
References
[1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,

Karel Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, et al. Flamingo: a visual
language model for few-shot learning. arXiv preprint arXiv:2204.14198, 2022.

[2] Kevin Aydin, MohammadHossein Bateni, and Vahab Mirrokni. Distributed balanced partitioning
via linear embedding. In Proceedings of the Ninth ACM International Conference on Web
Search and Data Mining, pages 387–396, 2016.

[3] Dimitris Bertsimas and John Tsitsiklis. Simulated annealing. Statistical science, 8(1):10–15,
1993.

[4] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pages
1877–1901. Curran Associates, Inc., 2020.

[5] Henggang Cui, Hao Zhang, Gregory R Ganger, Phillip B Gibbons, and Eric P Xing. Geeps: Scal-
able deep learning on distributed gpus with a gpu-specialized parameter server. In Proceedings
of the eleventh european conference on computer systems, pages 1–16, 2016.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[7] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen Zheng, Chuan Wu, Guoping
Long, Jun Yang, Lixue Xia, et al. Dapple: A pipelined data parallel approach for training large
models. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 431–445, 2021.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[9] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B Gibbons,
Garth A Gibson, Greg Ganger, and Eric P Xing. More effective distributed ml via a stale
synchronous parallel parameter server. In Advances in neural information processing systems,
pages 1223–1231, 2013.

[10] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, Hy-
oukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant
neural networks using pipeline parallelism. Advances in neural information processing systems,
32:103–112, 2019.

[11] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model parallelism for deep neural
networks. SysML 2019, 2019.

[12] Yifan Jiang, Shiyu Chang, and Zhangyang Wang. Transgan: Two pure transformers can make
one strong gan, and that can scale up. Advances in Neural Information Processing Systems, 34,
2021.

[13] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanxiong Guo. A unified
architecture for accelerating distributed {DNN} training in heterogeneous gpu/cpu clusters. In
14th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 20),
pages 463–479, 2020.

[14] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with condi-
tional computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

[15] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josifovski,
James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed machine learning
with the parameter server. In 11th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 14), pages 583–598, 2014.

11

[16] Zhuohan Li, Siyuan Zhuang, Shiyuan Guo, Danyang Zhuo, Hao Zhang, Dawn Song, and Ion
Stoica. Terapipe: Token-level pipeline parallelism for training large-scale language models.
arXiv preprint arXiv:2102.07988, 2021.

[17] Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou,
Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. Device placement opti-
mization with reinforcement learning. In International Conference on Machine Learning, pages
2430–2439. PMLR, 2017.

[18] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R Devanur,
Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. Pipedream: generalized pipeline
parallelism for dnn training. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles, pages 1–15, 2019.

[19] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary,
Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro,
et al. Efficient large-scale language model training on gpu clusters using megatron-lm. In
Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–15, 2021.

[20] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[21] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System
optimizations enable training deep learning models with over 100 billion parameters. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 3505–3506, 2020.

[22] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning in
tensorflow. arXiv preprint arXiv:1802.05799, 2018.

[23] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model
parallelism. arXiv preprint arXiv:1909.08053, 2019.

[24] Jakub M Tarnawski, Deepak Narayanan, and Amar Phanishayee. Piper: Multidimensional
planner for dnn parallelization. Advances in Neural Information Processing Systems, 34, 2021.

[25] Peter JM Van Laarhoven and Emile HL Aarts. Simulated annealing. In Simulated annealing:
Theory and applications, pages 7–15. Springer, 1987.

[26] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful visual
performance model for multicore architectures. Communications of the ACM, 52(4):65–76,
2009.

[27] Hao Zhang, Peng Wu, Zhijie Deng, Christy Li, Qirong Ho, Aurick Qiao, Zeya Wang, and
Eric P Xing. Autodist: Acomposable and automated synchronization system for distributed
deep learning.

[28] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan Liang, Zhiting Hu, Jinliang
Wei, Pengtao Xie, and Eric P Xing. Poseidon: An efficient communication architecture for
distributed deep learning on {GPU} clusters. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17), pages 181–193, 2017.

[29] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping Huang,
Yida Wang, Yuanzhong Xu, Danyang Zhuo, Joseph E Gonzalez, et al. Alpa: Automating inter-
and intra-operator parallelism for distributed deep learning. arXiv preprint arXiv:2201.12023,
2022.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Codes and how
to reproduce results are included in the supplementary materials.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] We do not have randomness in our main experiments.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We include cluster setup in § 4.3,
and total time used in § 4.5

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We cite the underlying

system Deepspeed in § 4.4
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

No new assets are introduced.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] We focus on system performance under different setups, which
does not need to use actual data.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No] Since we focus on the system performance, we
do not release model weights.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

Stage 1

Stage 2

Figure 4: Communication and computation overlap illustration using 2 workers. The first stage sends
the activation to the second stage once it finishes the first micro-batch with time t1, while continuing
the next micro-batch computation.

