
A Broader impacts & limitations

Broader Impacts

NaViT enables training of vision transformers on variable size inputs, which has a profound impact
on advancing adaptive computation research. By training models to handle various input size, we can
explore adaptive computation techniques that dynamically adjust the computational resources based
on the specific requirements of a given input. This flexibility opens up new avenues for implementing
ideas that aim at adjusting allocation of compute and improving efficiency in vision tasks per input.
Furthermore, NaViT computational efficiency unlocks the potential for scaling up pre-training of vision
models. With the ability to handle different resolutions, models can effectively tackle more complex
and diverse visual data, allowing for the development of larger and more powerful vision models.

Limitations

There is a wide range of applications that could benefit from a model capable of processing inputs
of different resolutions, including OCR or document understanding with the use of vision models.
Although we highlight the considerable advantages of employing NaViT and provide a comprehensive
analysis of common computer vision tasks, we did not specifically investigate the benefits of NaViT
in these particular applications. We consider this area as a priority for future research and follow-up
work.

B Training details

B.1 Classification pretraining

The experiments and ablations in the paper are with ViT-B/32, ViT-B/16, and ViT-L/16. We use a
reciprocal square-root learning rate schedule, with linear warmup and cooldown, with a maximum value
of 8e�4, and phases. We follow [18, 51] and use a higher weight decay of 3.0 on the head compared
to the body’s weight decay of 0.03 during upstream training to improve transfer to downstream tasks.
For our experiments, we evaluated both NaViT and ViT models using configurations B/32, B/16, and
L/16. Each ViT model was trained with varying compute budgets, with cooling down at different stages
of training. We trained a corresponding NaViT model for each ViT size and computational budget,
allowing us to perform “compute-matched” comparisons [25].

Table 2 presents the pretraining specifications for both ViT and NaViT models. During the pretraining
phase, ViT models were trained using images of size 224⇥224. In contrast, NaViT models uniformly
sampled a value, denoted as r, between 64 and 256 and resized the image to have a total of r2 pixels
while preserving the aspect ratio. Although training NaViT models on native resolutions is possible, we
empirically discovered that sampling a resolution provides greater control over maximizing the number
of examples observed during pretaining within a fixed computational budget while maintaining perfor-
mance across different resolutions in downstream tasks. Additionally, by controlling the resolution, we
can ensure efficient packing by tuning the sequence length and limit padding to less than 2%.

B.2 Contrastive pretraining

We use the 32000 token T5 [52] sentencepiece [53] tokenizer. By default, text sequences are truncated
to a maximum length of 24. No token dropping is used for text. Models are trained under the same
optimization regime as the classification models, but with a learning rate of 3⇥10�3. Weight decay of
1⇥10�6 is applied consistently to all kernels in the model (no change for projection heads). By default,
image side-lengths are sampled ⇠U(64,Rmax), and no other image augmentations are applied.

B.3 Packing algorithm

Packing of examples into sequences is done alongside batching. A simple greedy approach is used
which adds examples to the first sequence with enough remaining space. Once no more examples
can fit, sequences are filled with padding tokens, yielding the fixed sequence lengths needed for
batched operations. Such simple packing algorithm can lead to a significant padding, depending on
the distribution of length of inputs. There are several methods to address such limitations, like bin

14



Table 2: Pre-training details of ViT and NaViT with supervised classification.
Name TPU

Hours
Train
Steps

Cooldown
Steps

Sequence
Length

Images
Per Seq.

