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ABSTRACT

Low-rank adaption (LoRA) is a widely used parameter-efficient finetuning method
for LLMs that reduces memory requirements. However, current LoRA optimiz-
ers lack transformation invariance, which leads to weight updates that depend on
how the two LoRA factors are scaled or rotated. This deficiency leads to ineffi-
cient learning and sub-optimal solutions in practice. This paper introduces LoRA-
RITE, a novel adaptive matrix preconditioning method for LoRA optimization,
which achieves transformation invariance while being computationally efficient.
We provide theoretical analysis to demonstrate the benefit of our method and con-
duct experiments on various LLM tasks with different models including Gemma
2B, 7B, and mT5-XXL. The results demonstrate consistent improvements over ex-
isting optimizers. For example, replacing Adam with LoRA-RITE during LoRA
fine-tuning of Gemma-2B yields 4.6% accuracy gain on Super-Natural Instruc-
tions and 3.5% accuracy gain across four other LLM benchmarks (HellaSwag,
ArcChallenge, GSM8K, OpenBookQA).

1 INTRODUCTION

Low-Rank Adaptation (LoRA) (Hu et al., 2022) is a popular parameter-efficient method for fine-
tuning Large Language Models (LLMs). By freezing the pretrained weights and injecting trainable
low-rank matrices into each layer, LoRA significantly reduces memory requirements and mitigates
overfitting in limited data settings. More formally, letting W ∈ Rm×n be a weight matrix in an
LLM, LoRA freezes W and introduces a low-rank matrix Z added to W , where Z is represented
by the multiplication of two rank-r matricesA andB, i.e.,

Z = AB> ∈ Rm×n,A ∈ Rm×r,B ∈ Rn×r, r � min(m,n). (1)

The matrices A and B will be referred to as LoRA factors in this paper. Recent research has
explored numerous variations and improvements over the classic LoRA algorithm (Valipour et al.,
2023; Zhang et al., 2023b; Liu et al., 2024; Yaras et al., 2024).

Despite being widely used in practice, we find that applying standard optimizers to LoRA leads to
updates that are not “transformation invariant”. By definition of LoRA in (1), the same updateZ can
be decomposed in multiple ways, i.e.,Z = A1B

>
1 = A2B

>
2 . Ideally, an optimizer should yield the

same update toZ regardless of the specific factorization. However, commonly used optimizers with
diagonal preconditioners like Adam (Kingma & Ba, 2014), Adagrad (Duchi et al., 2011), RMSProp
(Tieleman & Hinton, 2012), and even second-order methods like Shampoo (Gupta et al., 2018)
and CASPR (Duvvuri et al., 2024), violate this principle when applied to LoRA. This violation
not only presents a mathematical inconsistency but also leads to significant inefficiencies during
training. In practice, we observe that one LoRA factor often dominates the optimization process,
receiving substantial updates while the other remains nearly fixed. Although this can be partially
mitigated by some recently proposed approaches such as employing different learning rates for the
two factors (Hayou et al., 2024), we ask the question: is there a more principled way to design an
optimizer that inherently enforces transformation invariance for LoRA?

To address this challenge, we first prove that any form of diagonal preconditioner cannot achieve
transformation invariance, which motivates the use of matrix preconditioners. However, existing
∗Work done while at Google. 1UCLA 2Google 3UT Austin

1



Published as a conference paper at ICLR 2025

matrix preconditioners like Shampoo and CASPR lack transformation invariance and introduce sig-
nificant computational and memory overhead. To overcome these limitations, we propose LoRA-
RITE (Robust Invariant Transformation Equilibration), a novel optimizer designed specifically for
LoRA optimization. LoRA-RITE employs a transformation-invariant preconditioner on the low-
rank side, achieving transformation invariance without incurring substantial overhead. Furthermore,
we demonstrate how to maintain this property when incorporating first and second moments, cru-
cial for the practical effectiveness of adaptive optimization methods. Empirical evaluations across
various datasets and models confirm the effectiveness of the proposed algorithm.

The contribution of this paper can be summarized below:

• We propose LoRA-RITE, the first adaptive matrix preconditioning optimizer for LoRA that
is transformation-invariant, the property that is lacking in most existing optimizers when
applied to LoRA. Theoretically, we provide a convergence analysis for our method.

• Despite utilizing matrix preconditioners, LoRA-RITE achieves little overhead in both
memory and time compared to first-order optimizers, especially when the LoRA rank (r)
is significantly smaller than the original matrix dimensions m and n.

• The proposed optimizer leads to significantly improved performance across multiple
datasets and architectures. For instance, when applied to the GSM8K (Cobbe et al., 2021)
dataset with a Gemma 7B IT model (Gemma Team et al., 2024), LoRA-RITE achieves a
55.50% accuracy rate. This surpasses the widely-used Adam optimizer (Kingma & Ba,
2014) by a substantial margin (48.37%) and even outperforms the second-best optimizer
on this dataset, Lamb (You et al., 2020) (50.64%), by approximately 5%.

2 TRANSFORMATION INVARIANCE FOR LORA OPTIMIZATION

We now introduce the concept of transformation invariance in LoRA training and demonstrate that
most existing optimizers, when applied to LoRA, do not satisfy this property. This deficiency leads
to inefficient learning in practice.

2.1 DEFINITION OF TRANSFORMATION INVARIANCE

As introduced in (1), LoRA adds a low-rank matrix Z = AB> to the original weight matrix W
and learns the LoRA factors A ∈ Rm×r,B ∈ Rn×r to minimize the fine-tuning loss. Observe that
many different LoRA factors (A1,B1), (A2,B2) can represent the same finetuned weight,

Z = A1B
>
1 = A2B

>
2 . (2)

When an optimizer is applied to train LoRA, it will produce different updates, δA1, δB1 or
δA2, δB2, based on the specific parameterization used. Even though (A1,B1) and (A2,B2) rep-
resent the same finetuned weight Z, the updates using different parameterizations can produce dif-
ferent updates to Z. This suggests a serious inconsistency and implies that the update could be
suboptimal under some parameterizations. Based on this observation, we propose that LoRA opti-
mization should ensure transformation invariance, defined as follows:
Definition 1 (Transformation Invariance). Let (A1,B1) be a pair of LoRA factors and let A2 =
A1R,B2 = B1R

−> for some invertible matrixR. An optimizer exhibits transformation invariance
if its updates, (δA1, δB1) and (δA2, δB2), satisfy

(A1 + δA1)(B1 + δB1)> = (A2 + δA2)(B2 + δB2)> := Z + δZ. (3)
This means the optimizer should produce the same update, δZ, to the fine-tuned weights for any
equivalent LoRA factorizations. As a special case, we introduce scalar scale invariance below in
Definition 2 as a weaker version of transformation invariance, which only requires that updates
remain equivalent when the LoRA factors are scaled up or down by a scalar factor. Formally, we
define it as:

Definition 2 (Scalar Scale Invariance). Let (A1,B1) be a pair of LoRA factors and let A2 =
sA1,B2 = (1/s)B1 for some nonzero scalar constant s. An optimizer exhibits scalar scale invari-
ance if its updates, (δA1, δB1) and (δA2, δB2), satisfy

(A1 + δA1)(B1 + δB1)> = (A2 + δA2)(B2 + δB2)>.