6 Supplementary Materials

6.1 Computation and communication overlap

We consider overlapping in the P2P communication as: the sender sends the message to the receiver,
while continuing its computation. The receiver needs to wait for the message before continuing its
computation. This overlapping is illustrated in Figure 4.

6.2 Optimization procedure details

We present the rest details of Algorithm 1. We briefly describe how each sub-procedure is imple-
mented here:

1. placement() generates the device placement using the heuristic in Megatron.

2. enumerate_degrees() takes in the cluster C information, and outputs all possible parallelism
degrees, each with format (pp, dp, tmp) with constraints that pp× dp× tmp = |D|.

3. pipe_ast() takes in the model W information, the number of stages d.pp. It generates
the per layer cost, and per edge cost using formulas in section 3.4, and uses the dynamic
programming algorithm in section 3.5 to solve for an optimal layer assignment.

4. estimate() takes in the optimal layer assignment, and generates the final estimate time using
Equation 4.

6.3 Randomized Optimization

In the layer assignment problem, we leverage the structure that only continuous layers can be assigned
to the same stage, which enables a solution with optimality and polynomial runtime. However,
other aspects exhibit less structure that allows us to leverage a deterministic algorithm. Moreover,
these dimensions compose a large space that prohibits us from simply enumerating all possibilities.
Specifically, there are exponentially many possible device placements [17]. At a high level, we would
like to optimize a cost function over a discrete domain with a large support. One effective family of
algorithms to solve this problem is known as Simulated Annealing (SA) [3], where it explores states
(strategies in our semantics) in a neighbor-to-neighbor fashion and gradually improves the quality. A
neighbor of a state is produced by conservatively changing the current state.

Figure 5: A possible device placement when using a 4× 4 device grid, and 8 pipeline stages. Each
device is represented as a square. Squares connected with arrows are associated with the same
pipeline stage (a domino).

14

Algorithm 2: randomized optimization procedure
Input: iteration, budget

1 t = 1.0 // Temperature parameter
2 s = initialize_strategy()
3 record = set()
4 cost = estimate(s) // cost model
5 for i in iteration do
6 t = cool_down(t, i)
7 next = s.copy()
8 if randn() > 0.5 then
9 next.tmp = sample_mp(s.dp) // vary tmp

10 else
11 next.dp = sample_dp(s.tmp) // vary dp
12 next.mbs = sample_mbs(next.dp)
13 next.placement = sample_domino(next.dp, next.tmp)
14 next.a = pipe_ast(s) // pipeline assignment
15 next_cost = estimate(next)

16 acc_prob = e
min(cost−next_cost,0)

t

17 if randn() < acc_prob then
18 s = next // accept
19 record.add(s)
20 cost = next_cost

/* run top predicted strategies */
21 best_s = run(record, budget)
22 return best_s

Specifically, we use a SA algorithm that varies only dp or tmp at a time (i.e. strategies with the
same dp or tmp are neighbors), guided by the cost model in section 3.4 to iteratively find a good
strategy. To optimize the device placement aspect given tmp and dp, we consider a problem setup
similar to the Domino Tiling problem: we place devices as a 2d mesh and tile it using dominos of size
tmp×dp either horizontally or vertically. Each domino represents ranks with the same pipeline stage.
4. An example domino tiling scheme is shown in Figure 5. The described optimization procedure is
presented at algorithm 2.

6.4 Proof of the dynamic programming solution

At a cut with position i’, equation 6 can be rewritten as

g(i′) = (gas− 1) ·max{0,max{t1,i′ , t2,i′} −m}+
pp−1∑
i=1

ei +

pp∑
i=1

ti (10)

The associate cost stored at dp[i′][j − 1][max{t2,i′ ,m}] is:

ci′ = (gas− 1) ·max{0, t1,i′ −max{t2,i′ ,m}}+
pp−2∑
i=1

ei +

pp−1∑
i=1

ti (11)

Claim:
max{0, t1,i′ −max{t2,i′ ,m}}+max{0, t2,i′ −m} (12)

= max{0,max{t1,i′ , t2,i′} −m} (13)
Prove claim by enumerate all possibility:

4Observe that communication within a domino is DP or MP, which is both more intense than PP communi-
cation. We place devices with higher bandwidth closer in the 2d mesh to reduce the communication time. We
further assume that vertically connected devices in a domino form a MP group, whereas horizontal ones form a
DP group. Thus, each tiling exactly corresponds to a device placement function.