Batch
Size

Training
Images

ViT-B/32

1.4⇥1011 1.0⇥105 1.0⇥104 49 1.0 ⇡4.0⇥103 4.0⇥108

3.5⇥1011 2.5⇥105 5.0⇥104 49 1.0 ⇡4.0⇥103 1.0⇥109

7.1⇥1011 5.0⇥105 1.0⇥105 49 1.0 ⇡4.0⇥103 2.0⇥109

1.4⇥1012 1.0⇥106 1.0⇥105 49 1.0 ⇡4.0⇥103 4.0⇥109

ViT-B/16

4.7⇥1011 1.0⇥105 1.0⇥104 196 1.0 ⇡4.0⇥103 4.0⇥108

1.1⇥1012 2.5⇥105 5.0⇥104 196 1.0 ⇡4.0⇥103 1.0⇥109

2.3⇥1012 5.0⇥105 1.0⇥105 196 1.0 ⇡4.0⇥103 2.0⇥109

4.7⇥1012 1.0⇥106 1.0⇥105 196 1.0 ⇡4.0⇥103 4.0⇥109

ViT-L/16

9.8⇥1011 1.0⇥105 1.0⇥104 196 1.0 ⇡4.0⇥103 4.0⇥108

2.4⇥1012 2.5⇥105 5.0⇥104 196 1.0 ⇡4.0⇥103 1.0⇥109

4.9⇥1012 5.0⇥105 1.0⇥105 196 1.0 ⇡4.0⇥103 2.0⇥109

9.8⇥1012 1.0⇥106 1.0⇥105 196 1.0 ⇡4.0⇥103 4.0⇥109

NaViT-B/32

1.4⇥1011 9.8⇥104 1.0⇥104 64 5.41 ⇡2.2⇥104 2.1⇥109

3.5⇥1011 2.4⇥105 5.0⇥104 64 5.41 ⇡2.2⇥104 5.3⇥109

7.1⇥1011 4.8⇥105 1.0⇥105 64 5.41 ⇡2.2⇥104 1.0⇥1010

1.4⇥1012 9.7⇥105 1.0⇥105 64 5.41 ⇡2.2⇥104 2.1⇥1010

NaViT-B/16

4.7⇥1011 9.3⇥104 1.0⇥104 256 4.87 ⇡1.9⇥104 1.8⇥109

1.1⇥1012 2.3⇥105 5.0⇥104 256 4.88 ⇡1.9⇥104 4.6⇥109

2.3⇥1012 4.6⇥105 1.0⇥105 256 4.88 ⇡1.9⇥104 9.2⇥109

4.7⇥1012 9.2⇥105 1.0⇥105 256 4.88 ⇡1.9⇥104 1.8⇥1010

NaViT-L/16

9.8⇥1011 9.7⇥104 1.0⇥104 256 4.88 ⇡1.9⇥104 1.9⇥109

2.4⇥1012 2.4⇥105 5.0⇥104 256 4.87 ⇡1.9⇥104 4.8⇥109

4.9⇥1012 4.8⇥105 1.0⇥105 256 4.87 ⇡1.9⇥104 9.6⇥109

9.8⇥1012 9.6⇥105 1.0⇥105 256 4.88 ⇡1.9⇥104 1.9⇥1010

packing [7], which allows minimizing the padding. Here, in NaViT, since controlling the resolutions
we sample, we can ensure efficient packing by tuning the sequence length and limit padding to less
than 2%.

B.4 Sampling token dropping rates

Sampling with a beta distribution We use a parameterisation based on the mean dµ and standard
deviation �. We aim to sample dropout rate d2 [0.0,dmax], with some mean dµ.

Accordingly, we sample u2 [0,1]⇠B(↵,�) and set drop rate d=u⇥dmax. ↵ and � are set such that
the mean of u is uµ = dµ

dmax . The maximum supported variance for a beta distribution of mean uµ

is uµ(1�uµ); we pick by default a variance �2 = 0.3uµ(1�uµ), which we found to work well in
practice. The resultant distributions of token dropouts for different settings of dµ and dmax are shown
in Figure 13a.
Sampling resolution-dependent dropping rates Given input data with sequence lengths rang-
ing from smin to smax, we sample dropout rate d from a truncated normal distribution d ⇠

Ntrunc(µ,0.02), where samples more than two standard deviations away from µ are rejected.

The mean of this distribution µ is set according to the minimum and maximum token dropping rates
dmin and dmax, and simply scales linearly with the sequence length s (such that s=smin hasµ=dmin
and s=smax has µ=dmax.

