

h
(1)
j (A) := pjγejτ t̄rAΣjK

−1, (14)

h
(2)
j (A,B) := pjγt̄rAΣj(γejτ

2B + pj′γτ
2Σj′(ejuj′ − ej′uj) + ejρId − λujτId)K

−2, (15)

h
(3)
j (A,B) := pj t̄rAΣj(γe

2
jpjΣj(pj′γτ

2uj′Σj′ + γτ2B + ρId)

+ uj(pj′γej′τΣj′ + λId)
2)K−2, (16)

h
(4)
j (A,B) := pjγpj′ t̄r ΣjΣj′A(γτ

2(ejej′B − pje
2
juj′Σj − pj′Σj′e

2
j′uj)

− λτ(ejuj′ + ej′uj)Id + ejej′ρId)K
−2. (17)

In Appendix H, we intuitively interpret the scalars es, τ, us, ρ in the setting where a separate model
is learned for each group. In essence, our theory extends the scalars to the more general setting
where a single model is trained on a mixture of data from different groups. Furthermore, each of
the terms h(1)j , . . . , h

(4)
j capture the limiting values of different sources of covariance between the

sample covariance matrices for the groups, the resolvent matrix, and the random projections matrix S.
These sources of covariance are written explicitly in Appendix G, and naturally arise from expanding
the solution to the ridge regression problem with random projections.

We now present Theorem 3.1, which is our main contribution. Theorem 3.1 presents a novel bias-
variance decomposition for the test error Rs(f̂) for each group s ∈ {1, 2} in the context of ridge
regression with random projections. It is a non-trivial generalization of theories in high-dimensional
ML which requires the powerful machinery of OVFPT (see proof in Appendix G).

Theorem 3.1. Under Assumptions B.2 and 3.1, it holds that Rs(f̂) ≃ Bs(f̂) + Vs(f̂), with

Vs(f̂) =

2∑
j=1

σ2
jϕh

(2)
j (Id,Σs), (18)

Bs(f̂) = t̄rΘsΣs + h
(3)
1 (Θs,Σs) + h

(3)
2 (Θs,Σs) + 2h

(4)
1 (Θs,Σs) (19)

− 2h
(1)
1 (ΘsΣs)− 2h

(1)
2 (ΘsΣs) + h

(3)
s′ (∆,Σs) (20)

− 2

{
0, s = 1,

h
(3)
1 (∆,Σ2) + h

(4)
2 (∆,Σ2)− h

(1)
1 (∆Σ2), s = 2.

(21)
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Figure 1: ODD, EDD, and ADD phase diagrams for ridge regression with random projections.
We plot the bias amplification phase diagrams with respect to ϕ (rate of features to samples) andψ (rate
of parameters to samples), as predicted by our theory for ridge regression with random projections
(Theorems 3.1, 3.2). Red regions indicate theoretical predictions greater than 1 (i.e., bias amplification
in the rightmost plot), while blue regions indicate theoretical predictions less than 1 (i.e., bias
deamplification in the rightmost plot). Darkness indicates intensity. We consider isotropic covariance
matrices: Σ1 = 2Id,Σ2 = Id, Θ = 2Id, ∆ = Id. Additionally, n = 1 × 104, σ2

1 = σ2
2 = 1. We

further choose λ = λ1 = λ2 = 1× 10−6 to approximate the minimum-norm interpolator. We show
that bias amplification can occur even in the balanced data setting, i.e., when p1 = p2 = 1/2.

The unregularized limit corresponds to the minimum-norm interpolator, and alternatively may be
viewed as training a neural network until convergence (Ali et al., 2019). We discuss methods for, and
the complexity of, solving the above fixed-point equations in Appendix I. Furthermore, in Appendix
J, we directly express the bias and variance of the test risk of an unregularized model trained on just
group s in terms of the second and first-order degrees of freedom of Σs and the parameterization
rate ψs. Moreover, in Appendix M, we derive the approximate bias amplification profile of an
unregularized model with respect to the ratio c = σ2

2/σ
2
1 of label noises, in the setting where the

eigenspectra of the covariance matrices have power-law decay.

Separate Random Projections Model Learned for Each Group. We now consider the ridge regres-
sion models f̂1 and f̂2 with random projections, which are learned using empirical risk minimization
and ℓ2-regularization with penalties λ1 and λ2, respectively. In particular, we have the following
optimization problem for each group s: argminη∈Rm L(w) = n−1

s ∥XsSη − Ys∥22 + λs∥η∥22. Alter-
natively, the reader can think of each f̂s as the limit of f̂ when ps → 1. In this setting, we deduce
Theorem 3.2, which follows from Theorem 3.1.

Theorem 3.2. Under Assumptions B.2 and 3.1, it holds that Rs(f̂s) ≃ Bs(f̂s) + Vs(f̂s), where
Vs(f̂s) = limps→1 Vs(f̂) and Bs(f̂s) = limps→1Bs(f̂) (see Appendix H for explicit formulae).

Phase Diagram. The phase diagram for the random projections model (Figure 1) offers rich insights
into how the rate of parameters to samples (ψ), in interaction with the rate of features to samples (ϕ),
affects bias amplification. In the ODD and EDD profiles, we observe phase transitions at ϕ = ψ
(when ψ < 0.5) and ψ = 0.5 (i.e., ψ1 = ψ2 = 1), where these metrics begin decreasing significantly.
ψs = 1 is a known interpolation threshold for random features models (Adlam & Pennington, 2020a;
D’Ascoli et al., 2020). In contrast, at ψ = 1 and ϕ = 1, the ODD drastically increases. Furthermore,
at ϕ = ψ (when ψ < 0.5) and ϕ = 0.5 (for ψ > 0.5), the EDD greatly increases. Accordingly,
in the ADD profile, we observe phase transitions at ϕ = ψ (when ψ < 0.5), ψ = 0.5, ψ = 1,
and ϕ = 1, where bias amplification begins occurring (i.e., ADD > 1). However, bias seems to
be deamplified (i.e., ADD < 1) at ϕ = ψ (when ψ < 0.5) and ϕ = 0.5 (when ψ > 0.5). Some
observations are less visible due the granularity of the color thresholding in Figure 1.

4 BIAS AMPLIFICATION

We empirically show how ridge regression models with random projections may amplify bias when a
single model is trained on a combination of data from different groups vs. when separate models are
trained on data from each group (Bell & Sagun, 2023). We further show how our theory: (1) predicts
bias amplification, and (2) exposes new, interesting bias amplification phenomena in various regimes.
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4.1 ISOTROPIC COVARIANCE

Setup. To mirror the setting of Bell & Sagun (2023), we consider balanced data (p1 = p2 = 1/2)
without spurious correlations (Σ1 = a1Id,Σ2 = a2Id, for a1, a2 > 0). The groups have different
ground-truth weights (Θ = 2Id,∆ = Id). Refer to App. K.1 for full details due to space limitations.

Validation of Theory. Figure 2 and the figures in Appendix L reveal that Theorems 3.1 and 3.2
closely predict the ODD, EDD, and ADD of ridge regression models with random projections
under diverse settings. Note that, as indicated by the error bars, some of our empirical estimates
(especially those with larger magnitude) have higher variance and their variance is influenced by the
choice of ψ, ϕ, a1, a2, σ2

1 , σ
2
2 . Notably, our theory predicts the observation of Bell & Sagun (2023)

that models can amplify bias even with balanced groups and without spurious correlations. We
present new phenomena predicted by our theory below.

Effect of Label Noise. In the ODD profile, when the label noise ratio c = σ2
2/σ

2
1 is larger, the right

tail is higher for ϕ (rate of features to samples) closer to 1 than other ϕ. This suggests that under
overparameterization, a larger noise ratio and similar number of features and samples can increase
disparities in test risk between groups when a single model is learned for both groups. We aim to
explain this phenomenon analytically in Section M. Moreover, the EDD curve is generally higher
for larger c, suggesting that a larger noise ratio increases disparities in test risk when a separate model
is learned for each group. This finding is supported by our experiment with real data (see Figure 11).

Effect of Model Size. We observe interesting divergent behavior as ψ (rate of parameters to samples)
increases for different ϕ (rate of features to samples). When ϕ > 1, as ψ increases, the ODD
increases and then decreases, peaking at the interpolation threshold at ψ = 1. Similarly, when
ϕ > 0.5 (i.e., ϕ1 = ϕ2 > 1), as ψ increases, the EDD increases and then decreases, peaking at the
interpolation threshold at ψ = 0.5 (i.e., ψ1 = ψ2 = 1). Accordingly, when ϕ > 0.5, bias is effectively
deamplified (ADD < 1) at ψ = 0.5 and when ϕ > 1, bias amplification peaks (ADD > 1) at
ψ = 1. In contrast, when ϕ < 1, the ODD decreases as ψ increases, plateauing at different finite
values. Similarly, when ϕ < 0.5, the EDD generally decreases and plateaus as ψ increases; in some
cases, the EDD dips and/or increases and plateaus. A notable exception to these trends occurs when
ϕ ≈ 1, with the corresponding ODD and ADD curves increasing as ψ increases, plateauing at a
significantly larger value (i.e., ADD ≫ 1) than the curves corresponding to other values of ϕ. We
observe a similar phenomenon for theEDD curves when ϕ1 = ϕ2 ≈ 1. Hence, overparameterization
can greatly amplify bias when the number of features is close to the number of samples. Regardless
of the regime of ϕ, the left tail of the ADD profile appears to plateau at 1. The right tail plateaus at
different finite values, with the curves corresponding to ϕ > 1 consistently plateauing above 1. This
suggests that when there are more features than samples, overparameterization amplifies bias.

Some of the peaks and valleys in Figure 2 can be attributed to double descent. However, double
descent in high dimensions has primarily been studied in the setting where data are drawn from
a single Gaussian distribution; this corresponds to the EDD setting, where a separate model is
learned for each group. In Figure 1, we observe a double descent peak in the EDD at ψ1 = ψ2 = 1
(Adlam & Pennington, 2020a; D’Ascoli et al., 2020). Our work extends the theoretical treatment of
double descent to the setting of training a model on a mixture of Gaussians. However, our theory of
bias amplification cannot be reduced to double descent. For example, we note other interpolation
thresholds in Figure 1; our use of a linear activation does not have a confounding effect here, as
interpolation thresholds have also been observed in random features models with nonlinear activations
(Adlam & Pennington, 2020b). In addition, much of Sections 4 and 5, and Appendix M, are devoted
to studying the tails or limiting behavior of bias amplification with respect to ψ and ϕ.

Effect of Number of Features. In the ODD and ADD profiles, when the rate of features to samples
ϕ > 1, the right tail generally plateaus at higher values (i.e., greater than 1) when ϕ is closer to
1. This suggests that with a similar number of features and samples, under overparameterization,
bias amplification increases. In contrast, when ϕ < 1, the right tail of the ODD and EDD curves
seems to plateau at higher values when ϕ is larger. Regardless of the regime of the rate of features to
samples ϕ, the left tails of the ODD and EDD curves are generally higher for larger ϕ.

4.2 REGULARIZATION AND TRAINING DYNAMICS

We now explore how regularization and training dynamics affect bias amplification.
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Figure 2: Our theory predicts that models can amplify bias even with balanced groups and
without spurious correlations. We empirically validate our theory (Theorems 3.1 and 3.2) for
ODD, EDD, and ADD under the setup described in Section 4.1, with a1 = 0.5, a2 = 1, σ2

1 = 1,
and σ2

2 = 1× 10−5. The solid lines capture empirical values while the corresponding lower-opacity
dashed lines represent what our theory predicts. We plot ODD and EDD on the same scale for
easy comparison, and include a black dashed line at ADD = 1 to contrast bias amplification vs.
deamplification. We include all the plots with error bars in Appendix L.

Setup. We revisit the experimental setup for Section 4.1. We modulate a1, a2, ψ (rate of parameters
to samples), as well as λ (regularization penalty) to understand the effects of regularization and early
stopping on bias amplification. We fix σ2

1 = σ2
2 = 1, and the rate of features to samples ϕ = 0.75.

Effect of Regularization and Training Time. In simplistic settings, we can simulate model learning
over training time t by setting λ = 1/t (Ali et al., 2019). In the figures in Appendix O, we observe that
regardless of the regime of ψ, ADD ≈ 1 (i.e., there is neither bias amplification nor deamplification)
with high regularization or a short training time. When ψ > 1 (i.e., in the overparameterized regime),
the ADD is generally greater than 1 across values of λ (i.e., bias is amplified), while when ψ < 1
(i.e., in the underparameterized regime), the ADD is generally less than 1 (i.e., bias is deamplified).
Moreover, when ψ > 1, as regularization decreases (or training time increases), bias amplification
increases and plateaus. In contrast, when ψ < 1, as regularization decreases (or training time
increases), bias deamplification increases and plateaus. A notable exception to this trend occurs
when ψ is close to 1, where bias is initially deamplified and then amplified as λ decreases (or t
increases). This suggests that there may be an optimal regularization penalty or training time
to avoid bias amplification and increase bias deamplification. Intuitively, as training progresses,
overparameterized models may discover “shortcut” associations (Geirhos et al., 2020) that do not
generalize equally well across groups, yielding bias amplification. In practice, an optimal λ or t can
be selected by searching for values that strike a desired balance between overall validation error and
empirical bias amplification. The search space can be reduced by using the above ADD trends w.r.t.
λ and t that our theory predicts for over- vs. underparameterized models (see Appendix R for more
details). It is important for ML practitioners the consider the interplay between high vs. low feature-
to-sample regimes and overparameterization in inducing bias amplification vs. deamplification when
selecting optimal hyperparameters (see Figure 1).

In general, the calibration λ = 1/t may not yield a theoretically tight picture of how bias evolves
with t. The use of discrete gradient descent in practice rather than continuous-time gradient flows
might yield further discrepancies. However, the calibration λ = 1/t yields a ratio of gradient flow to
ridge risk that is at most 1.69, with no assumptions on the features X (Ali et al., 2019). Moreover,
in the controlled settings considered by Ali et al. (2019), this ratio empirically appears to be quite
close to 1, and thus may be sufficient for extrapolating our results. Like us, Jain et al. (2024) and
Hall et al. (2022) find that bias and bias amplification can vary substantially during training; future
work can establish stronger connections between our observations and the results of Jain et al. (2024),
who analytically identify phases in the evolution of bias and a crossing phenomenon in the test error
curves of groups during training. However, Jain et al. (2024) do not consider the effect of over-
and underparameterization on bias evolution. While our analysis relies on the simplistic calibration
λ = 1/t, it reveals divergent behavior in how bias evolves depending on model size.

Corroboration on Real Data. We further investigate the effect of training time on bias amplification
on a more realistic dataset. We train a convolutional neural network (CNN) on Colored MNIST (see
Appendix K.2 for more details). Colored MNIST is a semi-synthetic dataset derived from MNIST
where digits are randomly re-colored to be red or green (Arjovsky et al., 2019). We treat the color
of each digit as its group, and we manipulate the groups to have different levels of label noise. In
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our experimental protocol: (1) the color of each digit (in both train and test) is chosen uniformly
at random (i.e., with probability 0.5) and independently of the label; (2) by default, in the training
set, the labels of red digits are flipped with probability 0.05 while the labels of green digits are
flipped with probability 0.25; (3) labels are binarized (i.e., digits 0-4 correspond to 0 while digits
5-9 correspond to 1); and (4) each training step constitutes a step of gradient descent based on a
batch of 250 instances. Although Colored MNIST is a classification task and we use a complex CNN
architecture, our theory correctly predicts that as the training time t increases, the ODD of the
CNN is relatively low while the EDD is much larger, producing bias deamplification.
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Figure 3: Our theory predicts that dis-
parate label noise between groups deam-
plifies bias on Colored MNIST. We plot
the ODD and EDD of a CNN over train-
ing time t for Colored MNIST. As t in-
creases, the ODD is relatively low while
the EDD is noticeably higher. The error
bars capture the standard deviation com-
puted over 10 random seeds.

