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A.1 HYPERPARAMATERS

ViT-Base
Hyperparameter OxfordPets StanfordCars CIFAR10 EuroSAT FGVC RESISC45 CIFAR100

Epochs 10
Optimizer AdamW
perc value 0.95
LR Schedule Linear
Learning Rate (SiVA ) 1E-1 5E-1 1E-1 1E-1 1E-1 3E-1 1E-1
Learning Rate (Head) 5E-3 5E-3 1E-3 7E-3 1E-1 3E-1 1E-2
Weight Decay 1E-4 1E-4 9E-5 1E-3 1E-4 1E-2 1E-2

ViT-Large
Hyperparameter OxfordPets StanfordCars CIFAR10 EuroSAT FGVC RESISC45 CIFAR100

Epochs 10
Optimizer AdamW
perc value 0.95
LR Schedule Linear
Learning Rate (SiVA ) 1E-1 1E-1 1E-1 1E-1 1E-1 1E-1 1E-1
Learning Rate (Head) 5E-3 5E-3 1E-2 7E-3 1E-2 3E-2 1E-3
Weight Decay 1E-4 1E-4 1E-3 1E-3 1E-3 1E-2 1E-4

Table 7: Hyperparameter setup for image classification for ViT-Base and ViT-Large.

Hyperparameter Value

Optimizer AdamW
perc Value 0.5
Learning Rate 0.7
Warmup Steps 300
Batch Size 8
Epochs 5
LR Schedule Linear

Table 8: Hyperparameter setup for the E2E benchmark.

Model Hyperparameter SST-2 MRPC CoLA QNLI RTE STS-B

Optimizer AdamW

Roberta

LR Schedule Linear

Large

prec Value 0.95
Epochs 30 60 60 30 60 60
Learning Rate (SiVA ) 0.009 0.015 0.01 0.004 0.01 0.008
Learning Rate (Head) 1e-4 4e-4 0.01 7e-4 6e-5 5e-4
Max Seq. Len 128 512 512 256 512 512
Batch Size 32 32 128 32 32 32
S∆W Init Copy SW Copy SW Zeros Zeros Zeros Copy SW

Table 9: Hyperparameter setup for the GLUE benchmark.
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Hyperparameter Values

Optimizer AdamW
Warmup Ratio 0.05
Batch Size 4
Accumulation Steps 4
Epochs 1
LR Schedule Linear
Learning Rate 4e-3
perc Value 0.997

Table 10: Hyperparameter setup for instruction-tuning.

A.2 THEORETICAL RESULTS

Lemma 1 (Change in Entropy). Given a random variable χ and any two distributions P, Q over
(
⋃n

i=1 χi), define δpi := P(χ = χi) − Q(χ = χi), and assume that such that |δpi| << 1, ∀1 ≤
i ≤ n. Then the change in entropy ∆Hq,p := H(q)−H(p) is given by:

∆Hq,p = −
n∑

i=1

δpi(log pi)

Proof. We begin by expanding H(q) as:

H(q) = −
n∑

i=1

qi log qi

Substitute qi = pi + δpi into this expression:

H(q) = −
n∑

i=1

(pi + δpi) log(pi + δpi)

For small perturbations δpi, applying a first-order Taylor expansion for log(pi + δpi), we have:

log(pi + δpi) ≈ log pi +
δpi
pi

Thus, H(q) becomes:

H(q) ≈ −
n∑

i=1

(
(pi + δpi)

(
log pi +

δpi
pi

))
Expanding and simplifying the above expression, and ignoring the second-order term of δpi,:

H(q) ≈ −
n∑

i=1

(pi log pi + δpi log pi + δpi)

Now, the change in entropy δH is:

δH = H(q)−H(p) = −
n∑

i=1

(δpi log pi + δpi)

This simplifies to:

δH = −
n∑

i=1

δpi(log pi + 1) = −
n∑

i=1

δpi(log pi) ,

where the latter follows since
∑n

i=1 δpi =
∑n

i=1 P(χ = χi)−
∑n

i=1 Q(χ = χi) = 1− 1 = 0.
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Theorem 1 (Optimal Modification of Singular Values to Maximize Entropy Increase). Let A ∈
Rn×n be a matrix with singular values σA

i ≥ 0 for i = 1, 2, . . . , n, and let SA =
∑n

i=1 σ
A
i .

Consider perturbations δσi ∈ R such that the singular values of A+B become σA+B
i = σA

i + δσi,
for an arbitrary matrix B ∈ Rn×n. Under the constraint ∥B∥2F =

∑n
i=1(δσi)

2 ≤ C, the maximum
possible change in entropy ∆H is:

∆Hmax =
√
C ·

√√√√ n∑
i=1

c2i , (3)

where

ci = −

(
log

(
σA
i

SA

)
+HA

)
SA

. (4)

The optimal adjustments δσi are:

δσi = ci ·
√
C√∑n
j=1 c

2
j

. (5)

Further, the coefficients ci satisfy:

• ci > 0 if pi < e−HA (lower singular values).