Surprisingly, we will show that most commonly used LoRA optimizers do not even satisfy this
weaker form of transformation invariance.
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2.2 EXISTING OPTIMIZERS ARE NOT SCALAR SCALE INVARIANT

We now show that neither gradient descent nor Adam are scalar scale invariant, and in fact, almost
all the existing optimizers are not scalar scale invariant when applied to LoRA optimization.

Assume loss is f(Z), and the gradient of the loss function f with respect toZ,A1,B1,A2,B2 to be
∇Z := ∂f/∂Z, ∇A1 := ∂f/∂A1, ∇B1 := ∂f/∂B1, ∇A2 := ∂f/∂A2, and ∇B2 := ∂f/∂B2

respectively. Recall Z = A1B
>
1 = A2B

>
2 and by chain rule, we have

∇A1 := ∂f/∂A1 = ∂f/∂Z ∗ ∂Z/∂A1 = ∂f/∂Z ∗B1 = ∇ZB1, (4)

Similarly, we have∇B1 = ∇Z>A1,∇A2 = ∇ZB2, and∇B2 = ∇Z>A2. For gradient descent,
δA1 := −η∇A1, δB1 := −η∇B1, δA2 := −η∇A2, δB2 := −η∇B2,

where η is the learning rate. To test scalar scale invariant, letA2 = sA1,B2 = (1/s)B1, we have
δA2 = −η∇ZB2 = −(1/s)η∇ZB1 = (1/s)δA1 (sinceB2 = (1/s)B1) (5)

δB2 = −η∇Z>A2 = −sη∇Z>A1 = sδB1 (sinceA2 = sA1). (6)
Consequently, from (5) and (6):

A2B
>
2 + δA2B

>
2 + A2δB

>
2 + δA2δB

>
2 = A1B

>
1 + (1/s2)δA1B

>
1 + s2A1δB

>
1 + δA1δB

>
1

6= A1B
>
1 + δA1B

>
1 + A1δB

>
1 + δA1δB

>
1 ,

and so (3) does not hold for arbitrary s. Therefore, gradient descent is not scalar scale invariant, and
the gradient can be arbitrary large for the LoRA factors when s goes to 0 or infinity.

Can this issue be mitigated by adaptive updates such as Adam? The answer is no. To see this, let

δA1 := −η∇A1/(∇A1 �∇A1)1/2

be the Adam update for A1, where � denotes elementwise multiplication. Note that we omit the
momentum term for brevity. Defining updates ofA2, B1 andB2 similarly, we have

δA2 = − η∇A2

(∇A2 �∇A2)1/2
= − (1/s)η∇A1

(1/s)(∇A1 �∇A1)1/2
= δA1

and similarly δB2 = δB1. As a result,
A2B

>
2 + δA2B

>
2 + A2δB

>
2 + δA2δB

>
2 = A1B

>
1 + (1/s)δA1B

>
1 + sA1δB

>
1 + δA1δB

>
1

6= A1B
>
1 + δA1B

>
1 + A1δB

>
1 + δA1δB

>
1 ,

thus failing to satisfy scalar scale invariance. Actually, one can see that most of the existing opti-
mizers, such as Adagrad (Duchi et al., 2011), RMSProp (Tieleman & Hinton, 2012), and Shampoo
(Gupta et al., 2018) are not scalar scale or transformation invariant.

2.3 BENEFITS OF TRANSFORMATION INVARIANCE

Why is transformation invariance important? Beyond the mathematical argument that different pa-
rameterizations of the same weight update should be equivalent, we demonstrate that transformation
invariance leads to more efficient feature learning. The concept of efficient feature learning, intro-
duced in (Hayou et al., 2024), describes the asymptotic training behavior of LoRA as the network
width grows. As discussed earlier, for LoRA, the update to the matrix Z = AB> can be decom-
posed into three parts

δZ = (A+ δA)(B> + δB>)−AB> = δAB> +AδB> + δAδB>,

where the δAδB> is typically negligible as it depends on the square of the learning rate. Efficient
feature learning requires that both δAB>x and AδB>x are of magnitude O(n0) = O(1) with
respect to the network width n, where x is the input embedding. On the contrary, if the magnitude
of δAB>x is dependent on n: O(nα), then it can explode if α > 0 and diminish if α < 0, as the
network width n grows.

Hayou et al. (2024) show that conventional optimizers do not satisfy efficient feature learning. This
can be seen from Figure 1, where the weight norm for factor B changes significantly while the
weight norm for factor A barely changes. More discussions about the this unbalanced training
dynamic are in Appendix A.8.

Under mild assumptions, we can show that a transformation-invariant optimizer guarantees efficient
feature learning. The proof is given in Appendix A.3.
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Theorem 1. Any optimizer that is transformation-invariant and uses the same update rule for both
A andB will achieve efficient feature learning.

Beyond the efficient learning guarantee, in practice when training LoRA with existing optimizers,
it is often the case that only one of the LoRA factors is updated properly, while the other remains
almost unchanged, as shown in Figure 1. This is also a consequence of lacking scalar scale invari-
ance, as the initial scales for the two LoRA factors can be very different (one it typically initialized
from 0 while other from Gaussian random).

(a) Frobenius norm of LoRA factor A (b) Frobenius norm of LoRA factor B

Figure 1: The norms of the LoRA factorsA andB change differently across different training steps.

3 OUR PROPOSED OPTIMIZER

We now present our proposed algorithm, which satisfies transformation invariance, and achieves
significant improvements over previous LoRA optimizers in many empirical tasks.

3.1 DIAGONAL PRECONDITIONING IS NOT ENOUGH FOR TRANSFORMATION INVARIANCE

In this section we show that diagonal preconditioning is not enough to achieve transformation in-
variance. Recall that the LoRA factors are A ∈ Rm×r and B ∈ Rn×r. When updating A, most
existing optimizers utilize the following update:

vec(δA) = −ηX vec(∇A), (7)

where vec(·) lists the elements of a matrix as a vector in column-major order and X ∈ Rmr×mr
is a symmetric positive definite preconditioning matrix. Diagonal preconditioning methods like
Adam and Adagrad assume X is a diagonal matrix, while matrix preconditioning methods such as
Shampoo and CASPR use non-diagonalX .