Taking t → ∞ corresponds to the setting of λ → 0+

in our theory (Theorems 3.1, 3.2). Because we as-
sign the colors at random, the only difference in im-
age features between groups is color; therefore, we
expect the covariance matrices Σ1 and Σ2 to roughly
coincide and ∆ = 0 (i.e., w∗

1 = w∗
2). Note that we

do not make any assumptions about the structure of
Σ1,Σ2. Furthermore, p1 = p2 = 1/2, and thus,
ϕ1 = ϕ2 and ψ1 = ψ2. Additionally, we analo-
gize the probability of label flipping to label noise
in ridge regression. Hence, e1 = e2, u1 = u2.
Accordingly, limλ→0+ B1(f̂) = limλ→0+ B1(f̂1) ≈
limλ→0+ B2(f̂) = limλ→0+ B2(f̂2). Simultane-
ously, limλ→0+ V1(f̂) ≈ limλ→0+ V2(f̂). However,
limλ→0+ V1(f̂1) ≈ σ2

1/2 · V = 0.05/2 · V = 0.025V

(where V = ϕ1h
(2)
1 (Id,Σ)), while limλ→0+ V2(f̂2) ≈

σ2
2/2 · V = 0.25/2 · V = 0.125V . This results in
ODD ≈ 0 while EDD ≈ 0.1|V |, which explains
the divergence of ODD and EDD in Figure 3. Intu-
itively, the high label noise for the green digits prohibits
the separate model f̂2 from achieving a low test risk
compared to f̂1; the single model f̂ achieves a comparable test risk on both groups, effectively
deamplifying bias, because of the better learning signal from the red digits. This phenomenon is
similar to positive transfer, wherein the EDD of a model generally tends to be higher than the ODD
when the labeling rules of imbalanced groups are sufficiently similar (Mannelli et al., 2024). However,
Mannelli et al. (2024) do not explore the impact of model size on positive transfer. We show that the
ODD can be less than the EDD depending on ψ in Figure 2, where ∆ = Id (i.e., the groups have
different labeling rules). Future work can study the ADD = ODD

EDD profile when ∆ = 0. Refer to
Appendix P for additional Colored MNIST experiments.

5 MINORITY-GROUP BIAS

Recent work has revealed that overparameterization may hurt test performance on minority groups
due to spurious features (Sagawa et al., 2020; Khani & Liang, 2021). Our theory provides new
insights into how model size and extraneous features affect minority-group bias.

Setup. To mirror the settings of Sagawa et al. (2020); Khani & Liang (2021), we consider diatomic

covariance matrices of core and extraneous features. We define A ⊕ B =

(
A 0
0 B

)
, and choose

Σ1 = a1Iπd⊕0I(1−π)d,Σ2 = a2Iπd⊕ b2I(1−π)d, for π ∈ (0, 1), a1, b2 > 0, a1 = a2. Refer to App.
K.1 for full details and a discussion of extraneous vs. spurious features (due to space limitations).

Interpolation Thresholds. The together R2 (i.e., the test risk for the minority group in the single
model setting) has different interpolation thresholds as ψ (rate of parameters to samples) increases,
depending on ϕ (rate of features to samples) and π (fraction of core features). Notably, as ϕ increases,
the interpolation thresholds occur at larger model sizes, culminating at ψ = 1. This suggests that for
a higher rate of features to samples, a larger model size can greatly increase the together test risk of
the minority group. Furthermore, the interpolation thresholds all occur closer to ψ = 1 for larger π,
collapsing to a single threshold at ψ = 1 when π → 1 (as in Appendix L). Therefore, a lower fraction
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Figure 4: Minority-group test risk can peak with different model sizes depending on the rate of
features to samples. We empirically demonstrate that minority-group bias is affected by extraneous
features. We validate our theory (Theorems 3.1 and 3.2) for together R1, R2 (i.e., single model
learned for both groups) and separate R1, R2 (i.e., separate model learned per group) under the setup
described in Section 4.2, with a1 = 2, b2 = 0.2, and π = 0.5. The solid lines capture empirical
values while the corresponding lower-opacity dashed lines represent what our theory predicts. We
include a black dashed line at ADD = 1 to contrast bias amplification vs. deamplification. All
y-axes are on the same scale for easy comparison. All the plots with error bars are in Appendix Q.

of core features can yield more possible model sizes that increase the test risk of the minority group.
In addition, the together R2 exhibits a steeper rate of growth around the interpolation thresholds for
larger b2, suggesting that a higher variance in the extraneous features can also increase the test risk of
the minority group in the single model setting. The phenomenon of different interpolation thresholds
is not visible for R2 when a separate model is trained per group; however, we do observe the expected
double descent peaks in the separate R1 and R2 curves at ψ1 = 1 and ψ2 = 1, respectively.

Overparameterization. The right tails of the together R2 curves plateau at different finite values
depending on ϕ. In particular, for ϕ closer to 1, the together R2 curves generally plateau at a higher
value, suggesting that a similar number of features and samples can exacerbate minority-group bias
under overparameterization. Furthermore, for smaller π and certain values of ϕ < 1, the right tail
of the together R1 curve plateaus at a lower value than the together R2 curve. This suggests that
there can be differences in test error between groups that are not alleviated even with increased model
size. This phenomenon diminishes in magnitude as the fraction of core features increases. This
phenomenon supports the finding of Sagawa et al. (2020) that overparameterization with spurious
features can increase test risk disparities between groups. We identify that the magnitude of this
phenomenon may depend on both the rate of features to samples and fraction of core features.

6 CONCLUSION

We present a unifying, rigorous, and effective theory of ML bias in the settings of ridge regression
with and without random projections. Our theory predicts interesting insights into bias amplification
and minority-group bias in different feature and parameter regimes. These findings can inform
strategies to evaluate and mitigate unfairness in ML (see Appendix R for more details). However,
there remain practical challenges to assessing whether a model is prone to bias amplification. These
include robustly estimating the feature covariance matrices (Bickel & Levina, 2008) and label noises
(Frénay & Kabán, 2014) for groups from sample data, especially for minority groups which have
limited data. Even so, practitioners can use our theory and empirical observations to form intuition
about when disparities in the variability of features and labels across groups can amplify bias.

Our theoretical methods are easily extendable to the case of more than two groups and can accom-
modate label noise sampled from other distributions. However, our theory is not directly extendable
to different proportionate scaling limits (e.g., d2/n has a finite limit instead of d/n). Additionally,
our theory requires approximately normally-distributed data and thus does not currently account for
missing features, which are common in the real world (Feng et al., 2024). Furthermore, our theory
implicitly assumes that group information is known, which is not always true (Coston et al., 2019);
however, because we work in an asymptotic scaling limit, having access to group information with
o(min(n1, n2)) noise is sufficient. As future work, we can leverage “Gaussian equivalents” (Goldt
et al., 2022) to extend our theory to wide, fully-trained networks in the NTK (Jacot et al., 2018) and
lazy (Chizat et al., 2019) regimes; this will enable us to understand how, apart from model size, other
design choices like nonlinear activation functions and learning rate may affect bias amplification.
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A WARM-UP: DERIVING MARCHENKO-PASTUR LAW VIA
OPERATOR-VALUED FREE PROBABILITY THEORY

We provide a detailed example of how to apply linear pencils and operator-valued free probability
theory (OVFPT) to derive the classical Marchenko-Pastur (MP) law (Marčenko & Pastur, 1967). Let
S = (1/n)X⊤X ∈ Rd×d be the empirical covariance matrix for an n×d random matrix X with IID
entries from N (0, 1). If n tends to infinity while d is held fixed, then S converges to the population
covariance matrix, here Σ = Id. If d also tends to infinity, then the limit seizes to exist. It turns out
that one can still make sense of the limiting distribution of eigenvalues of S in the case d/n stays
constant, i.e.,

n, d→ ∞, d/n→ γ ∈ (0,∞). (22)

In particular, we seek to understand the behavior of the random histogram:

µ̂n =
1

d

n∑
i=1

λ̂i, (23)

where λ̂1, . . . , λ̂d are the eigenvalues of S. In the aforementioned limit, µ̂n converges to a determin-
istic law µMP on R called the MP law. This is central to the field of random matrix theory (RMT),
a primary tool in probability theory, statistical analysis of neural networks, finance, etc. We are
interested in an even more powerful tool – free probability theory (FPT) – which is powerful enough
to give a precise picture of deep learning in certain linearized regimes (e.g., random features, NTK)
and interesting phenomena (e.g., triple descent) via analytic calculation.

A.1 STEP 1: CONSTRUCTING A LINEAR PENCIL

For any positive λ, consider the 2× 2 block matrix Q defined by:

Q =

(
In − X√

nλ
X⊤
√
nλ

Id

)
. (24)

Let t̄r be the normalized trace operator on square matrices and set φ = E ◦ t̄r . This gives random
(n + d) × (n + d) matrices the structure of a von Neumann algebra A. Define a 2 × 2 matrix
G = G(Q) by:

G = (I2 ⊗ φ)Q−1, i.e gi,j = φ([Q−1]i,j) = [φ(Q−1)]i,j for all i, j ∈ {1, 2}. (25)

Thus, the operator (I2 ⊗ φ)Q−1 extracts the expectation of the normalized trace of the blocks
of the inverse of the a 2× 2 block matrix Q.

Observe that:

E t̄r (S + λId)
−1 =

g2,2
λ
. (26)

This is a direct consequence of inverting a 2× 2 block matrix (namely Schur’s complement). The
mechanical advantage of Equation 26 is that the resolvent (S + λId)

−1 depends quadratically on
X while g2,2 is defined via Q, which is linear in X . For this reason, Q is called a linear pencil for
(S+λId)

−1. The construction of appropriate linear pencils for rational functions of random matrices
is a crucial step in leveraging FPT.

A.2 STEP 2: CONSTRUCTING THE FUNDAMENTAL EQUATION VIA FREENESS

For any B ∈Mb(C)+, define a block matrix B ⊗ 1A by:

[B ⊗ 1A]ij =

{
bijIdi , if di = dj
0, else

. (27)
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Here, b× b is the number of blocks in the linear pencil QX , that is, b = 2. Now, observe that we can
write Q = F −QX , where:

F =

(
Id 0
0 In

)
= I2 ⊗ 1A and QX =

(
0 X√

nλ

− X⊤
√
nλ

0

)
. (28)

One can then express G = (Ib ⊗ φ)Q−1 = (Ib ⊗ φ)(F −QX)−1. From operator-valued FPT, we
know that in the proportionate scaling limit given by Equation 22, the following fixed-point equation
(due to the asymptotic freeness of QX and F ) is satisfied by G:

G = (Ib ⊗ φ)(F −R⊗ 1A)
−1, (29)

where R = RQX (G), and RQX is the R-transform of QX which maps Mb(C)+ to itself like so:

RQX (B)ij =
∑
k,ℓ

σ(i, k; ℓ, j)αkbkℓ. (30)

Here, σ(i, k; ℓ, j) is the covariance between the entries of block (i, k) and block (ℓ, j) of QX , while
αk is the dimension of the block (k, ℓ).

A.3 STEP 3: THE FINAL CALCULATION

By the structure of QX , one can compute from Equation 30:

r1,1 = d · −1

nλ
g2,2 = −γ

λ
g2,2, (31)

r1,2 = 0, (32)
r2,1 = 0, (33)

r2,2 = n · −1

nλ
g1,1 = − 1

λ
g1,1. (34)

Combining this with Equation 29, one has:

G = (I2 ⊗ φ)(Z −R⊗ 1A)
−1 = (I2 −R)−1 =

(
1 + (γ/λ)g2,2 0

0 1 + g2,2/λ

)−1

=

(
λ/(λ+ γg2,2) 0

0 λ/(λ+ g1,1)

)
.

(35)

Comparing the matrix entries, this translates to the following scalar equations:

g1,1 =
λ

λ+ γg2,2
, (36)

g2,2 =
λ

λ+ g1,1
, (37)

g2,1 = g1,2 = 0. (38)

Plugging the second equation into the first (to eliminate g1,1) gives:

g2,2 =
λ

λ+ λ/(λ+ γg2,2)
.

Setting m = g2,2/λ then gives m = (λ+ 1/(1 + γm))−1, i.e.,

1

m
= λ+

1

1 + γm
, (39)

which is precisely the functional equation characterizing the Stieltjes transform (evaluated at λ = −z)
of the MP law with shape parameter γ. By treating λ as a complex number and applying the
Cauchy-inversion formula, we can recover µMP.
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B TECHNICAL ASSUMPTIONS

Assumption B.1. In the case of classical ridge regression, we will work in the following proportionate
scaling limit:

n, n1, n2, d→ ∞, n1/n→ p1, n2/n→ p2, d/n1 → ϕ1, d/n2 → ϕ2, d/n→ ϕ, (40)

for some constants ϕ1, ϕ2, ϕ ∈ (0,∞). The scalar ϕ captures the rate of features to samples. Observe
that ϕ = p1ϕ1 and ϕ = p2ϕ2.

Assumption B.2. The per-group covariance matrices Σ1 and Σ2 and ground-truth weight covariance
matrices Θ and ∆ are all simultaneously diagonalizable; hence, all these matrices commute.

While Assumption B.2 may appear reductive, our goal is to analyze the bias amplification phenomenon
in a sufficient setting that does not introduce complexities due to non-commutativity. Notably, our
main theoretical result does not assume isotropic covariance. For example, our theory accommodates
diatomic covariance (see Section 5) and power-law covariance (see Appendix M).
Assumption B.3. In Corollary M.1, we assume the following spectral densities exist when d→ ∞:

• ν ∈ P(R+) is the limiting spectral density of Σ2Σ
−1
1 , of the ratios λ(2)j /λ

(1)
j of the eigen-

values of the respective covariance matrices,

• µ ∈ P(R+,R+) is the joint limiting density of the spectra of Σ2Σ
−1
1 and Σ1,

• π ∈ P(R+) is the limiting density of the spectrum of ∆.
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C RELATED WORK (CONTINUED)

High-dimensional analysis of bias. Mannelli et al. (2024) employ the replica method, which is
non-rigorous, while we use OVFPT, which is entirely rigorous. Moreover, Mannelli et al. (2024); Jain
et al. (2024) study the application of linear classification to Gaussian data with isotropic covariance;
in contrast, we study the application of regression with random projections (a simplified model
of feedforward neural networks) to Gaussian data with more general covariance structure (i.e.,
covariance matrices that are simultaneously diagonalizable) and noisy labels. This allows us to
analyze the effects of these additional factors on bias. We make additional connections between our
work and Mannelli et al. (2024); Jain et al. (2024) in Section 4.2.

Bias amplification metrics. Our definition of ADD is consistent with the conceptualization of
bias of Bell & Sagun (2023). At a high level, our definition quantifies how many times worse model
bias would be if a ML practitioner opted to train a single model on a mixture of data from two groups
(i.e., the setting in which bias is observed in practice) vs. separate models for the data from each
group (i.e., the setting which corresponds to the bias in the data alone, and thus the a priori amount of
bias we would expect in the case of a single model). In sum, we seek to isolate the contribution of the
model to bias when learning from data with different groups.
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D WARM-UP: CLASSICAL LINEAR MODEL

Technical Difficulty. The analysis of the test errors (e.g., Rs(f̂)) amounts to the analysis of the trace
of rational functions of sums of random matrices. Although the limiting spectral density of sums
of random matrices is a classical computation using subordination techniques (Marčenko & Pastur,
1967; Kargin, 2015), a more involved analysis is required in our case. This difficulty is even greater
in the setting of random projections (see Section 3.1). Thus, we employ OVFPT to compute the
exact high-dimensional limits of such quantities. We derive Theorems D.2 and D.1 using OVFPT
(in Appendices F and E). Theorem D.1 is a non-trivial generalization of Proposition 3 from (Bach,
2023), which can be recovered by taking ps → 1 (i.e., ps′ → 0).

D.1 SINGLE MODEL LEARNED FOR BOTH GROUPS

We first consider the classical ridge regression model f̂ , which is learned using empirical risk
minimization and ℓ2-regularization with penalty λ. The parameter vector ŵ ∈ Rd of the linear model
f̂ is given by the following problem:

ŵ = arg min
w∈Rd

L(w) =

2∑
s=1

n−1∥Xsw − Ys∥22 + λ∥w∥22. (41)

The unregularized limit λ→ 0+ corresponds to ordinary least-squares (OLS). We provide in Theorem
D.1 a novel bias-variance decomposition for the test error Rs(f̂) for each group s ∈ {1, 2}. We first
present some relevant definitions.

Definition D.1. For any group index s ∈ {1, 2}, we define (e1, e2, u
(s)
1 , u

(s)
2 ) to be the unique positive

solution to the following system of fixed-point equations:

1/es = 1 + ϕt̄r ΣsK
−1, u

(s)
k = ϕe2k t̄r Σk(p1u

(s)
1 Σ1 + p2u

(s)
2 Σ2 +Σs)K

−2, k ∈ {1, 2}, (42)

where K = p1e1Σ1 + p2e2Σ2 + λId and t̄rA := (1/d) tr A is the normalized trace operator.

The fixed-point equations for es are non-linear and often not analytically solvable for general Σ1,Σ2.
This is typical in RMT.

