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1 APPENDIX

A DATASET TEMPLATES

We have included a comprehensive list of the templates used in this work as shown in Figure [I]
Each name was randomly selected from a pool of 100 English first names, while the objects, verbs,
and events were chosen from a curated list of 20 common words. For the datasets used in Section
4.4, we construct the sentences in different contexts with addition and subtraction logic, as shown in
Figure 2] and Figure

The <EVENT> <VERB> {A} years from the year <YYY>{B} to the year <vYY>{C}
The <EVENT> <VERB> {A} years from <YYY>{B} to <yYYy>{C}

The <EVENT> <VERB> {A} days from <MONTH> {B} to <MONTH> {C}

The <EVENT> will <VERB> {A} days from <MONTH> {B} to <MONTH> {C}

The <EVENT> <VERB> {A} hours from {B} pmto {C}

The <EVENT> will <VERB> {A} hours from {B} pm to {C}

The <EVENT> <VERB> {A} hours from {B} am to {C}

The <EVENT> will <VERB> {A} hours from {B} am to {C}

{2} plus {B} equals to {C}

{a} plus {B} is equal to {C}

<Al1>{A} plus <B1>{B} equals to <C1>{C}

<a1>{a} plus <B1>{B} is equal to <C1>{C}

{a} add {B} equals to {C}

{a} add {B} is equal to {C}

<a1>{A} add <B1>{B} equals to <C1>{C}

<A1>{A} add <B1>{B} is equal to <C1>{C}

<NAME> has {A} <OBJECT>, then <NAME> <VERB> {B} <OBJECT>.

What'’s the total number of <OBJECT> that <NAME> has? The answer is {C}
<NAME> <VERB> {A} <OBJECT>, and <NAME2> <VERB> {B} <OBJECT>.
What’s the total number of <OBJECT> that they <VERB>? The answer is {C}
<NAME> has {A} <OBJECT>, and <NAME2> has {B} <OBJECT>.

What’s the total number of <OBJECT> that they have? The answer is {C}
<NAME> <VERB> {A} <OBJECT> yesterday, and <NAME> <VERB> {B} <OBJECT> today.
What’s the total number of <OBJECT> that <NAME> <VERB>? The answer is {C}

Figure 1: Templates used in the addition dataset. All templates in the table involve the addition logic

“{a} + {B} = {C}”, but have different linguistic meanings like “time span”, “number calculation”,
and “object accumulation”.
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B+ B =10
<a1>{a} + <B1>{B} =<c1>{c}

The addition of {A} and {B} is {C}

The addition of <A1>{A} and <B1>{B}is <C1>{C}
The sum of {A} and {B} is {C}

The sum of <A1>{A} and <B1>{B} is <C1>{C}

Figure 2: Templates used in the dataset when transferring to unseen addition task.

{a}-{B}={C}

<a1>{a} - <B1>{B} =<C1>{C}

From the year <YYY>{B} to the year <YYY>{A}, the <EVENT> <VERB> {C}

From <YYY>{B} to <YYY>{A}, the <EVENT> <VERB> {C}

{a} minus {B} equals to {C}

{2} minus {B} is equal to {C}

<NAME> has {A} <OBJECT>, then <NAME> <VERB> {B} <OBJECT>.

What'’s the total number of <OBJECT> that <NAME> has? The answer is {C}

<NAME> had {A} <OBJECT> yesterday, then <NAME> <VERB> {B} <OBJECT> today.
What’s the total number of <OBJECT> that <NAME> has? The answer is {C}

Figure 3: Templates used in the dataset when transferring to subtraction task. All templates in the
table imitate the addition templates but involve the subtraction logic “{a} - {B} = {C}".

B COMPARISON OF KEY HEADS ON FOUR MATHEMATICAL TASKS.

To investigate the distribution of key heads across four mathematical tasks (i.e., addition, subtrac-
tion, multiplication, and division), we conduct the path patching experiments using the templates
in Figure 4] The results shown in Figure 3] reveal that: (i) the sparsity of key heads remains con-
sistent across all four tasks (less than 1.0% of all heads). (i) The key heads mainly distribute in
the middle layers. The phenomena are analogous to the primary findings on the addition task (Sec-
tion 4.1), demonstrating the potential of extending the observed effects of the addition task to other
mathematical tasks.