Consider the LoRA pairs (A1,B1) and (A2,B2) such that: A2 = A1R, B2 = B1R
−>, where

R is an invertible matrix. By (4), the gradient with respect to the LoRA factors are:

∇A2 = ∇ZB2 = ∇A1R
−>, ∇B2 = ∇Z>A2 = ∇B1R. (8)

Let us consider the case when n = m = 1. For A ∈ R1×r, we can substitute vec(δA) = δA> and
vec(∇A) = ∇A> in update (7) and apply transpose on both sides to get:

δA = −η∇AX> = −η∇ZBX, δB = −η∇BX> = −η∇Z>AX> (9)

In this case, if we have two equivalent LoRA pairs (A1,B1), (A2,B2) with their corresponding
preconditionersX1,X2, then from (8) and (9), we have

δA1B
>
1 + A1δB

>
1 + δA1δB

>
1 = −η∇ZB1X

>
1 B>1 − ηA1X1A

>
1 ∇Z + η2∇ZB1X

>
1 X1A

>
1 ∇Z

(10)
and
δA2B

>
2 + A2δB

>
2 + δA2δB

>
2 = −η∇ZB2X

>
2 B>2 − ηA2X2A

>
2 ∇Z + η2∇ZB2X

>
2 X2A

>
2 ∇Z

=− η∇ZB1(R−>X>2 R−1)B>1 − ηA1(RX2R
>)A>1 ∇Z + η2∇ZB1R

−>X>2 X2R
>A>1 ∇Z.

(11)
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For (10) and (11) to be equal for any arbitrary η, one can see that it is necessary to have

∇ZB1X
>
1 X1A

>
1 ∇Z = ∇ZB1R

−>X>2 X2R
>A>1 ∇Z, (12)

as it is the only term quadratic to η. However, there might not exist a pair of diagonal preconditioners
X1, X2 6= 0 such that the above condition is satisfied for arbitrary ∇Z,A, and B, because R can
be a full matrix chosen in an adversarial fashion, such that R−>X>2 X2R

> is non-diagonal and
thus different from the left hand side. Consequently, we conclude it is necessary to adopt matrix
preconditioning to achieve transformation invariance.

3.2 ACHIEVING TRANSFORMATION INVARIANCE

To achieve transformation invariance, we begin by recognizing that the LoRA factors,A andB, can
be decomposed into their respective orthogonal bases and magnitudes:

A = UARA, B = UBRB,

where UA and UB can be obtained through polar decomposition.

Note that the gradients of A and B, ∇A = ∇ZB and ∇B = ∇Z>A, depend on both the basis
and the magnitude. To achieve transformation invariance, we introduce the concept of “unmagnified
gradients” distinguished from standard gradients by the symbol ∇̄:

∇̄A := ∇ZUB = ∇AR†B, ∇̄B := ∇Z>UA = ∇BR†A, (13)

where R†A and R†B are the pseudo-inverse of RA and RB respectively. These unmagnified gradi-
ents, relying solely on the column spaces of A and B, remain invariant to transformations of the
LoRA factors. This invariance forms the cornerstone of our algorithm’s ability to achieve transfor-
mation invariance.

Adaptive preconditioning methods like Adam have demonstrated superiority over non-adaptive
methods like SGD. Furthermore, as established earlier, matrix preconditioning is crucial for achiev-
ing transformation invariance. Therefore, we propose utilizing these unmagnified gradients for adap-
tive matrix preconditioning. Additionally, we only do one-sided preconditioning, on the shorter side
that is of size r, to ensure low time and memory complexity of the proposed method.

Since our update rule is symmetric for A and B, for brevity, from now on we only describe the
update rule for A. For simplicity, let’s first discuss the case without momentum. We propose the
update rule for

LoRA-RITE: δA = −η∇̄A(∇̄A>∇̄A)−1/2(R>B)† (14)
where η is the learning rate. This update can be broken down into two parts. The first part

−η∇̄A(∇̄A>∇̄A)−1/2

resembles the adaptive preconditioning mechanism in Adagrad, but employs matrix operations in-
stead of element-wise operations. Crucially, the use of unmagnified gradients ensures this term
remains consistent across all equivalent LoRA pairs, up to the choice of the basis.

The second part (R>B)† adjusts the magnitude of the update for different LoRA pairs. Since
(R>B)†B> = U>B , this effectively takes out the magnitude ofB> in δAB>. We thus have

δA2 = −η∇̄A2(∇̄A2
>∇̄A2)−1/2(R>B2

)† = −η∇̄A2(∇̄A2
>∇̄A2)−1/2U>B2

(B>2 )†

= −η∇ZUB2
(∇̄A2

>∇̄A2)−1/2U>B2
(B>2 )† = −η∇Z(UB2

∇̄A2
>∇̄A2U

>
B2

)−1/2(B>2 )†

= −η∇Z(UB1
∇̄A1

>∇̄A1U
>
B1

)−1/2(B>2 )† = δA1B
>
1 (B>2 )†.

(15)
Similarly, δB2 = δB1A

>
1 (A>2 )†. Consequently, we have

A1B
>
1 + δA1B

>
1 +A1δB

>
1 + δA1δB

>
1 = A2B

>
2 + δA2B

>
2 +A2δB

>
2 + δA2δB

>
2 .

This demonstrates that our proposed method satisfies transformation invariance. Note that this sim-
plified update rule does not yet incorporate accumulated first and second moments, which will be
addressed in the following paragraphs.
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Incorporating second moment. Adaptive optimizers typically employ accumulated second mo-
ments for preconditioning. A naive approach might involve replacing the ∇̄A>∇̄A term in (14)
with its accumulated sum over training iterations t ∈ {1, 2, . . . , T}:∑T

t=1
∇̄At

>∇̄At.

However, since each ∇̄At is computed with respect to the basis at a specific step, directly summing
them is mathematically incorrect. Instead, we must account for the varying basis at each step. To
achieve this, we accumulate the second moment as follows:

V̄At = PAtV̄At−1P
>
At

+ ∇̄At
>∇̄At, (16)

where V̄At−1
is the accumulated second moment based on the previous basis at step t − 1, and

PAt := (UBt)
>UBt−1 transforms it to the new basis at step t. During the adjustment,

Tr(PAt
V̄At−1

P>At
) ≤ Tr(V̄At−1

),

indicating a potential loss of information from the accumulated second moment. To quantify this
loss, for symmetric positive definite matrices E1,E2 ∈ Rr×r, we define

dλ(E1,E2) ≡ max
i
|λi(E1)− λi(E2)| ≤ min

U
‖E1 −UE2U

>‖,

where λi(E) is the i-th eigenvalue of E, and U ∈ Rr×r is an orthogonal matrix that reflects our
freedom to choose the basis. We then define the “escaped mass” as

ρAt = ρAt−1 + dλ(V̄At−1 ,PAtV̄At−1P
>
At

). (17)

To compensate for this, we add ρAt
I to our preconditioner, ensuring that V̄At

+ρAt
I monotonically

increases under a suitable choice of basis, even though the choice of basis does not influence the
actual update.