Figure 13b shows example distributions of sampled drop rates given inputs with resolution R ⇠

U(64,384), and different values of dmin and dmax.

15



(a) Beta-sampled token drop rates parameterised by the mean µ and the max
drop rate dmax

(b) Sampled resolution-dependent
token drop rates

Figure 14: Decreasing the token dropping rate along training improves the ImageNet 10shot accuracy using the
same pre-training resources. N is the total number of training examples seen with a fixed token dropping rate of
⇢= 1

2 .

B.5 Scheduling token dropping rates

We experiment with a token dropping schedule which varies with total number of images seen. In
particular, the rate applied for the n-th processed image during training is given by:

⇢(n;⇢min,⇢max,µ,⌧)=⇢min+(⇢max�⇢min)·�

✓
n�µ

⌧

◆
, (1)

where � represents the sigmoid function; ⇢min, ⇢max control the minimum and maximum dropping
rate applied; and µ and ⌧ control the shape of the schedule. We experimented with both increasing
(⌧ > 0) and decreasing (⌧ < 0) schedules. In all cases we set ⇢min =0.2 and ⇢max =0.8. Figure 14
shows that, by decreasing the dropping rate throughout training, one can improve the final accuracy, at
fixed training cost. Conversely, increasing the token dropping rate harms performance.

C Model information

C.1 Positional embeddings

Extending ViTs to variable input sizes necessitates rethinking positional embeddings added to every
token after embedding. We considered several variants of positional embeddings, and evaluated them
based on (1) the best performance model using them achieve within training distribution of input sizes;
and based on (2) how well these models perform when evaluated on image sizes outside of the training
distribution. Results and discussion of these experiments can be found in Section 3.4.

Broadly, we considered positional embeddings that varied along three axes: (1) whether they were
learned, parametric or fixed; (2) whether they were absolute or fractional; and (3) whether they are
factorized.
Absolute and fractional coordinates A natural way of indexing token within an image is to select a
priori a maximum possible image side length (shared for width and height) maxLen, and to assign
to token integer coordinates (x,y) based on their original location within the image. Embedding
coordinates defined in this way allow models to consume images with resolutions up toR=P ·maxLen.
However, when learned absolute coordinate embeddings are considered, extreme values of x and y
must also be observed during training, which necessitates training on images with varied aspect ratios
and limits models generalisation.

16



To alleviate the necessity of observing extreme aspect ratios and image size during learning of positional
embeddings, we also consider fractional coordinates, which are normalized to the actual size of the
input image and are obtained by dividing the absolute coordinates x and y above by the number number
of columns and rows respectively, i.e. the corresponding side length. Doing this allows the model to
observe extreme token coordinates during training, which intuitively should help with generalization to
higher resolutions. However, this is accomplished at the cost of obfuscating the input images aspect
ratio.
Factorized embeddings We further consider whether coordinates x and y should be embedded
independently or jointly. In case of independent embedding, the two coordinates x and y are embedded
independently, and their embeddings are combined via addition or by stacking. For joint embeddings
and embedding for each position (x,y) is obtained directly.
Learned, parametric and fixed positional embeddings Finally, we also explored the relative benefits
of fixed, learned and parametric embeddings. For fixed embeddings we followed [54] and used
sinusoidal positional embeddings, and learned embeddings were implemented as in [1].

For parametric positional embeddings we followed [8] and used Fourier embeddings. Specifically,
coordinates (x,y) were mapped using a single linear layer before applying sin and cos activations to
them, and stacking the results to obtained the positional embeddings.
Experiments Because not all combinations of the above embedding choices are equally promising or
natural, we experimented only with subset of them shown in Table 3 and Figure 10a.

Table 3: Classification of positional embedding experiments from Figure 10a.

