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Table 1: Performance on TSCD task on CausalTime datasets. We utilize the performance of baseline
TSCD algorithms reported in CausalTime paper (Cheng et al., 2024). Bold text means the best model
and underlined text indicates second-best model

Methods AUROC AUPRC
AQI Traffic Medical AQI Traffic Medical

GC 0.4538 ±0.0377 0.4191 ±0.0310 0.5737 ±0.0338 0.6347 ±0.0158 0.2789 ±0.0018 0.4213±0.0281

SVAR 0.6225 ±0.0406 0.6329 ±0.0047 0.7130 ±0.0188 0.7903 ±0.0175 0.5845 ±0.0021 0.6774±0.0358

N.NTS 0.5729 ±0.0229 0.6329 ±0.0335 0.5019 ±0.0682 0.7100 ±0.0228 0.5770 ±0.0542 0.4567±0.0162

PCMCI 0.5272 ±0.0744 0.5422 ±0.0737 0.6991 ±0.0111 0.6734 ±0.0372 0.3474 ±0.0581 0.5082±0.0177

Rhino 0.6700 ±0.0983 0.6274 ±0.0185 0.6520 ±0.0212 0.7593 ±0.0755 0.3772 ±0.0093 0.4897±0.0321

CUTS 0.6013 ±0.0038 0.6238 ±0.0179 0.3739 ±0.0297 0.5096 ±0.0362 0.1525 ±0.0226 0.1537±0.0039

CUTS+ 0.8928 ±0.0213 0.6175 ±0.0752 0.8202 ±0.0173 0.7983 ±0.0875 0.6367 ±0.1197 0.5481±0.1349

NGC 0.7172 ±0.0076 0.6032 ±0.0056 0.5744 ±0.0096 0.7177 ±0.0069 0.3583 ±0.0495 0.4637±0.0121

NGM 0.6728 ±0.0164 0.4660 ±0.0144 0.5551 ±0.0154 0.4786 ±0.0196 0.2826 ±0.0098 0.4697±0.0166

LCCM 0.8565 ±0.0653 0.5545 ±0.0254 0.8013 ±0.0218 0.9260 ±0.0246 0.5907 ±0.0475 0.7554±0.0235
eSRU 0.8229 ±0.0317 0.5987 ±0.0192 0.7559 ±0.0365 0.7223 ±0.0317 0.4886 ±0.0338 0.7352±0.0600

SCGL 0.4915 ±0.0476 0.5927 ±0.0553 0.5019 ±0.0224 0.3584 ±0.0281 0.4544 ±0.0315 0.4833±0.0185

TCDF 0.4148 ±0.0207 0.5029 ±0.0041 0.6329 ±0.0384 0.6527 ±0.0087 0.3637 ±0.0048 0.5544±0.0313

CALAS 0.8772 ±0.0287 0.6312 ±0.0461 0.8124 ±0.0125 0.6788 ±0.0512 0.6701 ±0.0980 0.7412±0.0518

A ADDITIONAL EXPERIMENTAL RESULTS

To prove that CALAS actually finds the ground truth causality, we conduct experiments with three
real-world datasets in CausalTime benchmark (Cheng et al., 2024) and one well-known Synthetic
dataset for causal discovery (Suiz A. Baccalá, 2001). We quantitatively and qualitatively showcases
CALAS’s superiority on causal discovery with Air-quality (AQI), Traffic, and Medical datasets,
experimentally proving that CALAS can actually model the causal relationship. We compared
CALAS with various baselines including: Granger causality (GC) (Granger, 1969), neural Granger
causality (NGC) (Tank et al., 2022),economy-SRU (eSRU) (Khanna & Tan, 2020), scalable causal
graph learning (SCGL) (Xu et al., 2019), temporal causal discovery framework (TCDF) (Nauta et al.,
2019), CUTS (Cheng et al., 2023b), CUTS+ (Cheng et al., 2023a), PCMCI (Runge et al., 2019),
SVAR, NTS-NOTEARS (shown as N.NTS) (Sun et al., 2023), Rhino (Gong et al., 2023), latent
convergent cross mapping (LCCM) (Brouwer et al., 2021), and neural graphical model (NGM) (Bellot
et al., 2022). For the synthetic dataset, we only provide visual comparison among Granger causality
test, LIFT (i.e., cross-correlation), and CALAS. In the causal discovery experiments, we stick to the
our MTS forecasting setting with input length 336 but with output length 1. As a backbone, we utilize
one layer linear model.