Finally, our unmagnified preconditioned step, when incorporating second moment, can be written as
S̄At

= ∇̄At(V̄At
+ ρAt

I)−1/2. (18)
Note that similar to Adam, we can turn (16) into the Exponential Moving Average (EMA) form,
where we multiple the first term by 1 − β2 and the second term by β2, with the hyper-parameter
β2 ∈ (0, 1) controls the decay rate.

Incorporating first moment. Similar to the second moment, the first moment must also be ad-
justed for changes in the basis using a projection matrix. The update rule for maintaining the first
moment can then be written as

M̄At
= β1M̄At−1

P>At
+ (1− β1)S̄At

.

Our final proposed update rule, incorporating both first and second moment, is
δAt = −ηM̄At

(R>B)†. (19)

Algorithm 1 LoRA-RITE
1: Initialize: unmagnified first and second moment M̄A0 = 0, V̄A0 = 0
2: for t = 1 . . . T do
3: Compute the gradient∇At;
4: Compute polar decomposition of the LoRA factor Bt: Bt = UBtRBt ;
5: Compute the unmagnified gradient ∇̄At = ∇AtR

†
Bt

and PAt = (UBt)
>UBt−1 ;

6: Update the unmagnified second moment V̄At = PAt V̄At−1P
>
At

+ (∇̄At)
>∇̄At/m;

7: Update the escaped mass ρAt = ρAt−1 + dλ(V̄At−1 ,PAt V̄At−1P
>
At

);
8: Compute the unmagnified precondition step S̄At = ∇̄At(V̄At + ρAtI)−1/2;
9: Update the unmagnified first moment M̄At = β1M̄At−1P

>
At

+ (1− β1)S̄At ;
10: Update model parameters At+1 = At − ηtM̄At(R

>
B)†.

11: end for

Our proposed algorithm, LoRA-RITE (Robust Invariant Transformation Equilibration for LoRA
training), is summarized as Algorithm 1, where we show the updates for A, and update for B can
be derived in the same way. Note that we have shown that the main update rule of (18) satisfies
transformation invariance, and this property can be extended even after adding the first and second
moment into the algorithm, as shown in the following theorem (proof in Appendix).
Theorem 2. In Algorithm 1, every unmagnified term is consistent across all equivalent LoRA pairs.
Consequently, Algorithm 1 is transformation invariant.
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Time and Space Complexity. The time and space complexity of our algorithm is similar to first
order methods like Adam when r � m,n. In each iteration of Algorithm 1, the dominant com-
putational costs arise from (1) polar-decomposition for m-by-r and n-by-r matrices which takes
O(nr2 + mr2) time, (2) matrix inverses and roots for r-by-r matrices which takes O(r3) time,
and (3) matmuls with time complexity O(nr2 + mr2). Thus, the overall complexity per step is
O(mr2 + nr2 + r3). It is only r times slower than Adam, and since r is very small, this overhead
is negligible when comparing with the back-propagating time. The memory cost of our method is
O(mr + nr) which is the same as Adam. We summarize the time and space complexity of our
method versus some commonly used optimizers in Table 7 in the Appendix.

3.3 THEORETICAL ANALYSIS

Following previous work (Gupta et al., 2018; Feinberg et al., 2023), we provide a convergence
analysis of the proposed algorithm within the online optimization framework (Hazan et al., 2016;
Shalev-Shwartz et al., 2012). In online convex optimization setting, a parameter θt ∈ K is chosen
iteratively, where K is a convex decision set. After each decision- θt, a convex loss function ft is
revealed, potentially chosen adversarially. The regret accumulated by the algorithm up to step T is
defined as

RegretT =
∑T

t=1
ft(θt)−min

θ∈K

∑T

t=1
ft(θ).

In the online convex optimization analysis, we bound the first-order term ∇θ>t (θt − θ∗) where θ∗
represents an arbitrary minimizer, and then use convexity of ft to connect it to the loss function.
However, due to the inherent structure of LoRA, loss functions ft, t ∈ {1, . . . , T} are not convex
with respect to θ. Therefore, we directly bound the first-order term instead.

We assume for the fine-tuned weight Z of each layer, the convex decision set imposes the following
constrains: ‖A‖F ≤ DA, ‖B‖F ≤ DB , where ‖ · ‖ denotes the Frobenius norm. Additionally, we
assume the gradient satisfies ‖∇Z‖F ≤ G. Following previous work, we analyze convergence in
the simplified scenario where the first moment is omitted and the second moment is a summation,
similar to Adagrad. For LoRA-RITE, our theoretical analysis yields the following result:
Theorem 3. LoRA-RITE satisfies:

1

T

∑T

t=1

1

η
∇θ>t (θt − θt+1) = O(GT−1/2),

where η is a fixed constant learning rate.

This theorem shows that the method either converges to a particular stable solution or just move
around in directions that does not change the function value, suggesting a form of convergence. To
further strengthen the guarantee, we introduce an additional assumption:
Assumption 1. Let X̄At

= (V̄At
+ ρAt

I)−1/2 be the unmagnified preconditioner PAt
=

(UBt
)>UBt−1

, andQAt
= (R>Bt

)†R>Bt−1
, then we have

‖X̄−1
At
−QAtX̄

−1
At−1

QT
At
‖ ≤ µ‖X̄−1

At
− PAtX̄

−1
At−1

P T
At
‖

and
Tr(PAtX̄

−1
At−1

P T
At

) ≥ Tr(X̄−1
At−1

+ c(ρ
1/2
At−1

− ρ1/2
At

)I).

This assumption essentially constrains the change in UBt
and RBt

to be relatively smooth. Under
this assumption, we can establish the following stronger convergence result:
Theorem 4. Under Assumption 1, our proposed method satisfies:

1

T

∑T

t=1
∇θ>t (θt − θ∗) = O(GDADBT

−1/2).

Our analysis closely resembles that of one-sided matrix Adagrad. The key idea is to have a change
of variable for bothA andB such that all the quantities get replace by its unmagnified counterparts.