Theorem D.1. Under Assumptions B.2 and B.1, it holds that: Rs(f̂) ≃ Bs(f̂) + Vs(f̂), with

Vs(f̂) = V (1)
s (f̂) + V (2)

s (f̂), (43)

V (k)
s (f̂) = pkσ

2
kϕt̄r Σk

(
ekΣs − λu

(s)
k Id + pk′Σk′(eku

(s)
k′ − ek′u

(s)
k )
)
K−2, (44)

Bs(f̂) = B(1)
s (f̂) +B(3)

s (f̂) +

{
0, s = 1,

2B
(2)
2 (f̂), s = 2,

(45)

B(1)
s (f̂) = ps′ t̄r∆Σs′(ps′(1 + psu

(s)
s )e2s′Σs′Σs + u

(s)
s′ (psesΣs + λId)

2)K−2, (46)

B
(2)
2 (f̂) = p1λt̄r Σ1((1 + p2u

(2)
2 )e1Σ2 − u

(2)
1 (p2e2Σ2 + λId))K

−2, (47)

B(3)
s (f̂) = λ2t̄r Θs(p1u

(s)
1 Σ1 + p2u

(s)
2 Σ2 +Σs)K

−2, (48)

where 1′ = 2 and 2′ = 1.

D.2 SEPARATE MODEL LEARNED PER GROUP

We now treat the case of fitting a separate model f̂s per group. Suppose that the classical ridge
regression models f̂1 and f̂2 are learned using empirical risk minimization and ℓ2-regularization with
penalties λ1 and λ2, respectively. In particular, we have the following optimization problem for each
group s:

arg min
w∈Rd

L(w) =
1

ns

∑
(xi,yi)∈Ds

(x⊤i w − yi)
2 + λs∥w∥22 =

∥Xsw − Ys∥22
ns

+ λs∥w∥22. (49)

We first present some relevant definitions.
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Definition D.2. Let d̄f(s)m (t) = t̄r Σms (Σs + tId)
−m, and κs be the unique positive solution to the

equation κs − λs = κsϕsd̄f
(s)
1 (κs).

In this setting, we deduce Theorem D.2.
Theorem D.2. Under Assumptions B.2 and B.1, it holds that:

Rs(f̂s) ≃ Bs(f̂s) + Vs(f̂s), with (50)

Vs(f̂s) =
σ2
sϕsd̄f

(s)
2 (κs)

1− ϕsd̄f
(s)
2 (κs)

, Bs(f̂s) =
κ2s t̄r ΘsΣs (Σs + κsId)

−2

1− ϕsd̄f
(s)
2 (κs)

. (51)

D.3 PHASE DIAGRAM

We present the bias amplification phase diagram (Figure 5) predicted by Theorems D.1 and D.2 for
the classical ridge regression model. The phase diagram offers insights into how ϕ (rate of features to
samples) affects bias amplification. To obtain the precise phase diagram, we solve the scalar equations
numerically. In the ODD profile, we observe an interpolation threshold at ϕ = 1. To the right of the
threshold, we observe a tail that descends towards 1. To the left of the threshold, the ODD descends
below 1 with a local minimum at ϕ ≈ 0.25 before increasing. In contrast, we observe that the EDD
continually grows as ϕ increases, ascending from a small value, exhibiting an inflection point at
ϕ = 0.5, and plateauing after ϕ = 1. Accordingly, the ADD increases significantly as ϕ decreases
(with an intermediate inflection point at ϕ = 0.5), peaks at ϕ = 1, and descends towards 1 as ϕ
increases (i.e., bias remains amplified in this phase). In sum, bias is most amplified when the rate
of features to samples ϕ≪ 1 and ϕ = 1. Interestingly, bias amplification consistently occurs (i.e.,
ADD > 1) across all observed values of ϕ.
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Figure 5: ODD, EDD, and ADD phase diagrams for classical ridge regression. We plot the bias
amplification phase diagrams with respect to ϕ (rate of features to samples), as predicted by our theory
for ridge regression without random projections (Theorems D.1, D.2). Dashed black lines indicate
theoretical predictions. We consider isotropic covariance matrices: Σ1 = 2Id,Σ2 = Id, Θ = 2Id,
∆ = Id. Additionally, n = 1× 104, σ2

1 = σ2
2 = 1. We further choose λ = λ1 = λ2 = 1× 10−6 to

approximate the minimum-norm interpolator. We observe that bias amplification can occur even in
the balanced data setting, i.e., when p1 = p2 = 1/2, without spurious correlations.
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E PROOF OF THEOREM D.2

Proof. We define Ms = X⊤
s Xs and Es = Ys − Xsw

∗
s . Note that ŵs = (X⊤

s Xs +
nsλsId)

−1X⊤
s (Xsw

∗
s + Es) = (Ms + nsλsId)

−1Msw
∗
s + (Ms + nsλsId)

−1X⊤
s Es. We deduce

that Rs(f̂s) = Bs(f̂s) + Vs(f̂s), where:

Bs(f̂s) = E ∥(Ms + nsλsId)
−1Msw

∗
s − w∗

s∥2Σs , (52)

Vs(f̂s) = E ∥(Ms + nsλsId)
−1X⊤

s Es∥2Σs . (53)

E.1 VARIANCE TERM

Note that the variance term Vs(f̂) of the test error of f̂s evaluated on group s is given by:

Vs(f̂s) = σ2
sE tr Xs(Ms + nsλsId)

−1Σs(Ms + nsλsId)
−1X⊤

s (54)

= σ2
sE tr (Ms + nsλsId)

−1Ms(Ms + nsλsId)
−1Σs. (55)

We can re-express this as:

nsVs(f̂s) = σ2
sE tr (Hs + λsId)

−1Hs(Hs + λsId)
−1Σs (56)

=
σ2
s

λs
E tr (Hs/λs + Id)

−1(Hs/λs)(Hs/λs + Id)
−1Σs, (57)

where Hs = X⊤
s Xs/ns and Xs = ZsΣ

1/2
s , with Z1 ∈ Rn1×d and Z2 ∈ Rn2×d being independent

random matrices with IID entries from N (0, 1). Thus, the variance term is proportional to:

t̄r (Hs + λsId)
−1Hs(Hs + λsId)

−1Σs. (58)

WLOG, we consider the case where s = 1. The matrix of interest has a linear pencil representation
given by (with zero-based indexing):

(H1/λ1 + Id)
−1(H1/λ1)(H1/λ1 + Id)

−1Σ1 = Q−1
0,8, (59)

where the linear pencil Q is defined as follows:

Q =



Id Σ
1
2
1 0 0 −Σ

1
2
1 0 0 0 0

0 Id − 1√
λ1

√
n1
Z⊤
1 0 0 0 0 0 0

0 0 In1
− 1√

λ1
√
n1
Z1 0 0 0 0 0

−Σ
1
2
1 0 0 Id 0 0 0 0 0

0 0 0 0 Id − 1√
λ1

√
n1
Z⊤
1 0 0 0

0 0 0 0 0 In1
− 1√

λ1
√
n1
Z1 0 0

0 0 0 0 0 0 Id −Σ
1
2
1 0

0 0 0 0 Σ
1
2
1 0 0 Id −Σ1

0 0 0 0 0 0 0 0 Id


. (60)

We compute Q using the NCMinimalDescriptorRealization function of the NCAlgebra
library1. We further symmetrize Q by constructing the self-adjoint matrix Q:

Q =

(
0 Q⊤

Q 0

)
. (61)

This enables us to apply known formulae for the R-transform of Gaussian block matrices (Far et al.,
2006). We note that Q

−1

0,17 = Q−1
0,8. Taking similar steps as Lee et al. (2023), we use OVFPT on Q.

Let G = (I18 ⊗ E t̄r )Q
−1 ∈ R18×18 be the matrix whose entries are normalized traces of blocks2 of

Q
−1

. We provide a detailed example of how to apply OVFPT to derive the MP law in Appendix A.
One can arrive at that, in the asymptotic limit given by Equation 40, the following holds:

Et̄r (H1 + λ1Id)
−1H1(H1 + λ1Id)

−1Σ1 =
G0,17

λ1
,

with
G0,17

λ1
= (G5,14 −G2,14)t̄r (Σ1G2,11 + λ1Id)

−1
Σ1 (Σ1G5,14 + λ1Id)

−1
Σ1.

(62)

1https://github.com/NCAlgebra/NC
2By convention, the trace of a non-square block is zero.
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We will now obtain the fixed-point equations satisfied by G2,11 and G5,14. We observe that:

G2,11 = − λ1
−λ1 + ϕ1G3,10

, G3,10 = −λ1t̄r Σ1(Σ1G2,11 + λ1Id)
−1 (63)

=⇒ G2,11 =
1

1 + ϕ1t̄r Σ1(Σ1G2,11 + λ1Id)−1
, (64)

G5,14 = − λ1
−λ1 + ϕ1G6,13

, G6,13 = −λ1t̄r Σ1 (Σ1G5,14 + λ1Id)
−1 (65)

=⇒ G5,14 =
1

1 + ϕ1t̄r Σ1 (Σ1G5,14 + λ1Id)
−1 . (66)

We recognize that we must have the identification e1 = G2,11 = G5,14, where e1 ≥ 0. Therefore:

e1 =
e1

e1 + ϕ1d̄f
(1)
1 (λ1/e1)

(67)

i.e., 1 = e1 + ϕ1d̄f
(1)
1 (λ1/e1) = λ1/κ1 + ϕ1d̄f

(1)
1 (κ1) (68)

κ1 = λ1 + κ1ϕ1d̄f
(1)
1 (κ1), (69)

where d̄f
(s)
m (t) = t̄r Σms (Σs + tId)

−m and κ1 = λ1/e1. Additionally:

G2,14 =
λ1ϕ1G3,13

(−λ1 + ϕ1G3,10)(−λ1 + ϕ1G6,13)
= ϕ1e

2
1

G3,13

λ1
, (70)

G3,13

λ1
= t̄r (Σ1G2,11 + λ1Id)

−2(Σ1G2,14 + λ1Id)Σ1 (71)

=
G2,14

e21
d̄f

(1)
2 (κ1) + λ1t̄r (Σ1e1 + λ1Id)

−2Σ1, (72)

G3,10

λ1
= −t̄r (Σ1e1 + λ1Id)

−1Σ1. (73)

Then:

G5,14 −G2,14 = e21

(
1− ϕ1

G3,10 +G3,13

λ1

)
, (74)

G3,10 +G3,13

λ1
=
G2,14

e21
d̄f

(1)
2 (κ1) + λ1t̄r (Σ1e1 + λ1Id)

−2Σ1 (75)

− t̄r (Σ1e1 + λ1Id)
−2(Σ1e1 + λ1Id)Σ1 (76)

=
G2,14

e21
d̄f

(1)
2 (κ1)−

e1
e21

d̄f
(1)
2 (κ1) (77)

= −G5,14 −G2,14

e21
d̄f

(1)
2 (κ1). (78)

We define:

c1 ≥ 1, c1 =
G5,14 −G2,14

e21
= 1 + ϕ1c1d̄f

(1)
2 (κ1), (79)

i.e., c1 =
1

1− ϕ1d̄f
(1)
2 (κ1)

. (80)

Hence:

G0,17

λ1
= c1d̄f

(1)
2 (κ1) =

d̄f
(1)
2 (κ1)

1− ϕ1d̄f
(1)
2 (κ1)

. (81)

In conclusion:

κ1 = λ1 + κ1ϕ1d̄f
(1)
1 (κ1), (82)

V1(f̂1) =
σ2
1ϕ1d̄f

(1)
2 (κ1)

1− ϕ1d̄f
(1)
2 (κ1)

. (83)
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Following similar steps for V2(f̂2), we get:

κ2 = λ2 + κ2ϕ2d̄f
(2)
1 (κ2), (84)

V2(f̂2) =
σ2
2ϕ2d̄f

(2)
2 (κ2)

1− ϕ2d̄f
(2)
2 (κ2)

. (85)

To further substantiate our result, let us consider the unregularized case where λs = 0 and ϕs < 1:

κs = 0, Vs(f̂s) =
σ2
sϕs

1− ϕs
. (86)

From an alternate angle, we know that:

Rs(f̂s) = E ∥ŵs − w∗
s∥2Σs = E ∥(X⊤

s Xs)
−1X⊤

s Es∥2Σs (87)

= σ2
sE tr Xs(X

⊤
s Xs)

−1Σs(X
⊤
s Xs)

−1X⊤
s (88)

= σ2
sE tr (X⊤

s Xs)
−1Σs =

σ2
s

ns − d− 1
tr Id = σ2

s

d

ns − d− 1
≃ σ2

sϕs
1− ϕs

, (89)

where we have used Lemma E.1 below.

Lemma E.1. Let n and d be positive integers with n ≥ d+ 2. If Z is an n× d random matrix with
IID rows from N (0,Σ), then:

E(Z⊤Z)−1 =
1

n− d− 1
Σ−1. (90)

E.2 BIAS TERM

We can compute the bias term Bs(f̂s) of the test error of f̂s evaluated on group s as:

Bs(f̂s) = E ∥(Ms + nsλsId)
−1Msw

∗
s − w∗

s∥2Σs (91)

= E ∥(Ms + nsλsId)
−1Msw

∗
s − (Ms + nsλsId)

−1(Ms + nsλsId)w
∗
s∥2Σs (92)

= E ∥(Ms + nsλsId)
−1nsλsw

∗
s∥2Σs (93)

= n2sλ
2
sE tr (Ms + nsλsId)

−1w∗
s(w

∗
s)

⊤(Ms + nsλsId)
−1Σs. (94)

We can re-express this as:

1

λ2s
Bs(f̂s) = E t̄r (Hs + λsId)

−1Θs(Hs + λsId)
−1Σs (95)

Bs(f̂s) = E t̄r (Hs/λs + Id)
−1Θs(Hs/λs + Id)

−1Σs, (96)

where Θs =

{
Θ, s = 1

Θ+∆, s = 2
. WLOG, we consider the case where s = 1. The matrix of interest

has a linear pencil representation given by (with zero-based indexing):

(H1/λ1 + Id)
−1Θ(H1/λ1 + Id)

−1Σ1 = Q−1
0,8, (97)

where the linear pencil Q is defined as follows:

Q =



Id Σ
1
2
1 0 0 −Θ 0 0 0 0

0 Id − 1√
λ
√
n
Z⊤
1 0 0 0 0 0 0

0 0 In1
− 1√

λ
√
n
Z1 0 0 0 0 0

−Σ
1
2
1 0 0 Id 0 0 0 0 0

0 0 0 0 Id Σ
1
2
1 0 0 −Σ1

0 0 0 0 0 Id − 1√
λ
√
n
Z⊤
1 0 0

0 0 0 0 0 0 In1
− 1√

λ
√
n
Z1 0

0 0 0 0 −Σ
1
2
1 0 0 Id 0

0 0 0 0 0 0 0 0 Id


. (98)
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We note that Q
−1

0,17 = Q−1
0,8. Using OVFPT, we deduce that, in the limit given by Equation 40, the

following holds:

E t̄r (H1/λ1 + Id)
−1Θ(H1/λ1 + Id)

−1Σ1 = G0,17, (99)

with G0,17 = λ1t̄r (Σ1G2,11 + λ1Id)
−1

(λ1Θ+Σ1G2,15) (Σ1G6,15 + λ1Id)
−1

Σ1. (100)

We will now obtain the fixed-point equations satisfied by G2,11 and G6,15. We observe that:

G2,11 = − λ1
−λ1 + ϕ1G3,10

, G3,10 = −λ1t̄r Σ1(Σ1G2,11 + λ1Id)
−1 (101)

=⇒ G2,11 =
1

1 + ϕ1t̄r Σ1(Σ1G2,11 + λ1Id)−1
, (102)

G6,15 = − λ1
−λ1 + ϕ1G7,14

, G7,14 = −λ1t̄r Σ1 (Σ1G6,15 + λ1Id)
−1 (103)

=⇒ G6,15 =
1

1 + ϕ1t̄r Σ1 (Σ1G6,15 + λ1Id)
−1 . (104)

We recognize that we must have the identification e1 = G2,11 = G6,15, where e1 ≥ 0. Therefore:

e1 =
1

1 + ϕ1t̄r Σ1 (Σ1e1 + λ1Id)
−1 , (105)

i.e., κ1 = λ1 + κ1ϕ1d̄f
(1)
1 (κ1). (106)

Additionally:

G2,15 =
λ1ϕ1G3,14

(−λ1 + ϕ1G3,10)(−λ1 + ϕ1G7,14)
= ϕ1e

2
1

G3,14

λ1
, (107)

G3,14

λ1
= t̄r (Σ1G2,11 + λ1Id)

−2(Σ1G2,15 + λ1Θ)Σ1 (108)

=
G2,15

e21
d̄f

(1)
2 (κ1) +

λ1
e21

t̄r (Σ1 + κ1Id)
−2ΘΣ1, (109)

=⇒ G2,15 = ϕ1G2,15d̄f
(1)
2 (κ1) + λ1ϕ1t̄r (Σ1 + κ1Id)

−2ΘΣ1, (110)

i.e., G2,15 =
λ1ϕ1

1− ϕ1d̄f
(1)
2 (κ1)

t̄r (Σ1 + κ1Id)
−2ΘΣ1. (111)

Hence:

G0,17 = κ21t̄r (Σ1 + κ1Id)
−2

ΘΣ1 + κ21d̄f
(1)
2 (κ1)

G2,15

λ1
(112)

= κ21t̄r (Σ1 + κ1Id)
−2

ΘΣ1 + κ21
ϕ1d̄f

(1)
2 (κ1)

1− ϕ1d̄f
(1)
2 (κ1)

t̄r (Σ1 + κ1Id)
−2ΘΣ1 (113)

=

(
1 +

ϕ1d̄f
(1)
2 (κ1)

1− ϕ1d̄f
(1)
2 (κ1)

)
κ21t̄r (Σ1 + κ1Id)

−2
ΘΣ1. (114)

In conclusion:

B1(f̂1) =
κ21t̄r (Σ1 + κ1Id)

−2
ΘΣ1

1− ϕ1d̄f
(1)
2 (κ1)

. (115)

Following similar steps for B2(f̂2), we get:

B2(f̂2) =
κ22t̄r (Σ2 + κ2Id)

−2
(Θ +∆)Σ2

1− ϕ2d̄f
(2)
2 (κ2)

. (116)

We observe that in the unregularized case (i.e., λs = 0), κs = 0. In this setting, Bs(f̂s) = 0 as
expected.
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F PROOF OF THEOREM D.1

Proof. We define M = X⊤X + nλId. Note that one has:

ŵ =M−1(M1w
∗
1 +X⊤

1 E1 +M2w
∗
2 +X⊤

2 E2). (117)

We deduce that Rs(f̂) = Bs(f̂) + Vs(f̂), where:

Bs(f̂) = E ∥M−1Ms′w
∗
s′ +M−1Msw

∗
s − w∗

s∥2Σs , (118)

Vs(f̂) = E ∥M−1(X⊤
1 E1 +X⊤

2 E2)∥2Σs (119)

= E ∥M−1X⊤
1 E1∥2Σs + E ∥M−1X⊤

2 E2∥2Σs , (120)

with s′ =
{
2, s = 1

1, s = 2
.