Name Coordinates Type Factorized

Learned 1D (ViT) Absolute Learned No, position in flatted token sequence
Learned 2D (Pix2struct) Absolute Learned No
Factorized abs. (+) Absolute Learned Yes, sum
Factorized abs. (stack) Absolute Learned Yes, stack
Factorized abs. (⇥) Absolute Learned Yes, product
NeRF abs. Absolute Parametric No
Sinusoidal abs. Absolute Fixed Yes, stack
Factorized frac. (+) Fractional Learned Yes, sum
NeRF frac. Fractional Parametric No
Sinusoidal frac. Fractional Fixed Yes, stack

In sinusoidal and factorised embeddings experiments with fractional coordinates fractional coordinate
embeddings were obtained from absolute coordinate embeddings via bilinear interpolation.

D Inference strategies

We performed various experiments to measure model quality for given runtime cost. The runtime can
be tuned by changing the number of processed patches, or by using choosing different size of the model.

We firstly looked at how model quality changes in respect to decreasing area of the image compared to
native resolution, presented in Figure 15a. We observed that on ImageNet [4] model retains most of the
quality down to 40% of the image size. After that, the quality drastically decreases. On the other hand,
increasing the size of the image have a diminishing return in quality. This can be directly compared
with random token dropping as an alternative to resizing, which showed to be very ineffective way to
decrease number of patches during inference - Figure 15b.

Please note that this highly depends on the native resolution of the images in the dataset - e.g. dataset
with twice as big images than ImageNet can probably be safely resized to 20% of area.

A better way to quantify the performance is by giving a constant compute budget corresponding to
number of patches. Figure 16a shows that resizing the image (while preserving aspect ratio) to 256
tokens retains most of the quality (within 0.3%). This corresponds to 256x256 area (given patch size of
16). At 128 tokens (181x181 area) the quality difference reaches 1% and drops significantly after that.

17



(a) (b) (c)

Figure 15: (a) The effect of resizing the image. (b) Dropping random tokens is ineffective way to decrease number
of patches compared to resizing the image. Data from NaViT-L/16. (c) Given number of patches as compute
budget, it is beneficial to upscale the image.

(a) (b)

Figure 16: (a) Quality on ImageNet in respect to number of patches (sequence length). (b) Runtime of models
compared to the accuracy on ImageNet.

Here we also resized the image past its native resolution in case it already fit the given sequence length
budget. We observed that it is beneficial to resize the image to the given sequence length past the native
resolution to keep monotonic increase in quality, which is showed on Figure 15c.

Figure 16b presents the runtime of NaViT-L/16 and NaViT-B/16 for different sequence lengths. We
can see that NaViT-L/16 at sequence length 128 is as fast as NaViT-B/16 with sequence length 512,
while having almost 1% difference in quality.

E Cascades

Another strategy to be more compute efficient would be to assign more tokens (and thus FLOPs) to the
examples deemed hard by the model. This is in particular interesting for bulk inference workloads,
where one can amortize over large datasets and where only the total inference time matters.

Figure 17: Performance of a model cascade versus the average inference time. The labels at the select points
denote the number of tokens at that scale.

18



To evaluate the feasibility of this approach, we consider two sequence lengthsn1 andn2 with respective
inference times t1 and t2. Then, we (i) send all examples though the model with n1 tokens, and send
only the↵2(0,1)-fraction deemed hardest (those with the smallest maximum probability) to the model
with n2 tokens. To have an input almost exactly fit into n1 or n2 tokens we perform and aspect ratio
preserving resize. Hence, the total amortized inference time per-example is ti+↵t2, while the accuracy
obtained by combining the accuracy of the first model on the 1�↵ most-confident fraction of the data,
and the performance of the more expensive model on the remaining data. By considering several pairs
of models and varying ↵ we obtain the plot in Figure 17. As we can see this strategy is indeed useful
and provides not only the best performing models at given compute budgets, but because ↵ is a real
parameter one can obtain very fine-grained trade-offs.

F Calibration

To evaluate behaviour of the predicted uncertainties with scale, we compute the calibration error of a
-B sized ImageNet-finetuned model (the -L model performs similarly). Note that these models were
trained with sigmoid loss, i.e., the 1000 labels were predicted independently without enforcing that the
probabilities should sum up to 1. As we varied the sequence of tokens per example between 128 and
1024, we obtained very stable calibration errors (top-1, using `1 and 30 buckets, i.e., the settings from
[29]), which we present in Table 4.