Compared to one-sided matrix Adagrad, which has a regret bound of

O(G(D2
A +D2

B)T−1/2) which is higher than O(GDADBT
−1/2),

the regret bound of LoRA-RITE. The above inequality is using D2
A + D2

B ≥ 2DADB , where the
difference between both sides of inequality is large when the two LoRA factors exhibit imbalance
in magnitudes - DA and DB . This advantage is particularly relevant because previous work has
shown that LoRA factors often exhibit such imbalances (Hayou et al., 2024), which can also be seen
in Figure 1, providing an explanation for the strong empirical performance of our method.
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4 RELATED WORK

Related Optimizers. Adaptive first-order optimizers like Adagrad (Duchi et al., 2011) utilize ac-
cumulated second moments, essentially diagonal preconditioners, to scale updates for each coordi-
nate. This approach, adopted by optimizers like Adam (Kingma & Ba, 2014) and RMSProp (Tiele-
man & Hinton, 2012), has become standard for training deep neural networks, including LoRA,
and many other similar first-order methods have also been developed in the literature (Loshchilov &
Hutter, 2017; Chen et al., 2024). However, as discussed in Section 3.1, these methods lack transfor-
mation invariance when applied to LoRA.

Several higher-order preconditioners have shown promise in various training scenarios (Shi et al.,
2023). For example, Shampoo (Gupta et al., 2018) approximates the full second moment matrix
using a Kronecker product, leading to the following preconditioned gradient:

L−1/4GR−1/4, L = L + GG>, R = R + G>G, (20)

where L ∈ Rm×m, R ∈ Rn×n are the left and right preconditioner matrices, and G ∈ Rm×n is
the gradient. Many other higher-order methods follow this framework (Martens & Grosse, 2015;
Morwani et al., 2024; Duvvuri et al., 2024). These methods incur O(m2 + n2) additional memory
overhead and require periodic computation of roots of L and R with O(m3 + n3) computational
cost. This complexity significantly exceeds that of our proposed method, as demonstrated in Table 7.
Comparing (20) and (18) reveals that our method applies preconditioning only to the low-rank side of
LoRA, resulting in negligible overhead. Furthermore, unlike our provably transformation-invariant
approach, Shampoo-based methods lack this property.

LARS (You et al., 2017) and Lamb (You et al., 2020) are layer-wise adaptive optimization methods
originally designed for large batch training. They dynamically adjust the update norm for each
weight matrix based on its current norm, which ensures scalar scale invariance. Nonetheless, they
still lack transformation invariance.

Variants of LoRA. As large language models (LLMs) grow in size, full fine-tuning on down-
stream tasks becomes increasingly resource-intensive. Parameter-efficient fine-tuning (PEFT) meth-
ods such as (Houlsby et al., 2019; He et al., 2022b;a; Lester et al., 2021; Li & Liang, 2021) have
emerged to address this issue by reducing the number of trainable paramters. As a popular PEFT
algorithm, LoRA (Hu et al., 2022) has been the subject of extensive research, with numerous varia-
tions and improvements proposed. One line of research focuses on dynamically adjusting the LoRA
rank during training. This includes DyLoRA (Valipour et al., 2023), IncreLoRA (Zhang et al.,
2023a), and AdaLoRA (Zhang et al., 2023b). Another approach involves enhancing LoRA perfor-
mance through the addition of extra scaling matrices, which includes DoRA (Liu et al., 2024) and
DeepLoRA (Yaras et al., 2024). These directions are orthogonal to our work.

Regarding LoRA optimization, Hayou et al. (2024) highlight the limitations of traditional optimiz-
ers as they fail to achieve efficient feature learning. To address this issue, they propose LoRA+,
which uses two different learning rates ηA and ηB for LoRA weights. However, this leads to an
extra hyperparameter to be tuned in practice. In contrast, Zhang & Pilanci (2024) propose the use
of matrix preconditioning methods to achieve efficient feature learning. They propose the use of
Riemannian gradient descent for LoRA optimization. As far as we know, Riemannian gradient de-
scent is the only method in the literature that satisfies transformation invariance. However, similar
to gradient descent, Riemannian gradient descent does not incorporate momentum and adaptivity,
so it performs worse than Adam in their experiments. To improve the performance, they propose
to combine Riemannian gradient descent with element-wise Adam, which becomes ScaledAdam.
However, this combination makes ScaledAdam no longer transformation invariant.

5 EXPERIMENTAL RESULTS

We evaluate the proposed LoRA optimizer against other optimizers across a range of datasets. This
includes the Super-Natural Instructions dataset, a comprehensive collection of diverse NLP tasks, as
well as four standard LLM benchmarking datasets.

We compare the following optimizers:

• Adam (Kingma & Ba, 2014): The most widely used default optimizer for LoRA finetuning.
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Table 1: Experimental results on the Super-Natural instruction dataset.

Model Optimizer Cause Effect Coreference Title Data to GlobalClassification Resolution Generation Text

Gemma-2B

Adam 58.93 77.06 51.30 55.52 50.51/74.54
LoRA+ 58.84 76.08 51.32 55.68 49.76/74.20

ScaledAdam 58.71 77.55 51.16 55.69 49.40/74.01
Shampoo 58.11 77.17 51.30 55.48 50.79/74.74

Lamb 60.97 80.69 52.26 55.85 53.53/76.43
LoRA-RITE 61.26 82.02 52.26 55.98 55.11/77.12

Gemma-7B

Adam 67.17 86.05 51.58 55.38 58.46/78.17
LoRA+ 65.50 86.67 51.51 55.34 58.19/78.29

ScaledAdam 65.79 85.05 51.61 55.40 57.32/77.92
Shampoo 66.29 85.62 51.86 55.43 57.99/78.27

Lamb 69.62 86.57 51.87 55.5 57.79/78.18
LoRA-RITE 71.26 88.14 52.17 55.62 59.71/79.05

Table 2: Experimental results on LLM benchmarking datasets.

Model Optimizer HellaSwag ArcChallenge GSM8K OpenBookQA Avg.

Gemma-2B

Adam 83.76 45.31 24.26 64.0 54.33
LoRA+ 83.75 45.31 23.65 64.4 54.28

ScaledAdam 83.52 45.22 23.96 64.8 54.38
Shampoo 83.26 44.88 23.35 63.6 53.77

Lamb 86.60 47.35 26.76 68.0 57.18
LoRA-RITE 87.28 49.06 30.10 68.8 58.81

Gemma-7B

Adam 94.07 54.78 48.37 77.60 68.71
LoRA+ 93.99 54.01 48.75 77.60 68.59

ScaledAdam 93.31 52.90 48.07 75.80 67.52
Shampoo 94.15 52.47 49.05 76.80 68.12

Lamb 95.11 69.80 50.64 83.20 74.69
LoRA-RITE 95.59 71.76 55.50 84.80 76.91

• LoRA+ (Hayou et al., 2024): Adam with different learning rates for A and B. We set the
learning rate of B to be 4 times large than A, which is the value they used for decoder
models.
• ScaledAdam (Zhang & Pilanci, 2024): A variant of Adam designed for LoRA optimization.
• Shampoo (Gupta et al., 2018): A well-known adaptive matrix preconditioning method.