F.1 VARIANCE TERMS

Note that Vs(f̂) of the test error of f̂ evaluated on group s is given by:

Vs(f̂) = σ2
1E tr X1M

−1ΣsM
−1X⊤

1 + σ2
2E tr X2M

−1ΣsM
−1X⊤

2 (121)

= σ2
1E tr M−1M1M

−1Σs + σ2
2E tr M−1M2M

−1Σs. (122)

We can re-express this as:

nVs(f̂) = σ2
1E tr (H + λId)

−1H1(H + λId)
−1Σs + σ2

2E tr (H + λId)
−1H2(H + λId)

−1Σs,(123)

where H = H1 + H2, Hs = X⊤
s Xs/n, and Xs = ZsΣ

1/2
s with Z1 ∈ Rn1×d and Z2 ∈ Rn2×d

being independent random matrices with IID entries from N (0, 1).

WLOG, we focus on tr (H + λId)
−1H2(H + λId)

−1Σs. The matrix of interest has a linear pencil
representation given by (with zero-based indexing):

(H1/λ+H2/λ+ Id)
−1(H2/λ)(H1/λ+H2/λ+ Id)

−1Σs = Q−1
1,8, (124)
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where the linear pencil Q is defined as follows:

Q
= 

I
d

0
−

1
√
λ √

n
Z

⊤2
0

0
0

0
0

0
0

0
0

0
0

0

−
Σ

122
I
d

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
I
n
2

−
1

√
λ √

n
Z
2

0
0

0
0

0
0

0
0

0
0

0

0
0

0
I
d

−
Σ

122
0

0
0

0
0

0
0

0
0

0

Σ
122

0
0

0
I
d

Σ
121

0
0

−
Σ
s

0
0

0
0

0
0

0
0

0
0

0
I
d

−
1

√
λ √

n
Z

⊤1
0

0
0

0
0

0
0

0

0
0

0
0

0
0

I
n
1

−
1

√
λ √

n
Z
1

0
0

0
0

0
0

0

0
0

0
0

−
Σ

121
0

0
I
d

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

I
d

Σ
121

0
0

Σ
122

0
0

0
0

0
0

0
0

0
0

0
I
d

−
1

√
λ √

n
Z

⊤1
0

0
0

0

0
0

0
0

0
0

0
0

0
0

I
n
1

−
1

√
λ √

n
Z
1

0
0

0

0
0

0
0

0
0

0
0

−
Σ

121
0

0
I
d

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
I
d

−
1

√
λ √

n
Z

⊤2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
I
n
2

−
1

√
λ √

n
Z
2

0
0

0
0

0
0

0
0

−
Σ

122
0

0
0

0
0

I
d

 .

(125)

Using OVFPT, we deduce that, in the limit given by Equation 40, the following holds:

E t̄r (H1 +H2 + λId)
−1H2(H1 +H2 + λId)

−1Σs =
G1,23

λ
, (126)

with:

G1,23

λ
= λ−1t̄r p2Σ2(λΣsG0,15 + λG0,27Id − p1Σ1G0,15G5,24 + p1Σ1G0,27G5,20) (127)

· (p1Σ1G5,20 + p2Σ2G0,15 + λId)
−2. (128)
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By identifying identical entries of Q
−1

, we must have that G5,20

λ =
G6,21

λ =
G10,25

λ ,
G0,15

λ =
G2,17

λ =
G13,28

λ . For G6,21 and G2,17, we observe that:

G6,21 = − λ

−λ+ ϕG7,20
, G7,20 = −λt̄r Σ1 (p1Σ1G6,21 + p2Σ2G2,17 + λId)

−1 (129)

=⇒ G6,21 =
1

1 + ϕt̄r Σ1 (p1Σ1G6,21 + p2Σ2G2,17 + λId)
−1 , (130)

G2,17 = − λ

−λ+ ϕG3,15
, G3,15 = −λt̄r Σ2 (p1Σ1G6,21 + p2Σ2G2,17 + λId)

−1 (131)

=⇒ G2,17 =
1

1 + ϕt̄r Σ2 (p1Σ1G6,21 + p2Σ2G2,17 + λId)
−1 . (132)

We define η1 =
G6,21

λ , η2 =
G2,17

λ , with η1 ≥ 0, η2 ≥ 0. Therefore:

ηs =
1

λ+ ϕt̄r ΣsK−1
, (133)

where K = η1p1Σ1 + η2p2Σ2 + Id. Additionally, by identifying identical entries of Q
−1

, we must
have that G5,24 = G6,25, G0,27 = G2,28. We observe that:

G10,25 =
−λ

−λ+ ϕG11,24
, (134)

G6,25 =
λϕG7,24

(−λ+ ϕG7,20)(−λ+ ϕG11,24)
= ϕλ2η21

G7,24

λ
, (135)

G7,24

λ
= λ−2t̄rK−2(p1Σ1G6,25 + p2Σ2G2,28 − λΣs)Σ1, (136)

=⇒ G6,25 = ϕη21 t̄rK
−2(p1Σ1G6,25 + p2Σ2G2,28 − λΣs)Σ1, (137)

G13,28 =
−λ

−λ+ ϕG14,27
, (138)

G2,28 =
λϕG3,27

(−λ+ ϕG3,15)(−λ+ ϕG14,27)
= ϕλ2η22

G3,27

λ
, (139)

G3,27

λ
= λ−2t̄rK−2(p1Σ1G6,25 + p2Σ2G2,28 − λΣs)Σ2, (140)

=⇒ G2,28 = ϕη22 t̄rK
−2(p1Σ1G6,25 + p2Σ2G2,28 − λΣs)Σ2. (141)

We now define v(s)1 = −G6,25, v
(s)
2 = −G2,28, with v(s)1 ≥ 0, v

(s)
2 ≥ 0. Therefore, v(s)1 , v

(s)
2 obey

the following system of equations:

v
(s)
k = ϕη2k t̄rK

−2(v
(s)
1 p1Σ1 + v

(s)
2 p2Σ2 + λΣs)Σk. (142)

We further define u(s)k =
v
(s)
k

λ . Putting all the pieces together:

G1,23

λ
= λ−1t̄r p2Σ2

(
η2Σs − u

(s)
2 Id + p1Σ1(η2u

(s)
1 − η1u

(s)
2 )
)
K−2. (143)

By symmetry, in conclusion:

Vs(f̂) = V (1)
s (f̂) + V (2)

s (f̂), (144)

V (k)
s (f̂) = λ−1ϕσ2

k t̄r pkΣk
(
ηkΣs − u

(s)
k Id + pk′Σk′(ηku

(s)
k′ − ηk′u

(s)
k )
)
K−2, (145)

with k′ =
{
2, k = 1

1, k = 2
.
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We now corroborate our result in the limit p2 → 1 (i.e., p1 → 0) and s = 2. We observe that:

ϕ→ ϕ2, λ→ λ2, (146)

V
(1)
2 (f̂) = 0, (147)

V
(2)
2 (f̂)

λ−1ϕ2σ2
2

= t̄rΣ2(η2Σ2 − u
(2)
2 Id)K

−2 (148)

v
(2)
2 = ϕ2η

2
2 t̄rK

−2(v
(2)
2 Σ2 + λ2Σ2)Σ2 (149)

= ϕ2(v
(2)
2 + λ2)d̄f

(2)
2 (κ2), (150)

u
(2)
2 =

ϕ2d̄f
(2)
2 (κ2)

1− ϕ2d̄f
(2)
2 (κ2)

, (151)

V
(2)
2 (f̂)

λ−1ϕ2σ2
2

= κ2d̄f
(2)
2 (κ2)− u

(2)
2 t̄r Σ2(η2Σ2 + Id)

−2 (152)

= κ2d̄f
(2)
2 (κ2)− κ22u

(2)
2 t̄r Σ2(Σ2 + κ2Id)

−2 (153)

= κ2d̄f
(2)
2 (κ2)− κ2u

(2)
2 (d̄f

(2)
1 (κ2)− d̄f

(2)
2 (κ2)) (154)

= κ2(1 + u
(2)
2 )d̄f

(2)
2 (κ2)− κ2u

(2)
2 d̄f

(2)
1 (κ2) (155)

=
κ2 − κ2ϕ2d̄f

(2)
1 (κ2)

1− ϕ2d̄f
(2)
2 (κ2)

· d̄f(2)2 (κ2) (156)

=
λd̄f

(2)
2 (κ2)

1− ϕ2d̄f
(2)
2 (κ2)

, (157)

V
(2)
2 (f̂) =

σ2
2ϕ2d̄f

(2)
2 (κ2)

1− ϕ2d̄f
(2)
2 (κ2)

, (158)

which exactly recovers the result for V2(f̂2) as expected.

F.2 BIAS TERMS

Recall that:

Bs(f̂) = E ∥M−1Ms′w
∗
s′ +M−1Msw

∗
s − w∗

s∥2Σs . (159)

Now, observe that M−1M1w
∗
1 − w∗

1 = M−1M1w
∗
1 −M−1Mw∗

1 = −M−1M2w
∗
1 − nλM−1w∗

1 .
Let δ = w∗

2 − w∗
1 . Then:

Bs(f̂) = E∥M−1Ms′(−1)s−1δ − nλM−1w∗
s∥2Σs (160)

= E tr δ⊤Ms′M
−1ΣsM

−1Ms′δ (161)

− 2(−1)s−1nλE tr δ⊤Ms′M
−1ΣsM

−1w∗
s (162)

+ n2λ2E tr (w∗
s)

⊤M−1ΣsM
−1w∗

s (163)

= B(1)
s (f̂)− 2(−1)s−1B(2)

s (f̂) +B(3)
s (f̂), (164)

where:

B(1)
s (f̂) = Et̄r (H1/λ+H2/λ+ Id)

−1(Hs′/λ)∆(Hs′/λ)(H1/λ+H2/λ+ Id)
−1Σs, (165)

B(2)
s (f̂) = E tr δ⊤(Hs′/λ)(H1/λ+H2/λ+ Id)

−1Σs(H1/λ+H2/λ+ Id)
−1w∗

s , (166)

B(3)
s (f̂) = Et̄r (H1/λ+H2/λ+ Id)

−1Θs(H1/λ+H2/λ+ Id)
−1Σs. (167)

Because δ and w∗
1 are independent and sampled from zero-centered distributions:

B
(2)
1 (f̂) = 0, (168)

B
(2)
2 (f̂) = Et̄r (H1/λ+H2/λ+ Id)

−1∆(H1/λ)(H1/λ+H2/λ+ Id)
−1Σ2. (169)
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WLOG, for B(1)
s , we focus on the case s = 1. The matrix of interest has a linear pencil representation

given by (with zero-based indexing):

(H1/λ+H2/λ+ Id)
−1(H2/λ)∆(H2/λ)(H1/λ+H2/λ+ Id)

−1Σ1 = Q−1
1,16, (170)

where the linear pencil Q is defined as follows:

Q
= 

I
d

0
−
Σ
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∆

I
d

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
I
d

−
1

√
λ √

n
Z

⊤2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
I
n
2

−
1

√
λ √

n
Z
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

I
d

−
Σ

122
0

0
0

0
0

0
0

0
0

0
0

0
0

Σ
122

0
0

I
d

Σ
121

0
0

−
Σ

1
0

0
0

0
0

0
0

0
0

0
0

0
0

I
d

−
1

√
λ √

n
Z

⊤1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
I
n
1

−
1

√
λ √

n
Z
1

0
0

0
0

0
0

0
0

0
0

0
0

0
−
Σ

121
0

0
I
d

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
I
d

Σ
121

0
0

Σ
122

0
0

0
0

0
0

0
0

0
0

0
0

0
I
d

−
1

√
λ √

n
Z

⊤1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
I
n
1

−
1

√
λ √

n
Z
1

0
0

0
0

0
0

0
0

0
0

0
0

0
−
Σ

121
0

0
I
d

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
I
d

−
1

√
λ √

n
Z

⊤2
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

I
n
2

−
1

√
λ √

n
Z
2

0

0
0

0
0

0
0

0
0

0
−
Σ

122
0

0
0

0
0

I
d

Σ
122

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

I
d  .

(171)

Using OVFPT, we deduce that, in the limit given by Equation 40, the following holds:

Et̄r (H1/λ+H2/λ+ Id)
−1(H2/λ)∆(H2/λ)(H1/λ+H2/λ+ Id)

−1Σ1 = G1,33, (172)

with:

G1,33

= λ−1t̄r p2Σ2∆(p2Σ2G
2
2,19(λ− p1G6,27)Σ1 −G2,30(p1Σ1G6,23 + λId)

2)

· (p1Σ1G6,23 + p2Σ2G2,19 + λId)
−2.

(173)
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By identifying identical entries of Q
−1

, we must have that η1 =
G6,23

λ =
G7,24

λ =
G11,28

λ , η2 =
G2,19

λ =
G3,20

λ =
G14,31

λ . For G7,24 and G3,20, we observe that:

G7,24 = − λ

−λ+ ϕG8,23
, G8,23 = −λt̄r Σ1 (p1Σ1G7,24 + p2Σ2G3,20 + λId)

−1 (174)

=⇒ G7,24 =
1

1 + ϕt̄r Σ1 (p1Σ1G7,24 + p2Σ2G3,20 + λId)
−1 , (175)

G3,20 = − λ

−λ+ ϕG4,19
, G4,19 = −λt̄r Σ2 (p1Σ1G7,24 + p2Σ2G3,20 + λId)

−1 (176)

=⇒ G3,20 =
1

1 + ϕt̄r Σ2 (p1Σ1G7,24 + p2Σ2G3,20 + λId)
−1 . (177)

By again identifying identical entries of Q
−1

, we further have that v(1)1 = −G6,27 = −G7,28, v
(1)
2 =

−G2,30 = −G3,31. We observe that:

G7,28 = ϕλ2η21
G8,27

λ
, (178)

G8,27

λ
= λ−2t̄rK−2(p1Σ1G7,28 + p2Σ2G3,31 − λΣ1)Σ1 (179)

=⇒ v
(1)
1 = ϕη21 t̄rK

−2(v
(s)
1 p1Σ1 + v

(s)
2 p2Σ2 + λΣ1)Σ1, (180)

G3,31 = ϕλ2η22
G4,30

λ
, (181)

G4,30

λ
= λ−2t̄rK−2(p1Σ1G7,28 + p2Σ2G3,31 − λΣ1)Σ2, (182)

=⇒ v
(1)
2 = ϕη22 t̄rK

−2(v
(s)
1 p1Σ1 + v

(s)
2 p2Σ2 + λΣ1)Σ2. (183)

Putting all the pieces together:

B
(1)
1 (f̂) = t̄r p2Σ2∆(p2η

2
2Σ2(1 + p1u

(s)
1 )Σ1 + u

(s)
2 (p1η1Σ1 + Id)

2)K−2. (184)

In conclusion:

B(1)
s (f̂) = t̄r ps′Σs′∆(ps′η

2
s′Σs′(1 + psu

(s)
s )Σs + u

(s)
s′ (psηsΣs + Id)

2)K−2. (185)

Now, switching our focus to B(2)
2 (f̂), the matrix of interest has a linear pencil representation given

by (with zero-based indexing):

(H1/λ+H2/λ+ Id)
−1∆(H1/λ)(H1/λ+H2/λ+ Id)

−1Σ2 = Q−1
0,15, (186)
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where the linear pencil Q is defined as follows:

Q
= 
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d
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∆
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−
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√
λ √

n
Z
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0

0
0

0
0
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I
n
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−
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√
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n
Z
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0
−
Σ

122
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0

I
d

 .