• ci < 0 if pi > e−HA (larger singular values).

• ci = 0 if pi = e−HA .

Proof. 1. Expression for Maximum Entropy Increase

From the previous theorem, the maximum possible increase in entropy when all singular values can
be adjusted is:

∆Hmax =
√
C ·

√√√√ n∑
i=1

c2i , (6)

where
ci = − 1

SA
(log pi +HA) . (7)

The optimal adjustments to the singular values are:

δσi = ci ·
√
C√∑n
j=1 c

2
j

. (8)

2. Constraint on the Number of Modifiable Singular Values

When only k singular values can be modified, let S ⊆ {1, 2, . . . , n} be the set of indices of the
singular values to be adjusted, with |S| = k. The maximum increase in entropy is then:

∆HS =
√
C ·

√∑
i∈S

c2i . (9)

Our goal is to choose S to maximize ∆HS .

3. Relationship Between c2i and pi

The coefficients ci depend on pi:

ci = − 1

SA
(log pi +HA) . (10)

Consider c2i :

c2i =

(
1

SA

)2

(log pi +HA)
2
. (11)
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We analyze how c2i varies with pi:

- As pi → 0+ (lower singular values):

• log pi → −∞.

• log pi +HA → −∞ (since HA is finite).

• ci → +∞.

• c2i → +∞.

- At pi = e−HA :

• log pi +HA = 0.

• ci = 0.

• c2i = 0.

- As pi → 1− (higher singular values):

• log pi → 0.

• log pi +HA → HA (positive since HA > 0).

• ci = −HA

SA
< 0.

• c2i =
(

HA

SA

)2

(finite and relatively small).

4. Optimal Selection of Singular Values

To maximize ∆HS , we need to maximize
∑

i∈S c2i . From the analysis above, c2i is largest when pi
is smallest. Therefore, the optimal strategy is to select the k singular values with the smallest pi,
i.e., the lowest k singular values.

Theorem 2 (Sparse, Optimal Modification of Singular Values to Maximize Entropy Increase). Let
A,B ∈ Rn×n be two matrices, with A being fixed. Suppose we are allowed to perturb at most k
singular values of A+B (i.e., at most k of the δσi are non-zero), using a matrix B ∈ Rn×n under the
constraint ∥B∥2F =

∑k
j=1(σ

B
j )2 ≤ C. To maximize the increase in entropy ∆H = HA+B −HA,

it is optimal to modify the k-smallest singular values of A.

Proof. 1. Expression for Maximum Entropy Increase

From the previous theorem, the maximum possible increase in entropy when all singular values can
be adjusted is:

∆Hmax =
√
C ·

√√√√ n∑
i=1

c2i , (12)

where
ci = − 1

SA
(log pi +HA) . (13)

The optimal adjustments to the singular values are:

δσi = ci ·
√
C√∑n
j=1 c

2
j

. (14)

2. Constraint on the Number of Modifiable Singular Values

4
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When only k singular values can be modified, let S ⊆ {1, 2, . . . , n} be the set of indices of the
singular values to be adjusted, with |S| = k. The maximum increase in entropy is then:

∆HS =
√
C ·

√∑
i∈S

c2i . (15)

Our goal is to choose S to maximize ∆HS .

3. Relationship Between c2i and pi

The coefficients ci depend on pi:

ci = − 1

SA
(log pi +HA) . (16)

Consider c2i :

c2i =

(
1

SA

)2

(log pi +HA)
2
. (17)

We analyze how c2i varies with pi:

- As pi → 0+ (lower singular values):

• log pi → −∞.

• log pi +HA → −∞ (since HA is finite).

• ci → +∞.

• c2i → +∞.

- At pi = e−HA :

• log pi +HA = 0.

• ci = 0.

• c2i = 0.

- As pi → 1− (higher singular values):

• log pi → 0.

• log pi +HA → HA (positive since HA > 0).

• ci = −HA

SA
< 0.

• c2i =
(

HA

SA

)2

(finite and relatively small).

4. Optimal Selection of Singular Values

To maximize ∆HS , we need to maximize
∑

i∈S c2i . From the analysis above, c2i is largest when pi
is smallest. Therefore, the optimal strategy is to select the k singular values with the smallest pi,
i.e., the lowest k singular values.

Theorem 3 (Alignment of Singular Vectors w.r.t Pretrained Weights). Let A ∈ Rn×n be a matrix
with singular values σA

i arranged in descending order (σA
1 ≥ σA

2 ≥ · · · ≥ σA
n ≥ 0) and corre-

sponding left and right singular vectors uA
i and vA

i . Let B ∈ Rn×n be a fixed matrix with exactly k
nonzero singular values σB

j (with σB
1 ≥ σB

2 ≥ · · · ≥ σB
k > 0) and corresponding singular vectors

uB
j and vB

j .
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Under the constraint ∥B∥2F =
∑k

j=1(σ
B
j )2 = C, the maximum increase in entropy ∆H = HA+B−

HA is achieved when the following happen, in order:

1. First, the singular vectors of B corresponding to its largest singular value are aligned
with the singular vectors of A corresponding to its smallest singular value; specifically,
uB
j = uA

n−j+1 and vB
j = vA

n−j+1 for j = 1, 2, . . . , k.