15

1. t1,i′ < t2,i′ < m: Equation 12 = 0 + 0 = 0, Equation 13 = 0
2. t1,i′ < m < t2,i′ : Equation 12 = 0 + t2,i′ - m, Equation 13 = t2,i′ - m
3. t2,i′ < t1,i′ < m: Equation 12 = 0 + 0, Equation 13 = 0
4. t2,i′ < m < t1,i′ : Equation 12 = t1,i′ - m + 0, Equation 13 = t1,i′ - m.
5. m < t1,i′ < t2,i′ : Equation 12 = 0 + t2,i′ - m, Equation 13=t2,i′ - m.
6. m < t2,i′ < t1,i′ : Equation 12 = t1,i′ − t2,i′ + t2,i′ - m = t1,i′ - m, Equation 13 = t1,i′ - m.

Using the claim:

g(i′) = ci′ + (gas− 1) ∗max{0, t2,i′ −m}+ t2,i′ + ei′,j (14)

6.5 Experiment Details

In this section, we provide detailed experiment setup and results to help understand the performance
of each training strategy, and how different methods find different top strategies. In particular, we
provide the Top 5 strategies proposed by Megatron and AMP.

6.5.1 Homogeneous setting

Model architecture We use a 24 layers GPT-2 model, where layer 3-26 are transformer layers,
and the rest are lambda functions or embedding layers. We use hyper-parameters: hidden size 1024,
sequence length 1024, vocabulary size 52256, and batch size 32.

mbs pipeline layer assignment tmp pp run time

1 [0, 30] 1 1 1.32
2 [0, 14, 30] 1 2 1.37
2 [0, 30] 2 1 1.58
4 [0, 14, 30] 1 2 1.63
4 [0, 30] 2 1 1.53

Table 6: Top 5 candidates by Megatron under homogeneous setup (scale: seconds).

mbs pipeline layer assignment tmp pp run time

1 [0, 15, 30] 1 2 1.28
1 [0, 9, 15, 21, 30] 1 4 1.20
1 [0, 6, 9, 12, 15, 18, 21, 24, 30] 1 8 1.23
2 [0, 15, 30] 1 2 1.38
1 [0, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 30] 1 16 1.55

Table 7: Top 5 candidates by AMP under homogeneous setup (scale: seconds).

6.5.2 Heterogeneous Cluster

Model architecture We use the same model configuration as in the homogeneous setup.

mbs pipeline layer assignment tmp pp run time

2 [0, 14, 30] 1 2 2.27
4 [0, 14, 30] 1 2 2.32
8 [0, 8, 14, 20, 30] 1 4 1.97
8 [0, 14, 30] 2 2 2.43
16 [0, 8, 14, 20, 30] 2 4 2.34

Table 8: Top 5 candidates by Megatron under heterogeneous cluster setup (scale: seconds).

16

mbs pipeline layer assignment tmp pp run time

1 [0, 7, 14, 20, 30] 1 4 1.47
1 [0, 5, 9, 12, 15, 18, 21, 24, 30] 1 8 1.28
1 [0, 3, 5, 7, 9, 11, 13, 15, 16, 17, 19, 20, 21, 22, 23, 25, 30] 1 16 1.52
2 [0, 8, 14, 20, 30] 1 4 1.52
2 [0, 5, 9, 12, 14, 17, 20, 23, 30] 1 8 1.54
Table 9: Top 5 candidates by AMP under heterogeneous cluster setup (scale: seconds).

6.5.3 Heterogeneous Model

Model architecture We use a TransGAN Generator with 24 transformer layers, where layer 4-15,
42-53 are transformer layers, and the rest are lambda functions or embedding layers. We use hyper-
parameters: hidden size 1024, bottom width 9, batch size 64, 12 transformer layers for stage 1, and
12 transformer layers for stage 6.

mbs pipeline layer assignment tmp pp run time

1 [0, 41, 56] 1 1 1.89
2 [0, 9, 41, 47, 56] 1 2 1.99

Table 10: Top candidates by Megatron under heterogeneous model setup (scale: seconds). Strategies
provided by Megatron are out of memory for larger micro batch size due to its pipeline layer
assignment method.

mbs pipeline layer assignment tmp pp run time

1 [0, 12, 44, 48, 56] 1 4 1.07
2 [0, 12, 44, 48, 56] 1 4 1.08
2 [0, 5, 8, 11, 14, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 56] 1 16 1.13
1 [0, 5, 8, 11, 14, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 56] 1 16 1.30
2 [0, 7, 12, 42, 44, 47, 49, 51, 56] 1 8 1.39
Table 11: Top 5 candidates by AMP under heterogeneous model setup (scale: seconds).

17