(187)

Like before, the following holds:

Et̄r (H1/λ+H2/λ+ Id)
−1∆(H1/λ)(H1/λ+H2/λ+ Id)

−1Σ2 = G1,25, (188)

with:

G1,25

= t̄r p1Σ1∆(λΣ2G2,18 + λG2,26Id − p2Σ2G2,18G6,29 + p2Σ2G2,26G6,22)

· (p1Σ1G2,18 + p2Σ2G6,22 + λId)
−2

(189)
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By identifying identical entries of Q
−1

, we must have that η1 =
G2,18

λ =
G3,19

λ =
G11,27

λ , η2 =
G6,22

λ =
G7,23

λ =
G14,30

λ . For G3,19 and G7,23, we observe that:

G3,19 = − λ

−λ+ ϕG4,18
, G4,18 = −λt̄r Σ1 (p1Σ1G3,19 + p2Σ2G7,23 + λId)

−1 (190)

=⇒ G3,19 =
1

1 + ϕt̄r Σ1 (p1Σ1G3,19 + p2Σ2G7,23 + λId)
−1 , (191)

G7,23 = − λ

−λ+ ϕG8,22
, G8,22 = −λt̄r Σ2 (p1Σ1G3,19 + p2Σ2G7,23 + λId)

−1 (192)

=⇒ G7,23 =
1

1 + ϕt̄r Σ2 (p1Σ1G3,19 + p2Σ2G7,23 + λId)
−1 . (193)

By again identifying identical entries of Q
−1

, we further have that v(2)1 = −G2,26 = −G3,27, v
(2)
2 =

−G6,29 = −G7,30. We observe that:

G3,27 = ϕλ2η21
G4,26

λ
, (194)

G4,26

λ
= λ−2t̄rK−2(p1Σ1G3,27 + p2Σ2G7,30 − λΣ2)Σ1, (195)

=⇒ v
(2)
1 = ϕη21 t̄rK

−2(v
(2)
1 p1Σ1 + v

(2)
2 p2Σ2 + λΣ2)Σ1, (196)

G7,30 = ϕλ2η22
G8,29

λ
, (197)

G8,29

λ
= λ−2t̄rK−2(p1Σ1G3,27 + p2Σ2G7,30 − λΣ2)Σ2, (198)

=⇒ v
(2)
2 = ϕη22 t̄rK

−2(v
(2)
1 p1Σ1 + v

(2)
2 p2Σ2 + λΣ2)Σ2. (199)

Putting all the pieces together:

B
(1)
2 (f̂) = 0, (200)

B
(2)
2 (f̂) = t̄r p1Σ1∆

(
η1Σ2 − u

(2)
1 Id + p2Σ2(η1u

(2)
2 − η2u

(2)
1 )
)
K−2. (201)

Finally, switching our focus to B(3)
1 (f̂), the matrix of interest has a linear pencil representation given

by (with zero-based indexing):

(H1/λ+H2/λ+ Id)
−1Θ(H1/λ+H2/λ+ Id)

−1Σ1 = Q−1
1,8, (202)
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where the linear pencil Q is defined as follows:

Q
= 

I
d

0
Σ

121
0

0
Σ

122
0

0
−
Σ

1
0

0
0

0
0

0
−
Θ

I
d

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
I
d

−
1

√
λ √

n
Z

⊤1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
I
n
1

−
1

√
λ √

n
Z
1

0
0

0
0

0
0

0
0

0
0

−
Σ

121
0

0
0

I
d

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
I
d

−
1

√
λ √

n
Z

⊤2
0

0
0

0
0

0
0

0

0
0

0
0

0
0

I
n
2

−
1

√
λ √

n
Z
2

0
0

0
0

0
0

0

−
Σ

122
0

0
0

0
0

0
I
d

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

I
d

Σ
121

0
0

Σ
122

0
0

0
0

0
0

0
0

0
0

0
I
d

−
1

√
λ √

n
Z

⊤1
0

0
0

0

0
0

0
0

0
0

0
0

0
0

I
n
1

−
1

√
λ √

n
Z
1

0
0

0

0
0

0
0

0
0

0
0

−
Σ

121
0

0
I
d

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
I
d

−
1

√
λ √

n
Z

⊤2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
I
n
2

−
1

√
λ √

n
Z
2

0
0

0
0

0
0

0
0

−
Σ

122
0

0
0

0
0

I
d

 .

(203)

The following holds:

(H1/λ+H2/λ+ Id)
−1Θ(H1/λ+H2/λ+ Id)

−1Σ1 = G1,23, (204)

with G1,23 = λt̄r Θ(−p1Σ1G2,24 − p2Σ2G5,27 + λΣ1)(p1Σ1G2,17 + p2Σ2G5,20 + λId)
−2.

By identifying identical entries of Q
−1

and following similar steps as before, we must have the
identification η1 =

G2,17

λ , η2 =
G5,20

λ , as well as v(1)1 = −G2,24, v
(1)
2 = −G5,27. Therefore, in

conclusion:

B(3)
s (f̂) = t̄rΘs(p1u

(s)
1 Σ1 + p2u

(s)
2 Σ2 +Σs)K

−2. (205)
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In the limit ps → 1 (i.e., ps′ → 0), we observe that:

ϕ→ ϕs, λ→ λs, (206)

B(1)
s (f̂) → 0, (207)

B(2)
s (f̂) → 0, (208)

B(3)
s (f̂) = t̄rΘs(u

(s)
s + 1)ΣsK

−2, (209)

v(s)s = ϕsη
2
s t̄rK

−2(v(s)s + λs)Σ
2
s (210)

= ϕs(v
(s)
s + λs)d̄f

(s)
2 (κs) (211)

u(s)s =
ϕsd̄f

(s)
2 (κs)

1− ϕsd̄f
(s)
2 (κs)

, (212)

B(3)
s (f̂) =

κ2s t̄r ΘsΣs(Σs + κsId)
−2

1− ϕsd̄f
(s)
2 (κs)

, (213)

Bs(f̂) → B(3)
s (f̂), (214)

which matches up exactly with Bs(f̂s) as expected.
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G PROOF OF THEOREM 3.1

Proof. The gradient of the loss L is given by:

∇L(η) =
∑
s

S⊤X⊤
s (XsSη − Ys)/n+ λη =

∑
s

S⊤MsSη −
∑
s

S⊤X⊤
s Ys/n+ λη

= Hη −
∑
s

S⊤X⊤
s Ys/n,

where H = S⊤MS + λIm ∈ Rm×m, with M = M1 +M2 and Ms = X⊤
s Xs/n. Thus, setting

R = H−1, we may write:

ŵ = Sη̂ = SRS⊤(X⊤
1 Y1 +X⊤

2 Y2)/n

= SRS⊤(M1w
∗
1 +M2w

∗
2) + SRS⊤X⊤

1 E1/n+ SRS⊤X⊤
2 E2/n.

We deduce the following bias-variance decomposition:

E∥ŵ − w∗
s∥2Σs = Bs(f̂) + Vs(f̂), where

Vs(f̂) = V (1)
s (f̂) + V (2)

s (f̂), with V (j)
s (f̂) = σ2

jϕEt̄rMjSRS
⊤ΣsSRS

⊤,

Bs(f̂) = E∥SRS⊤(M1w
∗
1 +M2w

∗
2)− w∗

s∥2Σs .

We can further decompose Bs(f̂), first considering the case s = 1. We define δ = w∗
2 − w∗

1 .

E∥SRS⊤(M1w
∗
1 +M2w

∗
2)− w∗

1∥2Σ1

= E∥(SRS⊤(M1 +M2)− Id)w
∗
1 + SRS⊤M2δ∥2Σ1

= E∥(SRS⊤M − Id)w
∗
1∥2Σ1

+ E∥SRS⊤M2δ∥2Σ1

= Et̄r Θ(MSRS⊤ − Id)Σ1(SRS
⊤M − Id) + Et̄r∆M2SRS

⊤Σ1SRS
⊤M2

= Et̄r ΘΣ1 + Et̄r ΘMSRS⊤Σ1SRS
⊤M − 2Et̄r ΘΣ1SRS

⊤M + Et̄r∆M2SRS
⊤Σ1SRS

⊤M2.

We can similarly decompose B2:

E∥SRS⊤(M1w
∗
1 +M2w

∗
2)− w∗

2∥2Σ2

= E∥SRS⊤(M1w
∗
1 +M2w

∗
2)− w∗

2∥2Σ2

= E∥(SRS⊤(M1 +M2)− Id)w
∗
2 − SRS⊤M1δ∥2Σ2

= E∥(SRS⊤M − Id)w
∗
2∥2Σ2

+ E∥SRS⊤M1δ∥2Σ2
− 2E tr (w∗

2)
⊤(MSRS⊤ − Id)Σ2SRS

⊤M1δ

= Et̄r Θ2(MSRS⊤ − Id)Σ2(SRS
⊤M − Id) + Et̄r∆M1SRS

⊤Σ2SRS
⊤M1

− 2Et̄r∆(MSRS⊤ − Id)Σ2SRS
⊤M1

= Et̄r Θ2Σ2 + Et̄r Θ2MSRS⊤Σ2SRS
⊤M − 2Et̄r Θ2Σ2SRS

⊤M

+ Et̄r∆M1SRS
⊤Σ2SRS

⊤M1 − 2Et̄r∆MSRS⊤Σ2SRS
⊤M1 + 2Et̄r∆Σ2SRS

⊤M1.

Furthermore, we observe that:
Et̄rAMSRS⊤BSRS⊤M (215)

= Et̄rAM1SRS
⊤BSRS⊤M1 + Et̄rAM2SRS

⊤BSRS⊤M2 + 2Et̄rAM1SRS
⊤BSRS⊤M2,

(216)

Et̄rASRS⊤M = Et̄rASRS⊤M1 + Et̄rASRS⊤M2. (217)

Hence, we desire deterministic equivalents for the following expressions:

r
(1)
j (A) = ASRS⊤M j , (218)

r
(2)
j (A,B) = AM jSRS

⊤BSRS⊤, (219)

r
(3)
j (A,B) = AM jSRS

⊤BSRS⊤M j , (220)

r
(4)
j (A,B) = AM jSRS

⊤BSRS⊤M j′ , (221)
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where:

M j = Σ
1/2
j Z⊤

j ZjΣ
1/2
j , R = (S⊤MS + Im)−1,M =M1 +M2, (222)

M j =Mj/λ,R = λR,M =M/λ. (223)

In summary:

V (j)
s (f̂) = σ2

jϕλ
−1Et̄r r(2)j (Id,Σs), (224)

Bs(f̂) = t̄rΘsΣs (225)

+ Et̄r r(3)1 (Θs,Σs) + Et̄r r(3)2 (Θs,Σs) + 2Et̄r r(4)1 (Θs,Σs) (226)

− 2Et̄r r(1)1 (ΘsΣs)− 2Et̄r r(1)2 (ΘsΣs) (227)

+ Et̄r r(3)s′ (∆,Σs) (228)

− 2

{
0, s = 1,

Et̄r r(3)1 (∆,Σ2) + Et̄r r(4)2 (∆,Σ2)− Et̄r r(1)1 (∆Σ2), s = 2
. (229)

G.1 COMPUTING Et̄r r(1)j

WLOG, we focus on r(1)1 . The matrix of interest has a linear pencil representation given by (with
zero-based indexing):

r
(1)
1 = Q−1

1,10, (230)

where the linear pencil Q is defined as follows:

Q =



Id 0 −S 0 0 0 0 0 0 0 0
−A Id 0 0 0 0 0 0 0 0 0
0 0 Im S⊤ 0 0 0 0 0 0 0

0 0 0 Id −Σ
1
2
1 0 0 −Σ

1
2
2 0 0 0

0 0 0 0 Id − 1√
λ
Z⊤
1 0 0 0 0 0

0 0 0 0 0 In1
− 1√

λ
Z1 0 0 0 0

−Σ
1
2
1 0 0 0 0 0 Id 0 0 0 Σ

1
2
1

0 0 0 0 0 0 0 Id − 1√
λ
Z⊤
2 0 0

0 0 0 0 0 0 0 0 In2
− 1√

λ
Z2 0

−Σ
1
2
2 0 0 0 0 0 0 0 0 Id 0

0 0 0 0 0 0 0 0 0 0 Id



. (231)

Using the tools of OVFPT, the following holds:

Et̄r r(1)1 = G1,21, (232)

with:

G1,21 = t̄r γp1Σ1AG2,13G5,16(γG2,13(p1Σ1G5,16 + p2G8,19) + λId)
−1. (233)

For G5,16 and G8,19, we observe that:

G5,16 =
−λ

−λ+ ϕG6,15
, G6,15 = −λγG2,13t̄r Σ1(γG2,13(p1Σ1G5,16 + p2Σ2G8,19) + λId)

−1,

(234)

=⇒ G5,16 =
1

1 + ψG2,13t̄r Σ1(γG2,13(p1Σ1G5,16 + p2Σ2G8,19) + λId)−1
, (235)

G8,19 =
−λ

−λ+ ϕG9,18
, G9,18 = −λγG2,13t̄r Σ2(γG2,13(p1Σ1G5,16 + p2Σ2G8,19) + λId)

−1,

(236)

G8,19 =
1

1 + ψG2,13t̄r Σ2(γG2,13(p1Σ1G5,16 + p2Σ2G8,19) + λId)−1
. (237)
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We define e1 = G5,16, e2 = G8,19, with e1 ≥ 0, e2 ≥ 0. We further observe that:

G2,13 =
1

1 +G3,11
, (238)

G3,11 = t̄r (p1Σ1G5,16 + p2Σ2G8,19)(γG2,13(p1Σ1G5,16 + p2Σ2G8,19) + λId)
−1. (239)

We define τ = G2,13 ≥ 0. We further define L = p1e1Σ1 + p2e2Σ2,K = γτL+ λId. Therefore,
we have the following system of equations:

es =
1

1 + ψτ t̄r ΣsK−1
, τ =

1

1 + t̄rLK−1
. (240)

In conclusion:

Et̄r r(1)j = pjγejτ t̄rAΣjK
−1. (241)

G.2 COMPUTING Et̄r r(2)j

WLOG, we focus on r(2)1 . The matrix of interest has a linear pencil representation given by (with
zero-based indexing):

r
(2)
1 = −Q−1

1,13, (242)
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where the linear pencil Q is defined as follows:
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. (243)

The following holds:

Et̄r r(2)1 = −G1,33, (244)

with:

G1,33 = −p1t̄rAΣ1P1P
−1
2 , (245)

P1 = γλBG3,23G6,26G12,32 − γp2Σ2G3,23G6,26G9,38G12,32 (246)
+ γp2Σ2G3,35G6,26G9,29G12,32 + λG3,23G6,32Id + λG3,15G12,32Id, (247)

P2 = (γG6,26(p1Σ1G3,23 + γp2Σ2G9,29) + λId) (248)
· (γG12,32(p1Σ1G15,35 + p2Σ2G18,38) + λId). (249)

Following similar steps as before and recognizing identifications, we arrive at that:

e1 = G3,23 = G15,35, (250)
e2 = G9,29 = G18,38, (251)
τ = G6,26 = G12,32. (252)
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We now focus on the remaining terms. We observe that:

G3,35 = ϕe21
G4,14

λ
(253)

G4,14

λ
= γt̄r Σ1(γτ

2(p1Σ1G3,35 + p2Σ2G9,38 − λB)− λG6,32Id)K
−2, (254)

G9,38 = ϕe22
G10,37

λ
, (255)

G10,37

λ
= γt̄r Σ2(γτ

2(p1Σ1G3,35 + p2Σ2G9,38 − λB)− λG6,32Id)K
−2. (256)

We define u1 = −G3,35

λ , u2 = −G9,38

λ , with u1 ≤ 0, u2 ≤ 0. We further define D = p1u1Σ1 +
p2u2Σ2 +B. We now observe that:

G6,32 = − G7,31

(G7,25 + 1)(G13,31 + 1)
= −τ2G7,31, (257)

G7,31 = −t̄r (γG6,32L
2 + λ2D)K−2. (258)

Defining ρ = G6,32, we must have the following system of equations:

us = ψe2s t̄r Σs(γτ
2D + ρId)K

−2, (259)

ρ = τ2t̄r (γρL2 + λ2D)K−2. (260)

In conclusion:

P2 = K2, (261)

−P1 = λγe1τ
2B + λγτ2p2Σ2(e1u2 − e2u1) + λe1ρId − λ2u1τId, (262)

Et̄r r(2)j = λpjγt̄rAΣj(γejτ
2B + γτ2pj′Σj′(ejuj′ − ej′uj) + ejρId − λujτId)K

−2. (263)

G.3 COMPUTING Et̄r r(3)j

WLOG, we focus on r(3)1 . The matrix of interest has a linear pencil representation given by (with
zero-based indexing):

r
(3)
1 = Q−1

1,20, (264)
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where the linear pencil Q is defined as follows:

Q
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It holds that Et̄r r(3)1 = G1,41. We immediately observe that:

e1 = G3,24, G15,36, (266)
e2 = G9,30, G18,39, (267)
τ = G6,27, G12,33, (268)

u1 = −G3,36

λ
, (269)

u2 = −G9,39

λ
, (270)

ρ = G6,33. (271)

In conclusion:

Et̄r r(3)j = pj t̄rAΣj(γe
2
jpjΣj(γτ

2uj′pj′Σj′ + γτ2B + ρId) + uj(γej′τpj′Σj′ + λId)
2)K−2.