To obtain similar training time as the other methods, the block size is set to 512 and the
preconditioners are updated every 100 steps.
• Lamb (You et al., 2020): A variant of Adam that normalizes the updates for each layer

based on the norm of the parameters.
• LoRA-RITE: Our proposed optimizer that is transformation invariant.

For each optimizer applied on each data set, we search for the best learning rate from 2 ∗ 10−6 to
2 ∗ 10−2. The other hyperparameters are listed in the Appendix. For most of the experiments we
chose rank r = 16 for LoRA, based on the ablation study over the rank. We conduct experiments
on Gemma (Gemma Team et al., 2024) 2B, 7B, and mT5-XXL (Xue et al., 2021) using TPUs.
Results on Super-Natural Instruction Dataset. The Super-Natural instruction dataset (Wang
et al., 2022) contains a collection of 1600+ NLP tasks, including both classification and genera-
tion tasks. We use a 10% split of the data for validation. Following (Wang et al., 2022), we use the
exact match accuracy to evaluate classification and ROUGE-L score to evaluate generation tasks.

Table 1 presents the performance of individual fine-tuning on two classification and two genera-
tion tasks for 2,000 steps. It also includes the performance of fine-tuning on the global training
set of over 1,600 tasks for 10,000 steps, reporting both exact match accuracy and ROUGE-L score
evaluated on the global validation set. As shown in Table 1, our proposed method demonstrates su-
perior performance across both classification and generation tasks. Compared to Adam, our method
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Table 3: Ablation study on different ranks and different model architectures.

Gemma-2B (rank=4) Gemma-2B (rank=16) mT5-XXL (rank=4) mT5-XXL (rank=16)

Adam 63.00 64.0 72.00 72.20
ScaledAdam 63.00 64.8 70.80 74.60

Lamb 67.80 68.0 70.40 73.40
LoRA-RITE 70.40 68.8 74.80 75.00

Table 4: Number of training steps per second for different optimizers. Shampoo preconditioner is
updated once every 100 steps. LoRA-RITE has small overhead compared with first-order methods.

Adam LoRA+ ScaledAdam Shampoo Lamb LoRA-RITE

Gemma-2B 0.948 0.930 0.917 0.837 0.929 0.878
Gemma-7B 0.120 0.120 0.114 0.112 0.116 0.114

achieves 2.3% to 4.9% accuracy improvements on the classification tasks and also shows significant
improvements in the global training setting. Furthermore, we found that Lamb performs well on
some of the data sets but there’s still a significant gap between Lamb and LoRA-RITE. Since Lamb
enforces scalar scale invariance but not transformation invariance, this result implicitly suggests that
transformation invariance is crucial for achieving optimal performance.
Results on other LLM Benchmarking Datasets. We also evaluate the performance on common
LLM benchmarking datasets, including HellaSwag (Zellers et al., 2019), ArcChallenge (Clark et al.,
2018), GSM8K (Cobbe et al., 2021), and OpenBookQA (Mihaylov et al., 2018). The summary
information of these datasets is in the Appendix. The results are presented in Table 2. We can
observe that the trend is similar to the SuperNatural instruction results, where LoRA-RITE achieves
the best performance on all the data sets, and Lamb is usually the second best optimizer.
Ablation Study. We conduct an ablation study on the choice of different LoRA ranks and model
architectures. Specifically, we considered rank 4 and 16 on both Gemma 2B (decoder only) and
mT5-XXL (encoder-decoder) on the OpenBookQA dataset. As we can see from Table 3, our pro-
posed method performs consistently well across different LoRA ranks. Furthermore, our method
can be successfully applied to mT5-XXL which has an encoder-decoder architecture, showing the
generalizability of the proposed optimizer.

Training Speed Comparison. We compare the training speed of different optimizers. Table 4
shows the number of training steps per second for different optimizers with LoRA rank 16 on the
OpenBookQA dataset using TPUv5e. As we can see, LoRA-RITE is only 8% slower than Adam on
Gemma 2B, while the difference decreases to 5% when model size increases to 7B. Also, Shampoo
is slower than LoRA-RITE in this case despite the fact that it recomputes the preconditioner with
much lower frequency (once every 100 steps). This is due to our approach of preconditioning only
the low-rank side of the LoRA factors.

6 CONCLUSIONS

Current LoRA optimization techniques lack transformation invariance, which implies that equiva-
lent LoRA parameterizations can yield significantly different updates. This hinders efficient feature
learning and often leads to suboptimal solutions in practice. We introduce a novel, transformation-
invariant optimization algorithm with comparable time and memory overhead to Adam. Our algo-
rithm consistently achieves higher accuracy than existing LoRA optimizers across diverse datasets
and models.
Limitations. Although this work introduces a better optimizer for LoRA, it is important to ac-
knowledge that LoRA itself has limitations. For instance, LoRA has smaller representational power
and may result in a minor performance decrease compared to full fine-tuning. Also, how to se-
lect rank to strike a good trade-off between efficiency and accuracy may be non-trivial in practice.
The work focuses on addressing transformation-invariance when the optimization problem can be
written in the form of f(AB>), and this assumption may not hold for other parameter-efficient
structures beyond LoRA. Applying LoRA-RITE to ensure transformation invariance for the other
more complicated LoRA variants will be an interesting future direction.
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A APPENDIX

A.1 HYPERPARAMETERS

Table 5 shows our hyperparameters. We set weight decay and dropout probability to 0 as our early
experiments suggest that setting a non-zero value does not improve the performance of the baselines.

Table 5: The setting for hyperparameters.

Hyperparameter Value

Learning rate 2 ∗ 10−6 to 2 ∗ 10−2

Weight decay 0
Dropout prob 0
LoRA target qproj, kproj , vproj, oproj
LoRA rank 16

LoRA α 16
Batch size 16
Train step 2000

LR schedule Linear decay
Warmup step 100

Evaluation period 100
Momentum β1 0.9

Second moment β2 0.999

A.2 DATASETS

Table 6 shows the summary information of the LLM benchmarking datasets. We use the test set to
evaluate ArcChallenge, as it is much larger than the development set.

Table 6: Summary information of the LLM benchmarking datasets.

Dataset #Train #Dev #Test Split for Eval

HellaSwag 39905 10042 10003 Dev
ArcChallenge 1119 299 1172 Test

GSM8K 7473 NA 1319 Test
OpenBookQA 4957 500 500 Dev

A.3 PROOF OF THEOREM 1

Let ‖A1‖ = θ(na), ‖B1‖ = θ(nb), ‖∇Z‖ = θ(nc), η = θ(nd), where η is the learning rate
and n is the network width. Since Z = A1B

T
1 , from chain rule we know ∇A = ∇ZB and

∇B = ∇ZTA. Since the update rule is symmetric, we can express the updates as

‖δA1‖ = θ(nxa+yb+zc+d), ‖δB1‖ = θ(nxb+ya+zc+d).