We compare the location of key heads across four mathematical tasks. An interesting finding is that
the key heads used in “subtraction” and “addition” tasks overlapped significantly, as did the key
heads used in “multiplication” and “division” tasks. Moreover, the four tasks share the heads (e.g.,
13.11 and 12.22) that deliver the most significant effects, while they have task-specific heads that
only emerge in its own task. These findings suggest that LLMs exhibit behavior aligned with hu-
man thinking to some extent, since “subtraction-addition” and “multiplication-division” are opposite
mathematical operations.

| Addition [ Subtraction |
{a}+{B} = {a}-{B}=
The sum of {A} and {B} is The difference between {A} and {B} is
Q: What is {A} plus {B}? A: Q: What is {A} minus {B}? A:
Q: How much is {A} plus {B}? A: | Q: How much is {A} minus {B}? A:

| Multiplication \ Division ]
{a} *{B} = {n}/{B} =
The product of {A} and {B} is The ratio between {A} and {B} is
Q: What is {A} times {B}? A: Q: What is {A} over {B}? A:
Q: How much is {A} times {B}? A: | Q: How much is {A} over {B}? A:

Figure 4: Templates used to investigate the mathematical tasks of addition, subtraction, multiplica-
tion, and division. “Q” and “A” are the abbreviation for “Question” and “Answer”, respectively.
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Figure 5: We conduct path patching experiments on LLaMA?2-7B across four mathematical tasks,
by searching for each head h directly affecting the logit of the right answer.

Interestingly, when examining subtraction and addition tasks, we could summarize two insightful
symmetries between them. (i) The identified key heads of two tasks are almost the same, albeit
with different magnitude of the effect. This phenomenon could reveal the symmetry of key head
“location” in addition and subtraction. (ii) These heads particularly attend to the number tokens
regardless of whether they are given addition or subtraction sentences (shown in Section 4.4). This
phenomenon could reveal the symmetry of key head “behavior” in addition and subtraction.

C ATTENTION PATTERNS IN ANOTHER TWO LANGUAGE MODELS.

In Figure [6] and Figure [7] we list the attention patterns of the identified key heads (e.g., 19.15 in
chatGLM2-6B, 18.4 in Qwen-7B) on different samples. Whether the sentences containing the ad-
dition logic (samples 1-3), the subtraction logic (samples 4-6), or even sentences without linguistic
meanings (samples 7-9), the key heads have particularly higher attention scores on number tokens
in the sentences. These results further validate the claimed functionality of these key heads.

D KNOCKOUT RESULTS OF ANOTHER TWO LANGUAGE MODELS.

In Figure 8] we measure the prediction accuracy after knocking out the identified key heads in dif-
ferent language models. As we increase the number of knocked key heads, the model’s performance
experiences a significant decline followed by a gradual stabilization. This pattern is consistent across
three different models, providing further evidence that the identified key heads play a crucial role in
completing the addition task.

E COMPARISON OF KEY HEADS IN DIFFERENT LLMS.

In Figure 3, we present the identified key heads in different LLMs of LLaMA2-7B, Qwen-7B and
chatGLM2-6B. Despite the sparsity of key heads compared to the total number of heads (e.g., 1024
in LLaMA2-7B and Qwen-7B, 896 in chatGLM2-6B), LLaMA?2 exhibits a relatively denser distri-
bution of results compared to the other two models. Apart from the key heads 13.11 and 12.22,
other heads such as 16.0, 14.19, and 15.15 also make a difference on the output logits. It indi-
cates that LLaMA2-7B involves more components in completing the addition task. We hypothesize
that this is because LLaMA2-7B demonstrates superior comprehension abilities for mathematical
tasks, resulting in more obvious response patterns. To assess the model’s proficiency in understand-
ing mathematical tasks, we conducted experiments to evaluate whether the model comprehends the
aims of the mathematical task by generating higher logits for numerical tokens. Based on the ref-
erence data X;, we compute the average prediction probability F,,, of numerical tokens 1-9 for
different models (LLaMA2-7B: 99.26% vs. Qwen-7B: 97.55% vs. chatGLM2-6B: 94.68%). The
higher F,,, of LLaMA2-7B shows that it generates number tokens with a greater confidence level,
thus demonstrating a better understanding of the mathematical task. This finding provides an expla-
nation of why LLaMA2-7B involves more key heads. Further investigation is required for a more
comprehensive analysis.
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Figure 6: The attention patterns of head 18.4 in Qwen-7B on different samples. The samples (1-3)
are sentences with the addition logic. The samples (4-6) are sentences with the subtraction logic.
The samples (7-9) are randomly constructed sentences with no linguistic meaning.
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Figure 7: The attention patterns of head 19.15 in chatGLM2-6B on different samples. The samples
(1-3) are sentences with the addition logic. The samples (4-6) are sentences with the subtraction
logic. The samples (7-9) are randomly constructed sentences with no linguistic meaning.
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Figure 8: The influence on prediction accuracy after knocking out top-k attention heads in the lan-
guage model of Qwen-7B and chatGLM2-6B. The heads are sorted by the effect of each head on
logits (“effect-rank™), or randomly sorted (“random-rank’).
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Figure 9: When testing on the reference data of seen addition tasks, unseen addition tasks and
subtraction tasks, Qwen-7B provides incorrect predictions after knocking out key heads.
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Figure 10: When testing on the reference data of seen addition tasks, unseen addition tasks, and
subtraction tasks, chatGLM2-6B provides incorrect predictions after knocking out key heads.
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