(272)
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G.4 COMPUTING Et̄r r(4)j

WLOG, we focus on r(4)1 . The matrix of interest has a linear pencil representation given by (with
zero-based indexing):

r
(4)
1 = Q−1

1,20, (273)

where the linear pencil Q is defined as follows:

Q
=



I
d

0
−
Σ

121
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
−
A

I
d

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
I
d

−
1

√
λ
Z

⊤1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
I
n
1

−
1

√
λ
Z
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

I
d

−
Σ

121
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
I
d

−
S

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

I
m

S
⊤

0
0

0
0

0
0

0
0

0
0

0
0

0

0
0

−
Σ

121
0

0
0

0
I
d

−
Σ

122
0

0
B

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
I
d

−
1

√
λ
Z

⊤2
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
I
n
2

−
1

√
λ
Z
2

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
−
Σ

122
0

0
0

0
I
d

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
I
d

−
S

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

I
m

S
⊤

0
0

0
0

0
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
I
d

−
Σ

121
0

0
−
Σ

122
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

I
d

−
1

√
λ
Z

⊤1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
I
n
1

−
1

√
λ
Z
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
−
Σ

121
0

0
0

0
I
d

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
I
d

−
1

√
λ
Z

⊤2
0

0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

I
n
2

−
1

√
λ
Z
2

0

0
0

0
0

0
0

0
0

0
0

0
−
Σ

122
0

0
0

0
0

0
0

I
d

Σ
122

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

I
d  .

(274)

It holds that Et̄r r(4)1 = G1,41. We immediately observe that:

e1 = G3,24, G15,36, (275)
e2 = G9,30, G18,39, (276)
τ = G6,27, G12,33, (277)

u1 = −G3,36

λ
, (278)

u2 = −G9,39

λ
, (279)

ρ = G6,33. (280)
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In conclusion:

Et̄r r(4)j = pjγpj′ t̄r ΣjΣj′A(γτ
2(Bejej′ − pjΣje

2
juj′ − pj′Σj′e

2
j′uj) (281)

− λτ(ejuj′ + ej′uj)Id + ejej′ρId)K
−2. (282)
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H THEOREM 3.2

Definition H.1. Let (e1, e2, τ1, τ2, u1, u2, ρ1, ρ2) is be unique positive solution to the following
system of fixed-point equations:

es =
1

1 + ψsτst̄r Σs(γτsesΣs + λsId)−1
, for s ∈ {1, 2} (283)

τs =
1

1 + t̄r esΣs(γτsesΣs + λsId)−1
, for s ∈ {1, 2} (284)

us = ψse
2
s t̄r Σs(γτ

2
s (us + 1)Σs + ρsId)(γτsesΣs + λsId)

−2, for s ∈ {1, 2} (285)

ρs = τ2s t̄r (γρs(esΣs)
2 + λ2s(us + 1)Σs)(γτsesΣs + λsId)

−2, for s ∈ {1, 2}. (286)

For deterministic d× d PSD matrices A and B, we define the following auxiliary quantities:

h
(1)
j (A) := γejτj t̄rAΣj(γτjejΣj + λjId)

−1, (287)

h
(2)
j (A) := γt̄rAΣj(γejτ

2
j Σj + ejρjId − λjujτjId)(γτjejΣj + λjId)

−2, (288)

h
(3)
j (A) := t̄rAΣj(γe

2
jΣj(γτ

2
j Σj + ρjId) + λ2jujId)(γτjejΣj + λjId)

−2. (289)

Under Assumptions B.2 and 3.1, it holds that:

Rs(f̂s) ≃ Bs(f̂s) + Vs(f̂s), with Vs(f̂s) = lim
ps→1

Vs(f̂), Bs(f̂s) = lim
ps→1

Bs(f̂). (290)

More explicitly:

Vs(f̂s) = σ2
sϕsh

(2)
s (Id), Bs(f̂s) = t̄rΘsΣs + h(3)s (Θs)− 2h(1)s (ΘsΣs). (291)

Proof. Theorem 3.2 follows from Theorem 3.1 in the limit ps → 1 (i.e., ps′ → 0).

The scalars es, τs, us, ρs can be intuitively interpreted in the setting where a separate model is learned
for each group. For ridge regression with random projections and λ→ 0+, we show in Equations 337
and 338 that es, τs are related to the normalized first-order degrees of freedom I1,1 of the population
covariance matrix Σs. es captures the effect of the feature rate ϕs while τ captures the effect of the
parameterization rate γ. Similarly, for classical ridge regression, we show in Equation 69 that es is
related to the normalized first-order degrees of freedom d̄f

(s)
1 . On the other hand, us and ρs can be

understood as pseudo-variances. Indeed, for ridge regression with random projections and λ→ 0+,
Equations 341 and 349 show that us, ρs, Vs are all related to the normalized second-order degrees of
freedom I2,2 of Σs.
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I SOLVING FIXED-POINT EQUATIONS FOR THEOREM D.1

I.1 PROPORTIONAL COVARIANCE MATRICES

When λ→ 0+, it is not possible to analytically solve the fixed-point equations for the constants in
Definition 3.1 for general Σ1,Σ2. As such, we consider a more tractable case where the covariance
matrices are proportional, i.e., Σ1 = a1Σ and Σ2 = a2Σ, for some Σ ∈ Rd×d.

We define θ = λ
γτ(a1p1e1+a2p2e2)

and η = t̄rΣ(Σ + θId)
−1. Then, we have that:

1/es = e′s = 1 + ψτ t̄r ΣsK
−1 = 1 +

ϕasη

a1p1e1 + a2p2e2
, (292)

1/τ = τ ′ = 1 + t̄rLK−1 = 1 + (η/γ)τ ′ =
1

1− η/γ
. (293)

If θ0 = 0, then η0 = 1. Therefore, e′s → 1+ ϕas
a1p1e1+a2p2e2

, which is a quadratic fixed-point equation.
Accounting for the constraint that es > 0, the fixed-point equation requires that ϕ < 1. Moreover,
τ → 1 − 1/γ, which requires that γ > 1. We further observe that ρ → (τ2t̄r γL2K−2)ρ, which
implies that ρ→ 0. We can then see that, for c ∈ {a1, a2}:

us → ϕγ2τ2e2sas(a1p1u1 + a2p2u2 + c)t̄r Σ2K−2 (294)

=
ϕe2sas(a1p1u1 + a2p2u2 + c)

(a1p1e1 + a2p2e2)2
, (295)

which is a linear fixed-point equation in us. In contrast, if θ0 > 1, we have e′s = 1 + ψτasηθ
λ and the

equation:

γθ =
λ

(1− η/γ)

(
a1p1

1+
ψ(1−η/γ)a1ηθ

λ

+ a2p2

1+
ψ(1−η/γ)a2ηθ

λ

) , (296)

which is a quartic equation in η. This highlights the difficulties of rigorously isolating the effects of
different components on bias amplification. We empirically investigate how different components
(e.g., covariance structures, group sizes) affect bias amplification and minority-group bias in Sections
4 and 5, and extensively validate that our theory predicts these implications.

I.2 THE GENERAL REGULARIZED CASE

We now consider the case where the covariance structure is the same for both groups, i.e., Σ1 =
Σ2 = Σ. The calculations presented is this subsection are shared with Appendix H.2 of Dohmatob
et al. (2024b), of which two authors of this work are also authors.

In this setting, it is clear that e1 = e2 = e and u1 = u2 = u, where (τ, e, u, ρ) now satisfy:

1/e = 1 + ψτ t̄r ΣK−1, 1/τ = 1 + t̄rK0K
−1, where K0 := eΣ, K := γτK0 + λId, (297)

u = ψe2t̄r Σ1(γτ
2L′ + ρId)K

−2, ρ = τ2t̄r (γρK2
0 + λ2L′)K−2, L′ := (1 + u)Σ. (298)

We first introduce some notation related to the degrees of freedom of Σ before proceeding with our
theoretical result.
Definition I.1. Let dfm(t) = tr Σm (Σ + tId)

−m for any positive integer m. Furthermore, define
Ia,b(t) = t̄r Σa(Σ + tId)

−b for any positive integers a, b.

Lemma I.1. The scalars u and ρ′ = ρ/(γτ2) solve the following pair of linear equations:

u = ϕI2,2(θ)(1 + u) + ϕI1,2(θ)ρ
′,

γρ′ = I2,2(θ)ρ
′ + θ2I1,2(θ)(1 + u).

(299)

Furthermore, the solutions can be explicitly represented as:

u =
ϕz

γ − ϕz − I2,2(θ)
, ρ′ =

θ2I2,2(θ)

γ − ϕz − I2,2(θ)
, (300)
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where z = I2,2(θ)(γ − I2,2(θ)) + θ2I1,2(θ)
2.

In particular, in the limit γ → ∞, it holds that:

θ ≃ κ, ρ′ → 0, u ≃ ϕI2,2(κ)

1− ϕI2,2(κ)
≃ df2(κ)/n

1− df2(κ)/n
, (301)

where κ > 0 is uniquely satisfies the fixed-point equation κ− λ = κ tr Σ(Σ + κId)
−1/n.

Proof. The equations defining these scalars are:

u = ψe2t̄r Σ(γτ2L′ + ρId)K
−2, (302)

ρ = τ2t̄r (γρK2
0 + λ2L′)K−2, (303)

where K0 = eΣ, K = γτK0 + λId, and L′ := uΣ + B. Further, since B = Σ, we have
L′ = (1 + u)Σ. Now, we can rewrite the previous equations like so

u = ψe2t̄r Σ(γτ2(1 + u)Σ + ρId)K
−2 = ϕγ2τ2e2(1 + u)t̄r Σ2K−2 + ϕγe2ρt̄r ΣK−2,

ρ = τ2t̄r (γρe2Σ2 + λ2(1 + u)Σ)K−2 = γτ2e2ρt̄r Σ2K−2 + λ2τ2(1 + u)t̄r ΣK−2.

This can be equivalently written as:

u = ϕ(1 + u)γ2τ2e2t̄r Σ2K−2 + ϕρ′γ2τ2e2t̄r ΣK−2, (304)

γρ′ = ρ′γ2τ2e2t̄r Σ2K−2 + (1 + u)λ2t̄r ΣK−2. (305)

Now, observe that:

τ2e2t̄r Σ2K−2 = t̄rΣ2(Σ + θId)
−2/γ2 = I2,2(θ)/γ

2, (306)

τ2e2t̄r ΣK−2 = t̄rΣ(Σ + θId)
−2/γ2 = I1,2(θ)/γ

2, (307)

λ2t̄r ΣK−2 = θ2t̄r Σ(Σ + θId)
−2 = θ2I1,2(θ), (308)

e2t̄r ΣK−2 = t̄rΣ(Σ + θId)
−2/(γτ)2 = I1,2(θ)/(γτ)

2, (309)

τ2t̄r ΣK−2 = t̄rΣ(Σ + θId)
−2/(γe)2 = I1,2(θ)/(γe)

2, (310)

where we have used the definition θ = λ/(γτe). Thus, u and ρ have limiting values which solve the
system of linear equations:

u = ψγ · γ−2I2,2(θ)(1 + u) + ψγ · γ−2I1,2ρ
′ = ϕI2,2(θ)(1 + u) + ϕI1,2(θ)ρ

′,

γρ′ = I2,2(θ)ρ
′ + θ2I1,2(θ)(1 + u) = I2,2(θ)ρ

′ + θ2I1,2(θ)(1 + u),

where we have used the identity ϕγ = ψ. These correspond exactly to the equations given in the
lemma. This proves the first part.

For the second part, indeed, τ = 1 − η0/γ → 1 in the limit γ → ∞, and so θ ≃ λ/(γe) which
verifies the equation:

θ ≃ λ+ λψt̄r Σ(γeΣ+ λ)−1 = λ+ ϕ · λ
γe

t̄r Σ(Σ +
λ

γe
Id)

−1 ≃ λ+ θ tr Σ(Σ + θId)
−1/n,

i.e., θ ≃ λ+ θ df1(θ)/n and θ > 0. By comparing with the equation κ− λ = κdf1(κ)/n satisfied
by κ > 0 in Definition D.2, we conclude θ ≃ κ.

Now, Equation 299 becomes ρ′ = 0, and u = ϕI2,2(κ)(1 + u), i.e.,

u =
ϕI2,2(κ)

1− ϕI2,2(κ)
≃ df2(κ)/n

1− df2(κ)/n
,

as claimed.
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I.3 UNREGULARIZED LIMIT

The calculations presented in this subsection are shared with Appendix H.2 of Dohmatob et al.
(2024b), of which two authors of this work are also authors.

Define the following auxiliary quantities:

θ :=
λ

γτe
, χ :=

λ

τ
, κ :=

λ

e
. (311)

where τ , e, u, and ρ are as previously defined.
Lemma I.2. In the limit λ→ 0+, we have the following analytic formulae:

χ→ χ0 = (1− ψ)+ · γθ0, (312)
κ→ κ0 = (ψ − 1)+ · θ0/ϕ, (313)
τ → τ0 = 1− η0/γ, (314)
e→ e0 = 1− ϕη0, (315)

where θ0 is the unique positive solution of the fixed-point equation η0 = I1,1(θ0).

Proof. Observe that K0 = eΣ and K = γτK0 + λId = γτe · (Σ + θId). Defining η := I1,1(θ),
one can then rewrite the equations defining e and τ as follows:

e′ =
λ

e
= λ+ ψτλt̄r ΣK−1 = λ+

ψτλ

γτe
t̄r Σ(Σ + θId)

−1 = λ+ ϕηe′, (316)

τ ′ =
λ

τ
= λ+ λt̄rK0K

−1 = λ+
λe

γτe
t̄r Σ(Σ + θId)

−1 = λ+ (η/γ)τ ′. (317)

We deduce that:

e′ =
λ

1− ϕη
, τ ′ =

λ

1− η/γ
, τ ′e′ = λγθ. (318)

In particular, the above means that η ≤ min(γ, 1/ϕ). The last part of equations Equation 318 can be
rewritten as follows:

λ

(1− ϕη)(1− η/γ)
= γθ, i.e., ϕη2 − (ϕγ + 1)η + γ − λ

θ
= 0. (319)

This is a quadratic equation for η as a function of λ and θ, with roots

η± =
ϕγ + 1±

√
(ϕγ + 1)2 − 4(ϕγ − (ϕ/θ)λ)

2ϕ
=
ψ + 1±

√
(ψ + 1)2 − 4(ψ − ϕ/θ′)

2ϕ
. (320)

Now, for small λ > 0 and ψ ̸= 1, we can do a Taylor expansion to get:

η± ≃ ψ + 1± |ψ − 1|
2ϕ

± 1

θ|ψ − 1|
λ+O(λ2).

More explicitly:

η+ ≃ O(λ2)

{
1/ϕ+ λ/((1− ψ)θ), if ψ < 1

γ + λ/((ψ − 1)θ), if ψ > 1
,

η− ≃ O(λ2) +

{
γ − λ/((1− ψ)θ), if ψ < 1

1/ϕ− λ/((ψ − 1)θ), if ψ > 1
.

