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mental results (either in the supplemental material or as a URL)? [Yes] Codes and how
to reproduce results are included in the supplementary materials.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
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(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] We do not have randomness in our main experiments.
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of GPUs, internal cluster, or cloud provider)? [Yes] We include cluster setup in § 4.3,
and total time used in § 4.5
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information or offensive content? [No] Since we focus on the system performance, we
do not release model weights.
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applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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Stage 1

Stage 2

Figure 4: Communication and computation overlap illustration using 2 workers. The first stage sends
the activation to the second stage once it finishes the first micro-batch with time t1, while continuing
the next micro-batch computation.

6 Supplementary Materials

6.1 Computation and communication overlap

We consider overlapping in the P2P communication as: the sender sends the message to the receiver,
while continuing its computation. The receiver needs to wait for the message before continuing its
computation. This overlapping is illustrated in Figure 4.

6.2 Optimization procedure details

We present the rest details of Algorithm 1. We briefly describe how each sub-procedure is imple-
mented here:

1. placement() generates the device placement using the heuristic in Megatron.

2. enumerate_degrees() takes in the cluster C information, and outputs all possible parallelism
degrees, each with format (pp, dp, tmp) with constraints that pp× dp× tmp = |D|.

3. pipe_ast() takes in the model W information, the number of stages d.pp. It generates
the per layer cost, and per edge cost using formulas in section 3.4, and uses the dynamic
programming algorithm in section 3.5 to solve for an optimal layer assignment.

4. estimate() takes in the optimal layer assignment, and generates the final estimate time using
Equation 4.

6.3 Randomized Optimization

In the layer assignment problem, we leverage the structure that only continuous layers can be assigned
to the same stage, which enables a solution with optimality and polynomial runtime. However,
other aspects exhibit less structure that allows us to leverage a deterministic algorithm. Moreover,
these dimensions compose a large space that prohibits us from simply enumerating all possibilities.
Specifically, there are exponentially many possible device placements [17]. At a high level, we would
like to optimize a cost function over a discrete domain with a large support. One effective family of
algorithms to solve this problem is known as Simulated Annealing (SA) [3], where it explores states
(strategies in our semantics) in a neighbor-to-neighbor fashion and gradually improves the quality. A
neighbor of a state is produced by conservatively changing the current state.

Figure 5: A possible device placement when using a 4× 4 device grid, and 8 pipeline stages. Each
device is represented as a square. Squares connected with arrows are associated with the same
pipeline stage (a domino).
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Algorithm 2: randomized optimization procedure
Input: iteration, budget

1 t = 1.0 // Temperature parameter
2 s = initialize_strategy()
3 record = set()
4 cost = estimate(s) // cost model
5 for i in iteration do
6 t = cool_down(t, i)
7 next = s.copy()
8 if randn() > 0.5 then
9 next.tmp = sample_mp(s.dp) // vary tmp

10 else
11 next.dp = sample_dp(s.tmp) // vary dp
12 next.mbs = sample_mbs(next.dp)
13 next.placement = sample_domino(next.dp, next.tmp)
14 next.a = pipe_ast(s) // pipeline assignment
15 next_cost = estimate(next)

16 acc_prob = e
min(cost−next_cost,0)

t

17 if randn() < acc_prob then
18 s = next // accept
19 record.add(s)
20 cost = next_cost

/* run top predicted strategies */
21 best_s = run(record, budget)
22 return best_s

Specifically, we use a SA algorithm that varies only dp or tmp at a time (i.e. strategies with the
same dp or tmp are neighbors), guided by the cost model in section 3.4 to iteratively find a good
strategy. To optimize the device placement aspect given tmp and dp, we consider a problem setup
similar to the Domino Tiling problem: we place devices as a 2d mesh and tile it using dominos of size
tmp×dp either horizontally or vertically. Each domino represents ranks with the same pipeline stage.
4. An example domino tiling scheme is shown in Figure 5. The described optimization procedure is
presented at algorithm 2.

6.4 Proof of the dynamic programming solution

At a cut with position i’, equation 6 can be rewritten as

g(i′) = (gas− 1) ·max{0,max{t1,i′ , t2,i′} −m}+
pp−1∑
i=1

ei +

pp∑
i=1

ti (10)

The associate cost stored at dp[i′][j − 1][max{t2,i′ ,m}] is:

ci′ = (gas− 1) ·max{0, t1,i′ −max{t2,i′ ,m}}+
pp−2∑
i=1

ei +

pp−1∑
i=1

ti (11)

Claim:
max{0, t1,i′ −max{t2,i′ ,m}}+max{0, t2,i′ −m} (12)

= max{0,max{t1,i′ , t2,i′} −m} (13)
Prove claim by enumerate all possibility:

4Observe that communication within a domino is DP or MP, which is both more intense than PP communi-
cation. We place devices with higher bandwidth closer in the 2d mesh to reduce the communication time. We
further assume that vertically connected devices in a domino form a MP group, whereas horizontal ones form a
DP group. Thus, each tiling exactly corresponds to a device placement function.
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1. t1,i′ < t2,i′ < m: Equation 12 = 0 + 0 = 0, Equation 13 = 0
2. t1,i′ < m < t2,i′ : Equation 12 = 0 + t2,i′ - m, Equation 13 = t2,i′ - m
3. t2,i′ < t1,i′ < m: Equation 12 = 0 + 0, Equation 13 = 0
4. t2,i′ < m < t1,i′ : Equation 12 = t1,i′ - m + 0, Equation 13 = t1,i′ - m.
5. m < t1,i′ < t2,i′ : Equation 12 = 0 + t2,i′ - m, Equation 13=t2,i′ - m.
6. m < t2,i′ < t1,i′ : Equation 12 = t1,i′ − t2,i′ + t2,i′ - m = t1,i′ - m, Equation 13 = t1,i′ - m.

Using the claim:

g(i′) = ci′ + (gas− 1) ∗max{0, t2,i′ −m}+ t2,i′ + ei′,j (14)

6.5 Experiment Details

In this section, we provide detailed experiment setup and results to help understand the performance
of each training strategy, and how different methods find different top strategies. In particular, we
provide the Top 5 strategies proposed by Megatron and AMP.

6.5.1 Homogeneous setting

Model architecture We use a 24 layers GPT-2 model, where layer 3-26 are transformer layers,
and the rest are lambda functions or embedding layers. We use hyper-parameters: hidden size 1024,
sequence length 1024, vocabulary size 52256, and batch size 32.

mbs pipeline layer assignment tmp pp run time

1 [0, 30] 1 1 1.32
2 [0, 14, 30] 1 2 1.37
2 [0, 30] 2 1 1.58
4 [0, 14, 30] 1 2 1.63
4 [0, 30] 2 1 1.53

Table 6: Top 5 candidates by Megatron under homogeneous setup (scale: seconds).

mbs pipeline layer assignment tmp pp run time

1 [0, 15, 30] 1 2 1.28
1 [0, 9, 15, 21, 30] 1 4 1.20
1 [0, 6, 9, 12, 15, 18, 21, 24, 30] 1 8 1.23
2 [0, 15, 30] 1 2 1.38
1 [0, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 25, 30] 1 16 1.55

Table 7: Top 5 candidates by AMP under homogeneous setup (scale: seconds).

6.5.2 Heterogeneous Cluster

Model architecture We use the same model configuration as in the homogeneous setup.

mbs pipeline layer assignment tmp pp run time

2 [0, 14, 30] 1 2 2.27
4 [0, 14, 30] 1 2 2.32
8 [0, 8, 14, 20, 30] 1 4 1.97
8 [0, 14, 30] 2 2 2.43
16 [0, 8, 14, 20, 30] 2 4 2.34

Table 8: Top 5 candidates by Megatron under heterogeneous cluster setup (scale: seconds).
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mbs pipeline layer assignment tmp pp run time

1 [0, 7, 14, 20, 30] 1 4 1.47
1 [0, 5, 9, 12, 15, 18, 21, 24, 30] 1 8 1.28
1 [0, 3, 5, 7, 9, 11, 13, 15, 16, 17, 19, 20, 21, 22, 23, 25, 30] 1 16 1.52
2 [0, 8, 14, 20, 30] 1 4 1.52
2 [0, 5, 9, 12, 14, 17, 20, 23, 30] 1 8 1.54
Table 9: Top 5 candidates by AMP under heterogeneous cluster setup (scale: seconds).

6.5.3 Heterogeneous Model

Model architecture We use a TransGAN Generator with 24 transformer layers, where layer 4-15,
42-53 are transformer layers, and the rest are lambda functions or embedding layers. We use hyper-
parameters: hidden size 1024, bottom width 9, batch size 64, 12 transformer layers for stage 1, and
12 transformer layers for stage 6.

mbs pipeline layer assignment tmp pp run time

1 [0, 41, 56] 1 1 1.89
2 [0, 9, 41, 47, 56] 1 2 1.99

Table 10: Top candidates by Megatron under heterogeneous model setup (scale: seconds). Strategies
provided by Megatron are out of memory for larger micro batch size due to its pipeline layer
assignment method.

mbs pipeline layer assignment tmp pp run time

1 [0, 12, 44, 48, 56] 1 4 1.07
2 [0, 12, 44, 48, 56] 1 4 1.08
2 [0, 5, 8, 11, 14, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 56] 1 16 1.13
1 [0, 5, 8, 11, 14, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 56] 1 16 1.30
2 [0, 7, 12, 42, 44, 47, 49, 51, 56] 1 8 1.39
Table 11: Top 5 candidates by AMP under heterogeneous model setup (scale: seconds).
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