Table 4: Expected calibration error on ImageNet-1K with varying sequence lengths.

Sequence Length 128 256 384 512 640 768 1024

Calibration Error 0.047 0.046 0.048 0.047 0.047 0.046 0.045

G Out of distribution evaluation

For ViT, we apply the “Crop” strategy from [17], namely an aspect-preserving crop of the central 75%
of the image for ObjectNet and ImageNet-A, and square resize followed by a 87.5% central crop for
the other datasets. We also apply a simple “Resize” strategy that does not crop the images. For NaViT,
both the “Crop” and the “Resize” strategy do an aspect preserving resize of the target images.

Figure 18: Same evaluation as in Figure 11, but without any special preprocessing of the images before the
evaluation. Employing a simple resize (square for ViT, aspect preserving for NaViT) results in much better
performance on datasets that have images with an extreme aspect ratio. Same data as in table Table 5.

H Fairness Signal Annotation

In Figure 19, we demonstrate that using native image resolution improves the performance of fairness
signal annotation. Prior research has shown that metrics, such as group calibration, are vulnerable to
labeling errors, particularly for underrepresented groups. Moreover, this problem persists even when
accounting for label noise during training [30]. Thus, reducing the labeling error of fairness signals has

19



Table 5: Detailed results of out evaluation of pretrained models with a label-map (see Section 3.5). Same data as
in Figure 11 and Figure 18.

ImageNet ImageNet-A ObjectNet

ViT NaViT ViT NaViT ViT NaViT
Compute

custom B/32 1.4⇥1011 54.4 63.5 14.7 32.7 32.9 41.2
1.4⇥1012 65.5 68.2 30.7 42.5 44.2 45.7
3.6⇥1011 60.2 65.6 22.0 37.0 38.0 43.5
7.2⇥1011 63.7 67.2 26.6 40.1 41.7 45.1

B/16 1.2⇥1012 66.4 68.5 37.3 52.3 47.2 48.4
2.4⇥1012 68.7 70.1 43.5 55.1 50.5 49.8
4.8⇥1011 61.7 66.0 27.0 44.2 41.3 45.9
4.8⇥1012 70.3 71.2 48.8 57.0 52.8 50.7

L/16 2.5⇥1012 70.7 73.6 51.5 65.5 53.3 55.0
4.9⇥1012 73.0 74.6 57.6 67.9 56.2 57.1
9.9⇥1011 66.4 71.1 39.2 58.6 47.6 52.1
9.9⇥1012 73.9 75.1 60.4 68.9 57.7 57.9

resize B/32 1.4⇥1011 51.7 64.0 12.6 26.7 15.9 31.6
1.4⇥1012 63.6 68.6 22.8 35.0 25.3 36.1
3.6⇥1011 57.9 66.2 17.2 30.1 20.0 33.8
7.2⇥1011 61.6 67.4 20.7 32.6 23.5 34.6

B/16 1.2⇥1012 65.4 69.2 27.4 43.9 28.7 38.7
2.4⇥1012 67.7 71.0 32.5 48.6 32.0 40.5
4.8⇥1011 60.4 66.5 20.4 36.8 23.6 35.3
4.8⇥1012 69.5 72.5 36.2 51.5 34.2 42.1

L/16 2.5⇥1012 70.0 73.9 38.5 59.9 35.3 45.6
4.9⇥1012 72.3 75.3 44.3 64.1 38.8 48.2
9.9⇥1011 65.1 71.5 28.2 51.6 29.3 41.5
9.9⇥1012 73.2 76.0 47.3 65.5 39.8 48.8

Figure 19: Summary of results of evaluating the accuracy of annotators trained on fairness-related signals using
either NaViT-L/16 or ViT-L/16. TOP: NaViT offers better representations that improve the accuracy of annotators.
BOTTOM: Using native aspect ratios in NaViT results in a higher performance when compared to resizing images
to squares.