Because η ≤ min(1, 1/ϕ, γ), we must have the expansion:

η ≃ O(λ2) +

{
γ − λ/((1− ψ)θ), if ψ < 1

1/ϕ+ λ/((ψ − 1)θ), if ψ > 1
,

= η0 −
1

(1− ψ)θ0
λ+O(λ2),

(321)
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provided θ0 > 0, i.e η0 ̸= 1. in this regime, we obtain:

τ ′ =
λ

1− η/γ
≃
{
λ/(1− 1 + λ/((1− ψ)γθ0)) = (1− ψ)γθ0, if ψ ≤ 1

λ/(1− 1/ψ + o(1)) → 0, if ψ > 1
,

e′ =
λ

1− ϕη
≃
{
λ/(1− ψ + o(1)) → 0, if ψ ≤ 1

λ/(1− 1 + λϕ/((ψ − 1)θ0) → (ψ − 1)θ0/ϕ, if ψ > 1
,

τ = 1− η/γ ≃ 1− η0/γ = (1− 1/ψ)+,

e = 1− ϕη ≃ 1− ϕη0 = (1− ψ)+.

On the other hand, if θ0 = 0 (which only happens if ψ < 1 and γ > 1, or ψ ≥ 1 and ϕ ≤ 1), it is
easy to see from Equation 318 that we must have τ ′ → 0, e′ → 0, τ → 1− 1/γ, e→ 1−ϕ ≥ 0.
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J COROLLARY J.1

As a special case of Theorem 3.1, we recover Corollary J.1, which aligns with Proposition 4 from
(Bach, 2023). Theorem 3.1 is a non-trivial generalization of Proposition 4.

Corollary J.1 captures how the covariance matrix affects the test risk of a model through the nor-
malized second and first-order degrees of freedom of Σs. Corollary J.1 also reveals that in the
underparameterized regime (ψs < 1), the bias and variance of the test risk of the model strictly
increase as a function of ψs (rate of parameters to samples); the test risk of the model explodes (i.e.,
there is catastrophic overfitting (Bach, 2023)) when ψs gets close to 1. In the overparameterized
regime (ψs > 1), the bias and variance of the test risk decrease as ψs increases.
Corollary J.1. Under Assumptions B.2 and 3.1, it holds in the unregularized setting λs → 0+ that

Bs(f̂s) =


θ0 t̄r ΘsΣs(Σs+θ0Id)

−1

1−ψs , γ, ψs < 1

0, ψs < 1, γ ≥ 1 or 1 ≤ ψs ≤ γ
θ20 t̄r ΘsΣs(Σs+θ0Id)

−2

1−ϕsI2,2(θ0) + θ0 t̄r ΘsΣs(Σs+θ0Id)
−1

ψs−1 , ψs ≥ 1, ψs ≥ γ

,

(322)

Vs(f̂s) =


σ2
sψs

1−ψs , γ, ψs < 1
σ2
sϕs

1−ϕs , ψs < 1, γ ≥ 1 or 1 ≤ ψs ≤ γ
σ2
sϕsI2,2(θ0)

1−ϕsI2,2(θ0) +
σ2
s

ψs−1 , ψs ≥ 1, ψs ≥ γ

, (323)

where Ia,b(t) = t̄r Σa(Σ + tId)
−b for any positive integers a, b; and θ0 is the unique solution to the

following non-linear equation:

I1,1(θ0) =


γ, γ, ψs < 1

1, ψs < 1, γ ≥ 1 or 1 ≤ ψs ≤ γ

1/ϕs, ψs ≥ 1, ψs ≥ γ

. (324)

Proof. Define e′ = 1/es ≥ 0, τ ′ = 1/τs ≥ 0, θ = λsτ
′e′/γ, and η = I1,1(θ) ∈ [0, 1]. One can then

express e′ and τ ′ as:

e′ = 1 + ψτst̄r Σ(γτsesΣ+ λsId)
−1 = 1 + ϕsηe

′, (325)

τ ′ = 1 + t̄r esΣ(γτsesΣ+ λsId)
−1 = 1 + (η/γ)τ ′. (326)

We deduce that:

e′ =
1

1− ϕsη
, (327)

τ ′ =
1

1− η/γ
, (328)

λτ ′e′ = γθ. (329)

We define the following limiting values:

lim
λs→0+

θ → θ0, lim
λs→0+

η → η0, (330)

lim
λs→0+

es → e0, lim
λs→0+

τs → τ0, (331)

lim
λs→0+

us → u0, lim
λs→0+

ρs → ρ0. (332)

There are now two cases to consider.

J.1 CASE 1: θ0 = 0

This implies η0 = 1. Therefore, by simple computation, e0 = 1/e′0 = 1 − ϕsη0 = 1 − ϕs and
τ0 = 1/τ ′0 = 1− 1/γ. This requires ϕs ≤ 1 and γ ≥ 1.
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J.2 CASE 2: θ0 > 0

Equation 329 can be re-written as:

λs
(1− ϕsη)(1− η/γ)

= γθ, i.e., ϕsη2 − (ψs + 1)η + γ − λs
θ

= 0. (333)

We solve this quadratic equation for η, arriving at the solutions:

η± =
ψs + 1±

√
(ψs + 1)2 − 4(ψs − (ϕs/θ)λs)

2ϕs
=
ψs + 1±

√
(ψs + 1)2 − 4(ψs − (ϕs/θ)λs)

2ϕs
.(334)

Taking the limit of η± as λs → 0+ gives:

η+ → ψs + 1 + |ψs − 1|
2ϕs

=

{
ψs/ϕs = γ, if ψs ≥ 1,

1/ϕs, if ψs < 1,

η− → ψs + 1− |ψs − 1|
2ϕs

=

{
1/ϕs, if ψs ≥ 1,

ψs/ϕs = γ, if ψs < 1.

(335)

Recall that we have the following constraints:

• e′ ≥ 0, τ ′ ≥ 0.

• η ∈ [0, 1].

We can show that η0 = 1/ϕs is incompatible with ψs < 1. Indeed, otherwise we would have
τ ′0 = 1/(1 − η0/γ) = 1/(1 − 1/ψs) < 0. Similarly, if ψs > 1, we would have e0 = 1 − ϕsγ =
1 − ψs < 0. Therefore, η0 = η−. Furthermore, if ψs, γ < 1, it must be that θ0 > 0 and η0 = γ.
Instead, if ψs < 1, γ ≥ 1, we must have that ϕs ≤ 1, and therefore, θ0 = 0 and η0 = 1. Similarly, if
ψs ≥ 1, γ ≥ 1, and ϕs ≤ 1 (i.e., 1 ≤ ψs ≤ γ), we must have that θ0 = 0 and η0 = 1. In all other
cases where ψs ≥ 1, it must be that η0 = 1/ϕs (which additionally requires ϕs ≥ 1 or ψs ≥ γ).
Succinctly:

η0 =


γ, γ, ψs < 1

1, ψs < 1, γ ≥ 1 or 1 ≤ ψs ≤ γ

1/ϕs, ψs ≥ 1, ψs ≥ γ

. (336)

Plugging this into Equation 327 and Equation 328 gives:

e0 = 1− ϕsη0 = 1− ϕsI1,1(θ0), (337)

τ0 = 1− η0/γ = 1− I1,1(θ0)/γ. (338)

We will now solve for u0 and ρ0/τ20 . We can re-write us and ρs/τ2s as:

ρs/τ
2
s = γ−1(ρs/τ

2
s )I2,2(θ) + θ2(us + 1)I1,2(θ), (339)

τ2s us = τ2s ϕs(us + 1)I2,2(θ) + ϕsγ
−1ρsI1,2(θ). (340)

Solving for u0 and ρ0/τ20 yields:

u0 =
ϕζ

γ − ϕζ − I2,2(θ0)
, ρ0/τ

2
0 =

γθ20I2,2(θ0)

γ − ϕζ − I1,2(θ0)
, (341)

where ζ = I2,2(θ0)(γ − I2,2(θ0)) + θ20I1,2(θ0)
2. (342)
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We can then see for the variance term that:

Vs(f̂s) = σ2
sϕsγt̄r Σs(γesτ

2
sΣs + esρsId − λsusτsId)(γτses)

−2(Σs + θId)
−2 (343)

= σ2
sϕs(1/es)t̄r Σ

2
s(Σs + θId)

−2 + (σ2
sϕs/γ)(1/es)(ρs/τ

2
s )t̄r Σs(Σs + θId)

−2 (344)

− σ2
sϕs(us)(1/es)θt̄r Σs(Σs + θId)

−2 (345)

= σ2
sϕsI2,2(θ)/es + σ2

sϕs(ρs/τ
2
s )I1,2(θ)/(γes)− σ2

sϕsusθI1,2(θ)/es (346)

→ σ2
sϕsI2,2(θ0)− σ2

sϕsu0θ0I1,2(θ0)

1− ϕsI1,1(θ0)
+

σ2
sϕsρ0/τ

2
0

γ(1− ϕsI1,1(θ0))
(347)

= − σ2
sϕsξ

ϕsξ + I2,2(θ0)− γ
, (348)

where ξ = I21,1(θ0) − 2I1,1(θ0)I2,2(θ0) + I2,2(θ0)γ and we have used the fact that I1,2(θ) =
(I1,1(θ)− I2,2(θ))/θ. Plugging in I1,1(θ0) = η0, we have that:

Vs(f̂s) →


σ2
sψs

1−ψs , γ, ψs < 1
σ2
sϕs

1−ϕs , ψs < 1, γ ≥ 1 or 1 ≤ ψs ≤ γ
σ2
sϕsI2,2(θ0)

1−ϕsI2,2(θ0) +
σ2
s

ψs−1 , ψs ≥ 1, ψs ≥ γ

, (349)

where we have used that I2,2(θ0) = I2,2(0) = 1 in the second case.

Likewise, for the bias term, we obtain:

Bs(f̂s) = t̄rΘsΣs + t̄rΘsΣs(γe
2
sΣs(γτ

2
sΣs + ρsId) + λ2susId)(γτsesΣs + λsId)

−2 (350)

− 2γesτst̄r ΘsΣ
2
s(γτsesΣs + λsId)

−1 (351)

→ t̄r ΘsΣs(Σ
2
s + 2θ0Σs + θ20Id)(Σs + θ0Id)

−2 (352)

+ t̄rΘsΣs(Σ
2
s)(Σs + θ0Id)

−2 (353)

+ t̄rΘsΣs((ρ0/τ
2
0 )Σs/γ)(Σs + θ0Id)

−2 (354)

+ t̄rΘsΣs(θ
2
0u0Id)(Σs + θ0Id)

−2 (355)

+ t̄rΘsΣs(−2Σ2
s − 2θ0Σs)(Σs + θ0Id)

−2 (356)

= θ20(u0 + 1)t̄rΘsΣs(Σs + θ0Id)
−2 + (1/γ)(ρ0/τ

2
0 )t̄rΘsΣ

2
s(Σs + θ0Id)

−2. (357)

Again, plugging in I1,1(θ0) = η0, we have that:

Bs(f̂s) →


θ0 t̄r ΘsΣs(Σs+θ0Id)

−1

1−ψs , γ, ψs < 1
θ20 t̄r ΘsΣs(Σs+θ0Id)

−2

1−ϕs = 0, ψs < 1, γ ≥ 1 or 1 ≤ ψs ≤ γ
θ20 t̄r ΘsΣs(Σs+θ0Id)

−2

1−ϕsI2,2(θ0) + θ0 t̄r ΘsΣs(Σs+θ0Id)
−1

ψs−1 , ψs ≥ 1, ψs ≥ γ

,

(358)

where we have used that t̄r ΘsΣ2
s(Σs+θ0Id)

−2 = t̄rΘsΣs(Σs+θ0Id)
−1−θ0t̄r ΘsΣs(Σs+θ0Id)−2

and in the second case, θ0 = 0 and I2,2(θ0) = 1.
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K EXPERIMENTAL DETAILS

K.1 SYNTHETIC EXPERIMENTS

Across all experiments on synthetic data, we choose n = 400. We further use 5 runs to estimate test
risks (e.g., ERs(f̂),ERs(f̂s)), and 5 runs to capture the variance of the estimators, for a total of 25
runs. We use 10,000 samples to estimate test risks.

Our experiments validate that bias amplification occurs even in low-dimensional regimes. In Sections
4 and 5, and Appendices L, O, and Q, we show that our theory predicts bias amplification for models
trained on only n = 400 samples. The high-dimensional regime is commonly studied in ML theory
and statistical physics (as we mention in Section 1.2), as it makes precise analysis more tractable.

Setup for Section 4.1. We further choose λ = 1 × 10−6 to approximate the minimum-norm
interpolator; we henceforth set λ = λ1 = λ2 for simplicity. We modulate a1, a2, σ2

1 , σ
2
2 , as well as ψ

(rate of parameters to samples) and ϕ (rate of features to samples) to understand the effects of model
size, number of features, and sample size on bias amplification. We consider diverse and dense values
of these variables to obtain a clear picture of when and how models amplify bias.

Setup for Section 5. The first πd features represent common core features of groups 1 and 2 while
the latter (1− π)d features capture unshared extraneous features for group 2 (e.g., spurious features).
Intuitively, this setting can model: (1) learning from data from two groups where one group suffers
from spurious features (Sagawa et al., 2020), or (2) learning from a mixture of raw data (i.e., with
spurious features) and clean data (i.e., without spurious features) for a single population (Khani &
Liang, 2021). We ask: Does our theory predict how the inclusion of different amounts of extraneous
features affect the test risk of a minority group (compared to the majority group) when a single model
is trained on data from both groups vs. a separate model is trained per group?

Although Sagawa et al. (2020) consider classification instead of regression, to mirror their experi-
mental setting, we pick p1 = 0.9 (i.e., group 1 is much larger than group 2) and Θ = Id,∆ = 0 (i.e.,
w∗

1 = w∗
2). We additionally choose λ = 1×10−6 and σ2

1 = σ2
2 = 1. We modulate a1, b2, as well as ψ

(rate of parameters to samples) and ϕ (rate of features to samples). Notably, this setting also captures
learning problems with o(d) overlapping core and extraneous features in our asymptotic scaling limit.
An extremization of this setting is choosing Σ1 = a1Iπd ⊕ 0I(1−π)d,Σ2 = 0Iπd ⊕ b2I(1−π)d, where
groups 1 and 2 have no overlapping features.

The experiments in Section 5 validate that our analysis does not rely on conditional dependence
heterogeneity. That is, we empirically verify that our theory still holds and predicts bias amplification
occurs even whenw∗

1 = w∗
2 (see Figure 4). In essence, the structure and eigenspectra of the covariance

matrices of the two groups still contribute to bias amplification even when the ground-truth weights
for the groups are the same. In our theory, we only allow the possibility of w∗

1 ̸= w∗
2 to be as general

as possible. In practice, labeling rule heterogeneity may be leveraged, for example, to train a mixture
of experts that is regularized to deamplify bias.

Extraneous vs. Spurious Features. Our usage of extraneous features (i.e., features that are different
across groups and correlated with labels) differs from classical definitions of spuriousness (i.e., non-
causal correlations between features and labels) (Bell & Wang, 2024); indeed, the extraneous features
are used to generate the labels of the minority group. For example, Khani & Liang (2021) model both
the labels and spurious features in linear regression as being separately generated by the core features,
such that the labels and spurious features are associated but not causally related. However, this setup
is not encompassed by our modeling assumptions, as it entails that the ground-truth parameter and
feature covariance matrices are not jointly diagonalizable. In contrast, Sagawa et al. (2020) study
spurious correlations in classification. At a high level, Sagawa et al. (2020) create four subgroups of
a population with different combinations of class labels y ∈ {−1, 1} and group labels a ∈ {−1, 1}.
The core and spurious features are then sampled from normal distributions parameterized by y, a
(respectively) and different variance levels. By setting the spurious features to have a significantly
lower variance than the core features and making y and a highly associated (i.e., imbalanced groups),
the authors coerce models to perform classification as a function of primarily the spurious features
of the majority group, which does not generalize to the minority group. To capture this spirit, our
setup uses imbalanced groups, and the data for the majority group provides no learning signal for the
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extraneous features; this coerces models to perform regression as a function of primarily the core
features, without learning appropriate parameters for the extraneous features, and thus generalize
poorly to the minority group.

K.2 COLORED MNIST EXPERIMENTS

Train-test split. Colored MNIST has a total of 60k instances. Each image is 28× 28× 3 pixels. We
use the prescribed 0.67-0.33 train-test split. We do not perform validation of hyperparameters, which
we mostly adopt3.