A.1 QUANTITATIVE EVALUATION ON CAUSAL DISCOVERY

Table 1 indicates the experimental results for the time series causal discovery (TSCD) task with three
real-world datasets. Even though CALAS focuses on the dynamic causality discovery, it exhibits
competitive results across all three datasets in traditional TSCD task, achieving the best performance
in AUPRC for the Traffic dataset, and competitive performance to the state-of-the-art models, such
as CUTS+, in AUROC and AUPRC across Medical and AQI datasets. It experimentally proves that
CALAS successfully models the causal relationships during its optimization. Furthermore, CALAS
is the one of two algorithms that simultaneously models the propagation delay and causal strength,
however, the other one (i.e., TCDF) indicates its limitation to properly model both characteristics.
Lastly, despite CALAS has only one the simple hyperparameter, the maximum delay k, for the causal
modeling, it outperforms the algorithms requiring sophisticated, data-specific hyperparameter settings.
It further reduces the difficulty to introduce the algorithm to unseen datasets. However, as we can
depict in Figure 1, CALAS refers to improper cause signals, which could be improved by introducing
contrastive learning methods or regularization term in optimization.
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Figure 1: Causality map estimated via CALAS (left) and ground truth causal graph (right).

Figure 2: Visualization of actual causal graph and those calculated with Granger causality test, cross-
correlation, and CALAS without any hyperparameter tuning or additional techniques like weight
decay or L2 normalization.

A.2 QUALITATIVE EVALUATION ON CAUSAL DISCOVERY

To prove that CALAS actually finds the ground truth causality, we conduct experiments with a
well-known Synthetic dataset for causal discovery (Suiz A. Baccalá, 2001). We have compared
CALAS with Granger Causality test and LIFT (i.e., cross-correlation). We have excluded other
CD modeling methods in MTS forecasting, because 1) they are unable to model propagation delay,
which is unsuitable for causal discovery, as we depicted in main paper. Furthermore, to compare
the performance in nature, that means, end-to-end manner without any hyperparameter tuning, we
have excluded deep learning-based causal discovery methods, such as TCDF (Nauta et al., 2019),
CUTS (Cheng et al., 2023b), cLSTM (Tank et al., 2022), or other methods. Please note that causal
discovery models require sophisticate hyperparameter tuning to obtain a proper causality graph (Nauta
et al., 2019; Li et al., 2023).

Main results Figure 2 indicates the actual causal graph and those calculated with each methods.
It indicates that CALAS can successfully approximate actual causality graph without any hyperpa-
rameter tuning related to optimization or model parameter. It indicates both validity and importance
of learning propagation delay, which has not yet been investigated in both causal discovery and
MTS forecasting. It also provides another lesson-learned to the causal discovery domain that we do
not actually need to data-specifically and manually conduct hyperparameter search and only need
to optimize both propagation delay and causal strength. Please note that this phenomenon is also
reported as one of the challenges in CD modeling for MTS forecasting–model tend to encounter
overfitting issue without delay estimation or dynamic CD modeling (Han et al., 2023).
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Table 2: Performance comparison in terms of forecasting errors. The bold text means the best results
and underlined text means the second best results.

Method TimesNet CALAS +Linear DLinear

MSE MAE MSE MAE MSE MAE

W
ea

th
er 12.5% 0.025 0.045 0.025 0.045 0.039 0.101

25.0% 0.029 0.052 0.030 0.051 0.048 0.111
37.5% 0.031 0.057 0.033 0.065 0.057 0.121
50.0% 0.034 0.062 0.040 0.072 0.066 0.134

E
le

ct
ri

ci
ty 12.5% 0.085 0.202 0.063 0.170 0.092 0.214

25.0% 0.089 0.206 0.077 0.190 0.118 0.247
37.5% 0.094 0.213 0.093 0.206 0.144 0.276
50.0% 0.100 0.221 0.106 0.230 0.175 0.284

A.2.1 DATA GENERATION

For the training, we utilize Synthetic dataset generated with following equations:

x1(n) = 0.95
√
2x1(n− 1)− 0.9025x1(n− 2) + w1(n)

x2(n) = −0.5x1(n− 1) + w2(n)

x3(n) = 0.4x2(n− 2) + w3(n)

x4(n) = −0.5x3(n− 1) + 0.25
√
2x4(n− 1) + 0.25

√
2x5(n− 1) + w4(n)

x5(n) = −0.25
√
2x4(n− 1) + 0.25

√
2x5(n− 1) + w5(n)

, (5)

where n is n-th time steps, xi means i-th variate, and wi(n) means zero-mean uncorrelated white
processes with identical variances.