If the update rule is scalar scale invariant, then for anyA2 = nδA1,B2 = n−δB1 we have

‖δA1‖‖B1‖ = ‖δA2‖‖B2‖,

which means

xa+ (y + 1)b+ zc+ d = x(a+ δ) + (y + 1)(b− δ) + zc+ d,

thus xδ − (y + 1)δ = 0 for all δ, which means y = x− 1. Consequently, we have

‖δA1‖‖B1‖ = θ(nxa+(y+1)b+sc+d) = θ(nxa+xb+sc+d).
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Table 7: Time and space complexity comparison for LoRA optimization.

Algorithm Time Complexity Space Complexity

Forward/Backward Ω(nm) Ω(nm)
Full Matrix Adagrad (Duchi et al., 2011) O(m3r3 + n3r3) O(m2r2 + n2r2)

Adam (Kingma & Ba, 2014) O(mr + nr) O(mr + nr)
Lamb (You et al., 2020) O(mr + nr) O(mr + nr)

Shampoo (Gupta et al., 2018) O(m3 + n3 + r3) O(m2 + n2 + r2)
KFAC (Martens & Grosse, 2015) O(m3 + n3 + r3) O(m2 + n2 + r2)

ScaledAdam (Zhang & Pilanci, 2024) O(mr2 + nr2) O(mr + nr)
LoRA-RITE (our proposed) O(mr2 + nr2) O(mr + nr + r2)

Similarly, we have

‖A1‖‖δB1‖ = θ(nxb+(y+1)a+sc+d) = θ(nxb+xa+sc+d).

Since these two are equal, we can achieve efficient feature learning

‖A‖‖δB‖‖x‖ = ‖δA‖‖B‖‖x‖ = θ(1),

where x is the input vector, by selecting a proper learning rate η.

A.4 PROOF OF THEOREM 2

In Algorithm 1, for two equivalent LoRA pairs (A1,B1), (A2,B2), their obtained basis UB1
and

UB2
could be different.

Consequently, we introduce the concept of consistency, which means a matrix output of f(A,B) is
the same across all equivalent LoRA pairs, up to the choice of the basis.
Definition 3 (Consistency). For matrixXA ∈ Rm×r, we call it consistent if

XA1U
>
B1

= XA2
U>B2

∈ Rm×n

for all equivalent LoRA pairs (A1,B1), (A2,B2). Similarly, forHA ∈ Rr×r, we call it consistent
if

UB1
HA1

U>B1
= UB2

HA2
U>B2

∈ Rn×n

for all equivalent LoRA pairs (A1,B1), (A2,B2).

Additionally, to simplify the notation, from now on we useA,B to stand forA1,B1 and use Â, B̂
to stand forA2,B2.

Then, we proceed to prove Theorem 2. First, one should note the fact that

UBU
>
B = UB̂U

>
B̂

for all equivalent LoRA pairs. Consequently,

UB(∇̄A)>∇̄AU>B = UBU
>
B∇Z>∇ZUBU>B

=UB̂U
>
B̂
∇Z>∇ZUB̂U

>
B̂

= UB̂(∇̄A)>∇̄AU>
B̂
,

(21)

which shows that (∇̄A)>∇̄A is consistent.

Second, we can prove V̄At
is consistent by mathematical induction. The base case V̄A0

= 0 is
consistent. Assuming V̄At−1

is consistent, then

UBt−1PAtV̄At−1P
>
At

(UBt)
>

=UBt−1
(UBt

)>UBt−1
V̄At−1

UBt−1
(UBt

)>(UBt
)>

=UB̂t−1
(UB̂t

)>UB̂t−1
V̄Ât−1

UB̂t−1
(UB̂t

)>(UB̂t
)>

=UB̂t−1
PÂt

V̄Ât−1
P>
Ât

(UB̂t
)>

, (22)
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which means PAt
V̄At−1

P>At
and thus

V̄At
= PAt

V̄At−1
P>At

+ ∇̄At
>∇̄At

is consistent.

Lastly, since

UB(V̄At + ρAtI)−1/2U>B = (UBV̄AtU
>
B + ρAtUBU

>
B)−1/2,

we have
S̄At

U>Bt
= ∇̄At(V̄At

+ ρAt
I)−1/2U>Bt

=∇̄ZtUBt
(V̄At

+ ρAt
I)−1/2U>Bt

=∇̄Zt(UBt
V̄At

U>Bt
+ ρAt

UBt
U>Bt

)−1/2

=∇̄Zt(UB̂t
V̄Ât

U>
B̂t

+ ρÂt
UB̂t

U>
B̂t

)−1/2

=S̄Ât
U>
B̂t
.

Thus, we can similarly proof by induction that both S̄At
and M̄At

are consistent, which completes
our proof.

A.5 PROOF OF THEOREM 3

For convenience, for matrixX ∈ Rm×r,H ∈ Rr×r, we define
‖X‖H = Tr(XHX>)1/2.

We also utilize the following lemma for online optimization.
Lemma 1 (Lemma 5.13 Hazan et al. (2016)). For online optimization, if θt is updated as θt+1 =
θt − ηXtgt, then we have

T∑
t=1

∇θ>t (θt − θ∗) ≤
1

2η
‖θ1 − θ∗‖2X−1

1
+
η

2

T∑
t=1

(gt)
>Xtgt

+
1

2η

T∑
t=2

(θt − θ∗)>(X−1
t −X−1

t−1)(θt − θ∗).

Lemma 2 (Lemma 5.13, 5.14 Hazan et al. (2016)). For arbitrary matrix Gt ∈ Rm×r, Ht =∑t
i=1G

>
i Gi, we have

T∑
t=1

‖Gt‖H−1/2
t

≤ 2 Tr(H
1/2
T )

Proof of Theorem 3

Since we are preconditioning each layer independently, all three terms in Lemma 1 can be written as
summation over the L layers. For simplicity, from now on we omit the summation and the subscript
for layers.

For our method, the preconditionerXAt is as follows,

XAt
= R†Bt

(V̄At
+ ρAt

I)−1/2(R>Bt
)†

We define the unmagnified preconditioner

X̄At
≡ (V̄At

+ ρAt
I)−1/2

Then for theA factor, we have
T∑
t=1

vec(∇At)
> vec(δAt) =

T∑
t=1

Tr(∇A>t δAt) = η

T∑
t=1

‖∇At‖2XAt

=η

T∑
t=1

‖∇̄At‖2X̄At
≤ 2ηTr((

T∑
i=1

∇̄A>i ∇̄Ai)
1/2) = O(GT 1/2),

(23)
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where the inequality comes from Lemma 2 and the fact that

X̄At = (V̄At + ρAtI)−1/2 � (

t∑
i=1

∇̄A>i ∇̄Ai)
−1/2.

This completes our proof.