Model architecture. By default, our CNN architecture consists of: (1) a convolutional layer (3
in-channels, 20 out-channels, kernel size of 5, stride of 1); (2) a max pooling layer (kernel size of
2, stride of 2); (3) a second convolutional layer (20 in-channels, 50 out-channels, kernel size of 5,
stride of 1); (4) a second max-pooling layer (kernel size of 2, stride of 2); (5) a fully-connected layer
(R800 → R500); and (6) a second fully-connected layer (R500 → R1).

Model training. We train each model with a batch size of 250 for a single epoch with respect to
groups (i.e., 80 training steps given there are two groups). We use a cross-entropy loss and the Adam
optimizer with learning rate 0.01. We run all experiments on a single NVIDIA L40S. We report our
results over 10 random seeds.

3https://colab.research.google.com/github/reiinakano/
invariant-risk-minimization/blob/master/invariant_risk_minimization_
colored_mnist.ipynb
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L BIAS AMPLIFICATION PLOTS
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Figure 6: We empirically demonstrate that bias amplification occurs and validate our theory (Theorems
3.1 and 3.2) for ODD, EDD, and ADD under the setup described in Section 4.1. The solid lines
capture empirical values while the corresponding lower-opacity dashed lines represent what our
theory predicts. We plot ODD and EDD on the same scale for easy comparison, and include a
black dashed line at ADD = 1 to contrast bias amplification vs. deamplification. The error bars
capture the range of the estimators over 25 random seeds.
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Figure 7: We empirically demonstrate that bias amplification occurs and validate our theory (Theorems
3.1 and 3.2) for ODD, EDD, and ADD under the setup described in Section 4.1. The solid lines
capture empirical values while the corresponding lower-opacity dashed lines represent what our
theory predicts. We plot ODD and EDD on the same scale for easy comparison, and include a
black dashed line at ADD = 1 to contrast bias amplification vs. deamplification. The error bars
capture the range of the estimators over 25 random seeds.
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Figure 8: We empirically demonstrate that bias amplification occurs and validate our theory (Theorems
3.1 and 3.2) for ODD, EDD, and ADD under the setup described in Section 4.1. The solid lines
capture empirical values while the corresponding lower-opacity dashed lines represent what our
theory predicts. We plot ODD and EDD on the same scale for easy comparison, and include a
black dashed line at ADD = 1 to contrast bias amplification vs. deamplification. The error bars
capture the range of the estimators over 25 random seeds.
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M POWER-LAW COVARIANCE

To better understand how ϕ (rate of features to samples) and the label noise ratio c affect bias
amplification, we derive explicit phase transitions in the bias amplification profile of unregularized
ridge regression with random projections in terms of these quantities. We consider the setting of
power-law covariance, as it is analytically tractable and can be translated to the case of wide neural
networks (Caponnetto & de Vito, 2007; Cui et al., 2022; Maloney et al., 2022), where the exponents
can be empirically gauged. Let the eigenvalues λ(s)k of Σs have power-law decay, i.e., λ(s)k = k−βs ,
for all k and some positive constants β1 and β2. WLOG, we will assume β1 > β2. Note that βs
controls the effective dimension and ultimately the difficulty of fitting the noiseless part of the signal
from group s. If βs is large, then all the information is concentrated in a few features, and so the
learning problem is easier. We similarly assume that the eigenvalues µk of ∆ have power-law decay
µk = k−α, for all k and constant α > 0. Finally, we consider balanced groups (i.e., p1 = p2 = 1/2).
Under this setup, we have the following corollary.
Corollary M.1. Suppose that in the single model setting, as λ → 0+, (e1, e2, τ, u1, u2, ρ) is the
unique positive solution to the following fixed-point equations:

1/τ = 1 + 1/(γτ), 1/es = 1 + ϕt̄r ΣsL
−1, for s ∈ {1, 2}, (359)

ρ = 0, us = ϕe2s t̄r ΣsDL
−2, for s ∈ {1, 2}, (360)

where: L = p1e1Σ1 + p2e2Σ2, D = p1u1Σ1 + p2u2Σ2 +B. (361)

Furthermore, suppose ψs < 1, γ ≥ 1 or 1 ≤ ψs ≤ γ. Under the assumptions of Theorem 3.1 and
Assumption B.3, as λ→ 0+, we have the following approximate analytical phase transitions in the
bias amplification profile of ridge regression with random projections:

lim
d,n1,n2→∞
ϕ1,2→2ϕ

ADD → c

|c− 1|
, lim

c→0+
lim

d,n1,n2→∞
ϕ1,2→2ϕ

ADD → 0, (362)

lim
c→∞

lim
d,n1,n2→∞
ϕ1,2→2ϕ

ADD → 1, lim
c→1

lim
d,n1,n2→∞
ϕ1,2→2ϕ

ADD → ∞. (363)

We relegate the proof to Appendix N and empirically assess the validity of this result in Figure 9. The
phase transitions reveal that bias amplification peaks near c = 1, bias deamplification peaks when
c→ 0+, and bias is roughly neither amplified or deamplified when c→ ∞. Furthermore, the right
tail of the ODD profile (which Corollary M.1 predicts to be proportional to c) is higher than the left
tail (i.e., 0) for larger c. However, the left tail of the EDD profile (which Corollary M.1 predicts to be
proportional to |c− 1|) does not increase steeply as c→ 0+. Interestingly, in the proof of Corollary
M.1, we observe that the bias term depends on t̄r∆Σs; therefore, the setting ∀k, λ(s)k ≥ 1/µk (e.g.,
common in learning from synthetic data (Dohmatob et al., 2024a)) can prevent the bias term from
vanishing or even cause it to explode. This may explain why training models on synthetic data (i.e.,
data previously generated by the model) may amplify unfairness (Wyllie et al., 2024).
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Figure 9: Our theory predicts that bias amplification is larger for higher noise ratios than lower
noise ratios. We observe that Corollary M.1 generally predicts the ADD profile with respect to
the noise ratio c. The solid lines capture empirical values while the corresponding lower-opacity
dashed lines represent what Theorem 3.1 predicts. We plot ODD and EDD on the same scale
for easy comparison, and include a black dashed line at ADD = 1 to contrast bias amplification
vs. deamplification. The error bars capture the range of the estimators over 25 random seeds. We
consider the setup described in Appendix M with ψ = 0.5, ϕ = 0.2, and λ = 1× 10−6.
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N PROOF OF COROLLARY M.1

Proof. We begin by computing the ODD in the limit λ→ 0+. We define u(s)j = uj for B = Σs. By
Assumption B.3, we can re-express the constants in Definition 3.1 in terms of the limiting spectral
densities of the covariance matrices:

e1 =
1

1 + ϕ
∫∞
0

1
p1e1+p2e2r

dν(r)
, e2 =

1

1 + ϕ
∫∞
0

r
p1e1+p2e2r

dν(r)
, (364)

τ =
1

1 + 1
γτ

= 1− 1/γ, ρ = 0, (365)

u
(1)
1 = ϕe21

∫ ∞

0

u
(1)
1 p1 + u

(1)
2 p2r + 1

(p1e1 + p2e2r)2
dν(r), u

(1)
2 = ϕe22

∫ ∞

0

u
(1)
1 p1r + u

(1)
2 p2r

2 + r

(p1e1 + p2e2r)2
dν(r),

(366)

u
(2)
1 = ϕe21

∫ ∞

0

u
(2)
1 p1 + u

(2)
2 p2r + r

(p1e1 + p2e2r)2
dν(r), u

(2)
2 = ϕe22

∫ ∞

0

u
(2)
1 p1r + u

(2)
2 p2r

2 + r2

(p1e1 + p2e2r)2
dν(r).

(367)

Since β1 > β2, −β2 − (−β1) > 0. As such, for d → ∞, the ratios rk = λ
(2)
k /λ

(1)
k have the

approximate limiting distribution ν = δr=∞, i.e., a Dirac atom at infinity. Thus:

e1 = 1, e2 = 1− ϕ

p2
= 1− ϕ2, τ = 1− 1/γ, ρ = 0, (368)

u
(1)
1 = 0, u

(1)
2 = 0, u

(2)
1 = 0, u

(2)
2 =

ϕ

p2(p2 − ϕ)
. (369)

Now, we can re-express the variance terms as:

V1(f̂) = ϕσ2
1

∫ ∞

0

p1
(p1 + p2e2r)2

dν(r) + ϕσ2
2

∫ ∞

0

p2e2r

(p1 + p2e2r)2
dν(r) = 0, (370)

V2(f̂) = ϕσ2
1

∫ ∞

0

p1r + p1p2u
(2)
2 r

(p1 + p2e2r)2
dν(r) + ϕσ2

2

∫ ∞

0

p2e2r
2

(p1e1 + p2e2r)2
dν(r) =

σ2
2ϕ

p2 − ϕ
. (371)

Likewise, we can re-express the bias terms as:

B1(f̂) =

∫ ∞

0

∫ ∞

0

∫ ∞

0

aδe22p
2
2r

2

(e1p1 + e2p2r)2
dµ(r, a)dπ(δ) =

∫ ∞

0

∫ ∞

0

aδ dµ(a)dπ(δ) = 0, (372)

B2(f̂) = 0. (373)

In this calculation, we observe that the adversarial setting ∀k, λ(1)k ≥ 1/µk can prevent the bias term
from vanishing. Putting these pieces together and recalling that p2 = 1/2:

ODD →
∣∣∣V1(f̂)− V2(f̂)

∣∣∣ = 2ϕσ2
1

1− 2ϕ
c. (374)

We now compute the EDD. We can once again re-express the constants in Definition H.1 in terms
of the limiting spectral densities of the covariance matrices:

es =
1

1 + ϕs/es
= 1− ϕs, τs = 1− 1/γ. (375)

By Corollary J.1, because ψs < 1, γ ≥ 1 or 1 ≤ ψs ≤ γ, Bs(f̂s) = 0 and Vs(f̂s) =
σ2
sϕs

1−ϕs .

Therefore, because ϕ = psϕs:

EDD →
∣∣∣V1(f̂1)− V2(f̂2)

∣∣∣ = 2ϕ

1− 2ϕ

∣∣σ2
1 − σ2

2

∣∣ = 2ϕσ2
1

1− 2ϕ
|c− 1| , (376)

ADD → c

|c− 1|
. (377)
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O BIAS AMPLIFICATION DURING TRAINING
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Figure 10: Our theory reveals that there may be an optimal regularization penalty to deamplify
bias. We empirically demonstrate that bias amplification can be heavily affected by λ and validate
our theory (Theorems 3.1 and 3.2) for ODD, EDD, and ADD under the setup described in Section
4.2. The solid lines capture empirical values while the corresponding lower-opacity dashed lines
represent what our theory predicts. We include a black dashed line at ADD = 1 to contrast bias
amplification vs. deamplification. The error bars capture the range of the estimators over 25 random
seeds.
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P COLORED MNIST PLOTS

We further assess the applicability of our conclusions about the effects of label noise (Figures 3, 11)
and model size (Figure 12) on bias amplification for Colored MNIST. Please see Section 4.2 for a
discussion of Figure 3. We observe in Figure 11 that as we increase the label noise ratio, the EDD
generally increases, while the ODD remains relatively low, which is suggested by our theoretical
reasoning in Section 4.2. Furthermore, in Figure 12, as the hidden dimension m of the penultimate
layer of the CNN increases, the ODD appears to decrease and plateau, which is predicted by our
theoretical results (see Section 4.1) in the Colored MNIST regime where ϕ < 1. However, the EDD
does not appear to decrease; while this is plausibly predicted by our theory, it requires going beyond
our simplistic assumption that Σ1 roughly coincides with Σ2 and studying the interplay between
ϕs, ψs,Σs for each group s (as suggested by Appendix L).
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Figure 11: Our theory predicts that more disparate label noise between groups deamplifies
bias on Colored MNIST. We plot the ODD and EDD of a CNN for different label noise ratios
c = σ2

2/σ
2
1 for Colored MNIST. As c increases, the EDD generally increases while the ODD

remains relatively low, which is predicted by our theory (see reasoning in Section 4.2). In our
experiments, σ2

1 = 0.05 stays fixed while σ2
2 varies. For each value of c, the model is evaluated after

t = 80 training steps and has a penultimate layer with dimension m = 500. The error bars capture
the standard deviation computed over 10 random seeds.
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Figure 12: Our theory predicts that a larger model size reduces bias on Colored MNIST in
the single model setting. We plot the ODD and EDD of a CNN for different model sizes m
(where m is the dimension of the penultimate CNN layer) for Colored MNIST. As m increases, the
ODD appears to decrease and plateau, which is in line with what our theory predicts in the regime
where ϕ < 1 (see analysis in Section 4.1). The EDD does not tend towards 0. In our experiments,
σ2
1 = σ2

2 = 0.05. For each value of m, the model is evaluated after t = 80 training steps. The error
bars capture the standard deviation computed over 10 random seeds.
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Q MINORITY-GROUP BIAS PLOTS
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Figure 13: We empirically demonstrate that minority-group bias is affected by extraneous features.
We validate our theory (Theorems 3.1 and 3.2) for together R1, R2 (i.e., single model learned for
both groups) and separate R1, R2 (i.e., separate model learned per group) under the setup described
in Section 4.2. The solid lines capture empirical values while the corresponding lower-opacity dashed
lines represent what our theory predicts. We include a black dashed line at ADD = 1 to contrast
bias amplification vs. deamplification. All y-axes are on the same scale for easy comparison. The
error bars capture the range of the estimators over 25 random seeds.
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Figure 14: We empirically demonstrate that minority-group bias is affected by extraneous features.
We validate our theory (Theorems 3.1 and 3.2) for together R1, R2 (i.e., single model learned for
both groups) and separate R1, R2 (i.e., separate model learned per group) under the setup described
in Section 4.2. The solid lines capture empirical values while the corresponding lower-opacity dashed
lines represent what our theory predicts. We include a black dashed line at ADD = 1 to contrast
bias amplification vs. deamplification. All y-axes are on the same scale for easy comparison. The
error bars capture the range of the estimators over 25 random seeds.
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Figure 15: We empirically demonstrate that minority-group bias is affected by extraneous features.
We validate our theory (Theorems 3.1 and 3.2) for together R1, R2 (i.e., single model learned for
both groups) and separate R1, R2 (i.e., separate model learned per group) under the setup described
in Section 4.2. The solid lines capture empirical values while the corresponding lower-opacity dashed
lines represent what our theory predicts. We include a black dashed line at ADD = 1 to contrast
bias amplification vs. deamplification. All y-axes are on the same scale for easy comparison. The
error bars capture the range of the estimators over 25 random seeds.
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R ACTIONABLE INSIGHTS FROM THEORY

Searching for optimal hyperparameters. In practice, an optimal regularization penalty λ or
training time t can be selected by searching for values that strike a desired balance between overall
validation error (that is not too high) and bias amplification (that is not too high). As we would
estimate the test error using the empirical validation error, we can estimate bias amplification using
the validation set. Moreover, we would need to train: (1) the main model on a mixture of data from
groups, and (2) auxiliary separate models on the data for each group.

However, it may be expensive to train auxiliary models for each candidate value of λ and t. The search
space can be reduced by using insights from our theory. For instance, with overparamaterization, as λ
decreases (or t increases), bias amplification increases and plateaus, and with underparameterization,
as λ decreases (or t increases), bias deamplification increases and plateaus. When the curves are
monotone with respect to λ, the optimal λ is either at the left tail of the curve (e.g., λ = 0) or the
right tail (i.e., the largest λ among the reasonable options). In contrast, Figure 10 shows that when ψ
is close to the interpolation threshold of 1, bias amplification is often not monotone with respect to λ.

Informing evaluation and mitigation strategies. Our theory offers avenues to assess whether a ML
model trained on certain real-world data is prone to bias amplification and mitigate this amplification,
even though we may lack direct access to population parameters like Σ. We can estimate such
parameters using samples (e.g., Σ̂ = X⊤X). However, even if we are unable to robustly estimate
these parameters, our theory still provides valuable insights. For example, we observe that the ratios
of parameters for the groups is often what matters, e.g., label noise ratio σ2

2/σ
2
1 (see Section 4.1), ratio

of covariance eigenvalues (see Appendix M). Thus, practitioners can use our theory to get intuition
about when disparities in the variability of labels and features across groups can amplify bias.

Moreover, our findings warn against the conventional wisdom that increased model overparameteriza-
tion or data balancing can alleviate bias issues. In addition, our theory informs criteria for feature
selection (e.g., discarding features with disparate variance across groups) and warns ML practitioners
about the interplay between high vs. low feature-to-sample regimes and overparameterization in
inducing bias amplification. Nevertheless, additional work is required to make rigorous connections
between our theoretical findings and better strategies for evaluating and mitigating the bias of models.
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