the potential of improving the reliability of bias mitigation and post-hoc auditing [31]. Nevertheless,
we emphasize that while NaViT improves the annotation accuracy in these tasks, care must be taken
in such situations since classifiers can be inaccurate and lead to a broad categorization of people that
misidentifies real identities. We encourage readers to delve into the comprehensive work outlining such
potential risks, e.g. [55, 56], for further insight. In assessing the technical capabilities of NaViT, our
intent is not to promote or encourage their application in inappropriate contexts. Rather, our objective
is only to illuminate these technical findings for scenarios where they may be considered beneficial,
such as when measuring the level of diversity in a dataset or auditing/mitigating biases in predictive
models. We strongly advocate for responsible AI use, maintaining that the benefits of technological
advancements should not overshadow the importance of user safety and privacy. AI tools, including

20



ours, should always be deployed judiciously, with a keen awareness of potential risks and a commitment
to avoiding harm.

I Evaluation on model-vs-human OOD datasets on different resolutions

Just like NaViT, human visual perception works across flexible aspect ratios and resolutions (just
imagine how strange the world would look like if we could only see it through a 224⇥ 224 pixel
window!). We investigate how the ability to cope with variable resolutions affects performance on
“model-vs-human”, a benchmark of 17 challenging datasets [57].1 For this purpose, we replicate the
setup from Figure 6, but instead of evaluating ImageNet accuracy, we evaluate OOD accuracy on the
model-vs-human benchmark.

Figure 20: OOD accuracy on “model-vs-human” datasets across different fine-tuning resolutions. A single NaViT
model trained on varying resolutions (red) performs roughly on par as fine-tuning one NaViT model per test
resolution (blue). The ViT baseline (orange) is mostly worse than NaViT models for lower resolutions and mostly
better for higher resolutions.

This corresponds to testing JFT B/16 models finetuned on ImageNet at various resolutions. The test
dataset has a fixed 224⇥224 square resolution; thus we resize the test images to fit each model’s fine-
tuning resolution. Note that using square images has been standard practice designed for convolutional
networks, but NaViT models no longer require square input, thus existing benchmarks are not tailored
to those new possibilities. For datasets with multiple difficulty levels (such as different levels of blur),
we average performance across levels while excluding levels that are too easy (not OOD) or too hard
(human performance is close to chance), which follows the approach of [57] as explained in their
“Appendix G Benchmark scores”.

To ensure a fair comparison, we use models that are compute-matched for pretraining, and during
fine-tuning, compute and data are identical for all models. The results of our comparison are shown in
Figure 20. Overall, a single NaViT model trained on varying resolutions (red) performs roughly on par
as fine-tuning one NaViT model per test resolution (blue).

The ViT baseline (orange) is mostly worse than NaViT models for lower resolutions and mostly better
for higher resolutions. It may be worth noting that ViT models have a bit of an advantage in this
comparison since they are fine-tuned on square images, whereas NaViT models are fine-tuned on
flexible resolution images (preserving the image’s aspect ratio) that have the same number of pixels,
while not necessarily being square.

1For the purpose of our comparison, we exclude the “cue-conflict” dataset from the OOD evaluation, since
there is no objective ground truth class in the case of images with a texture-shape cue conflict.

21


	Introduction
	Method
	Architectural changes
	Training changes
	Efficiency of NaViT

	Experiments
	Improved training efficiency and performance
	Benefits of variable resolution
	Benefits of variable token dropping
	Positional embeddings
	Other aspects of NaViT's performance
	Other downstream tasks

	Related work
	Conclusions and future work
	Broader impacts & limitations
	Training details
	Classification pretraining
	Contrastive pretraining
	Packing algorithm
	Sampling token dropping rates
	Scheduling token dropping rates

	Model information
	Positional embeddings

	Inference strategies
	Cascades
	Calibration
	Out of distribution evaluation
	Fairness Signal Annotation
	Evaluation on model-vs-human OOD datasets on different resolutions