A.3 EXPERIMENTAL RESULTS FOR IMPUTATION TASK

B DISCUSSION

Discussion on other CNN- or RNN-based methods The emergence of Mamba (Gu & Dao, 2024)
played a significant role in shifting researchers’ focus from Transformer models to State Space Models
(SSMs). One main flow in the SSM research is the extension of 1D Mamba to the multidimensional
state spate models. In the MTS forecasting, there are RNN-based (Tank et al., 2022; Jia et al., 2023;
Behrouz et al., 2024), CNN-based (Wu et al., 2023), and SSM-based approaches (Zeng et al., 2024;
Hu et al., 2024). In the following paragraphs, we will discuss how they can achieve inter-variate
dependency modeling and difference between CALAS and them.

RNN-based approaches, for example, WITRAN (Jia et al., 2023) or cRNN (Tank et al., 2022), need
to propose additional channel dependency module to model the inter-variates relationships. In case of
WITRAN, similar to the TimesNet (Wu et al., 2023), it folds the input 1D time series into 2D time
series, enabling intra- and inter-periodicity modeling. However, it less focuses on the potential causal
effects from the other time series. cRNN (Tank et al., 2022), one of the causal discovery algorithms,
induces the inter-variates relationships via weights of trained RNN (i.e., projection layer of RNNs),
however, it only captures the gradual changes, especially with the one-step time lag.

For the CNN- and SSM-based approaches, such as C-Mamba (Zeng et al., 2024) or TimeSSM (Hu
et al., 2024), the main difference between CALAS and these approaches are how they dealt with
receptive fields and introduces inductive biases into model. C-Mamba and TimeSSM considers the
convolutional- or SSM-based state space as the range of information fusion, not introducing inductive
biases into. For example, in case of 1D RNi×No×k CNN kernel, where Ni, No, k are input and
output channel and kernel size, respectively, aforementioned model optimize both causal strength
and propagation delay into one kernel. In such design, fused with causal strength, propagation delay
will be independent weights to each other. However, for the inter-variate relationship, there are only
one unique propagation delay, which should be modeled with probability function among k possible
delays. CALAS disentangles the propagation delay and approximate them with Gaussian probability
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kernel, it introduces additional inductive bias–given two cause signal X and effect signal Y , there
exists unique discrete delay dX,Y such that the time gap between change of X and its actual influence
to Y .

Transformer-based methods vs. CALAS Transformer-based methods, including iTransformer,
mix the multivariate information regardless of propagation delay. This design may introduce mis-
aligned or outdated information from lagged time series, resulting to degrade of model performance.
To properly align the variates, previous models should borrow the modeling capacity from temporal
dependency modeling components, which lowers the temporal dependency modeling quality. By
facilitating proposed convolution, CALAS simultaneously conduct such alignment and CD modeling.
Though LIFT (Zhao & Shen, 2024) achieves lead-lag relation modeling with cross-correlation, it
requires additional computation and relies on the statistical methods that often be suboptimal.

Layer-agnostic causality modeling is important in MTS forecasting Distribution shifts of the
statistical features are well-studied problem in MTS forecasting (Kim et al., 2022; Zeng et al., 2023;
Liu et al., 2022). However, distribution shifts of channel dependency is not yet investigated deeply.
Here, we derive a discussion for distribution shifts in short period, as we depicted in Figure 1.
By introducing shared CALAS across multiple layers except the input-dependent parts, our model
reduces the misalignment or over-reliance of previously generated causal maps when short term
distribution shifts occur.

Generalization for multi-periodicity modeling Since CALAS stems from convolution mechanism,
we can achieve the multi-periodicity decomposition by adjusting the stride. However, addressing this
question is beyond the scope of this work, so we leave it for future exploration.
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