A.6 PROOF OF THEOREM 4

To prove Theorem 4, we start by bounding the escape mass.
Lemma 3. For the escaped mass ρAT

in Algorithm 1, we have

ρAT
≤

T∑
t=1

Tr((∇̄At)
>∇̄At)− Tr(V̄AT

) = O(G2T ).

Proof of Lemma 3

Since PAt
P>At

� I , by Ostrowski’s inequality we have

λi(V̄At−1) ≥ λi(PAtV̄At−1P
>
At

)

for all i. Consequently, we have

dλ(V̄At−1
,PAt

V̄At−1
P>At

) ≤ Tr(V̄At−1
)− Tr(PAt

V̄At−1
P>At

).

Thus,

ρAT
≤

T∑
t=1

Tr(V̄At−1
)−

T∑
t=1

Tr(PAt
V̄At−1

P>At
)

=

T∑
t=1

Tr((∇̄At)
>∇̄At)− Tr(V̄AT

) = O(G2T ).

Proof of Theorem 4

We prove Theorem 4 by bounding the right-hand side of Lemma 1. Since the first term is a constant
and we already bound the second term in Theorem 3, here we only need to bound the third term.

For the third term, we have

‖At −A∗‖2X−1
At
−X−1

At−1

= ‖(At −A∗)RT
Bt
‖2
X̄−1

At
−QAtX̄

−1
At−1

QT
At

≤D2
AD

2
B‖X̄−1

At
−QAt

X̄−1
At−1

QT
At
‖ ≤ µD2

AD
2
B‖X̄−1

At
− PAt

X̄−1
At−1

P T
At
‖,

where the last inequality comes from our assumption.

Consequently, since

Tr(X̄−1
At

) ≥ Tr(PAtX̄
−1
At−1

P T
At

) ≥ Tr(X̄−1
At−1

+ c(ρ
1/2
At−1

− ρ1/2
At

)I),

we have
T∑
t=1

‖X̄−1
At
− PAt

X̄−1
At−1

P T
At
‖ ≤

T∑
t=1

Tr(X̄−1
At
− PAt

X̄−1
At−1

P T
At

) ≤ Tr(X̄−1
AT

+ cρ
1/2
AT
I)

≤Tr((

T∑
i=1

∇̄A>i ∇̄Ai + ρAT
I)1/2) + cTr(ρ

1/2
AT
I) ≤ (

√
2 + c) Tr((

T∑
i=1

∇̄A>i ∇̄Ai)
1/2),

where the last inequality comes from Lemma 3.

Summing up the bound for the second and the third term, we get

(2η +

√
2 + c

η
µD2

AD
2
B) Tr((

T∑
i=1

∇̄A>i ∇̄Ai)
1/2)

17



Published as a conference paper at ICLR 2025

Choosing η = µ1/2DADB , we have

(2 +
√

2 + c)µ1/2DADB Tr((

T∑
i=1

∇̄A>i ∇̄Ai)
1/2) = O(DADBGT

−1/2),

which completes the proof.

A.7 TRAINING LOSS CURVE VISUALIZATION

To cross-validate the effectiveness of LoRA-RITE, we plot the training loss curve of each method
for the Super-Natural instruction dataset and the OpenBookQA dataset. Figure 2 shows that LoRA-
RITE has the lowest training loss, which demonstrates the effectiveness of our method.

(a) Super-Natural instruction (b) OpenBookQA

Figure 2: The training loss curve for the Super-Natural instruction dataset and the OpenBookQA
dataset.

A.8 UPDATE MAGNITUDE VISUALIZATION

To visualize the update magnitude of the two LoRA factors, we plot the update norm divided by the
weight norm, ‖δA‖/‖A‖ and ‖δB‖/‖B‖.
Figure 3 and Figure 4 show that for conventional optimizers, factorA barely changes, while LoRA-
RITE is able to learn the factor A effectively. This demonstrates the importance of transformation
invariance.

(a) Update magnitude of the A factor (b) Update magnitude of the B factor

Figure 3: The update magnitude ofA andB for the Super-Natural instruction dataset.

A.9 ABLATION STUDY ON DIFFERENT RANKS

To study the effect of different LoRA ranks, we conduct additional ablation study on different
datasets.
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(a) Update magnitude of the A factor (b) Update magnitude of the B factor

Figure 4: The update magnitude ofA andB for the OpenBookQA dataset.

Table 8: Ablation study on different ranks on Gemma-2B on the LLM benchmarking datasets.

Optimizer Rank HellaSwag ArcChallenge GSM8K OpenBookQA Avg.

Adam
r = 4 81.83 42.32 20.92 63.0 52.02
r = 16 83.76 45.31 24.26 64.0 54.33
r = 64 84.56 46.67 26.08 67.0 56.08

ScaledAdam
r = 4 81.95 44.80 21.15 63.0 52.73
r = 16 83.52 45.22 23.96 64.8 54.38
r = 64 84.42 48.21 26.61 67.0 56.56

Lamb
r = 4 86.01 46.67 25.25 67.8 56.43
r = 16 86.60 47.35 26.76 68.0 57.18
r = 64 87.83 47.53 29.04 62.8 56.80

LoRA-RITE
r = 4 87.08 49.57 29.49 70.4 59.14
r = 16 87.28 49.06 30.10 68.8 58.81
r = 64 87.89 49.91 31.46 68.8 59.52

As we can see from Table 8, higher rank generally improves LoRA performance, approaching full
fine-tuning. This explains why the performance gap between LoRA-RITE and other methods nar-
rows at higher ranks, as they all converge towards the results of full fine-tuning.

Additionally, one can observe that LoRA has inherent regularization properties. As noted in pre-
vious research (Chen et al., 2022), this means that sometimes a lower rank can actually lead to
better performance. This effect depends on factors like model generalization and training data size.
This explains why LoRA-RITE achieves better performance at rank 4 instead of 16 and why Lamb
achieves better performance at rank 16 than rank 64.

A.10 BEST LEARNING RATE FOR DIFFERENT OPTIMIZERS

In Table 9, we list the best learning rate for each optimizer on the LLM benchmarking datasets. We
observe that LoRA-RITE and Lamb usually prefer a larger learning rate than the other baselines.
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Table 9: Best Learning Rate for Different Optimizers on LLM benchmarking datasets.

Model Optimizer HellaSwag ArcChallenge GSM8K OpenBookQA

Gemma-2B

Adam 1e-5 5e-5 1e-5 5e-5
LoRA+ 1e-5 5e-5 1e-5 5e-5

ScaledAdam 5e-5 5e-5 1e-5 2e-4
Shampoo 1e-5 5e-5 5e-5 5e-5

Lamb 5e-3 5e-3 5e-3 5e-3
LoRA-RITE 2e-4 1e-3 2e-4 2e-4
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