2. Since the largest singular value of B is now aligned, ∆H is further maximized by aligning
the next largest singular value of B with the next smallest singular vector of A, and so on
recursively, for all k singular values of B.

Therefore, the largest increase in entropy is achieved by aligning the singular values of B in de-
creasing order with the singular vectors of A in increasing order of their indices.

Proof. We will prove that the optimal way to maximize the increase in entropy ∆H is by aligning
the largest singular values of B with the smallest singular vectors of A as described.

1. Expression for the Change in Entropy

The change in entropy ∆H can be expressed as:

∆H =

n∑
i=1

ciδσi, (18)

where
ci = − 1

SA
(log pi +HA), (19)

with pi =
σA
i

SA
and SA =

∑n
i=1 σ

A
i . The coefficients ci are positive for lower i (smaller singular

values of A) and negative for higher i (larger singular values of A).

2. First-Order Perturbation of Singular Values

Under first-order perturbation theory, the change in the singular values δσi due to B is given by:

δσi = uA⊤

i BvA
i . (20)

Substituting the singular value decomposition (SVD) of B:

B =

k∑
j=1

σB
j uB

j v
B⊤

j , (21)

we get:

δσi =

k∑
j=1

σB
j (uA⊤

i uB
j )(v

B⊤

j vA
i ). (22)

Our objective is to choose the alignment of uB
j and vB

j to maximize ∆H .

3. Maximizing ∆H by Aligning Singular Vectors

Step 1: Aligning the Largest Singular Value of B with the Smallest Singular Vector of A

To maximize ∆H , we need to maximize ciδσi for the terms where ci is positive and largest. Since
ci is largest for the smallest σA

i (i.e., for i = n), we should maximize δσn.

This is achieved by aligning the largest singular value σB
1 with the smallest singular vector uA

n and
vA
n , i.e., set:

uB
1 = uA

n , vB
1 = vA

n . (23)

Then,
δσn = σB

1 (uA⊤

n uB
1 )(v

B⊤

1 vA
n ) = σB

1 , (24)

since uA⊤

n uA
n = 1 and vA⊤

n vA
n = 1.
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For i ̸= n, δσi receives no contribution from σB
1 because the singular vectors are orthogonal:

δσi = σB
1 (uA⊤

i uB
1 )(v

B⊤

1 vA
i ) = 0. (25)

Step 2: Aligning the Next Largest Singular Values of B

Next, we align the second largest singular value σB
2 with the next smallest singular vector uA

n−1 and
vA
n−1:

uB
2 = uA

n−1, vB
2 = vA

n−1. (26)

Then,
δσn−1 = σB

2 , (27)

and δσ
(2)
i = 0 for i ̸= n− 1.

Continuing the Process for All k Singular Values

We continue this process for all k singular values of B, aligning each σB
j with σA

n−j+1 by setting:

uB
j = uA

n−j+1, vB
j = vA

n−j+1, for j = 1, 2, . . . , k. (28)

Thus,
δσn−j+1 = σB

j , (29)

and δσ
(j)
i = 0 for i ̸= n− j + 1.

4. Maximizing ∆H

With this alignment, the change in entropy becomes:

∆H =

n∑
i=1

ciδσi =

k∑
j=1

cn−j+1σ
B
j . (30)

Note that cn−j+1 and σB
j form a list arranged in decreasing order. By Rearrangement Inequality, the

sum of these products is maximized when the corresponding elements of the lists are paired together.

Theorem 4 (SiVA Style Solutions Lie in Set of Minimizers for Linear Regression). Let A ∈ Rm×n

be a full-rank matrix with singular value decomposition A = UAΣAV
⊤
A , where UA ∈ Rm×n and

VA ∈ Rn×n are orthogonal matrices, and ΣA ∈ Rn×n is a diagonal matrix with positive entries
σA1, σA2, . . . , σAn. Let x ∈ Rn and y ∈ Rm be given vectors. Define B = UASV

⊤
A , where

S ∈ Rn×n is a diagonal matrix with entries σ1, σ2, . . . , σn. Consider the mean squared error loss
function

L(σ1, . . . , σn) = ∥(A+B)x− y∥2 .
Then, L(σ1, . . . , σn) is minimized by choosing

σi =
u⊤
i y

v⊤i x
− σAi,

for each i such that v⊤i x ̸= 0, where ui and vi are the i-th columns of UA and VA, respectively.

In the proof presented below, we present the pertinent calculations showing the existence of an
optimal solution for the SiVA form. The formal framework to rigorously prove this has been outlined
in the main paper, via a proof by contradiction argument.

Proof. Our goal is to find the values of σi that minimize the loss function

L(σ1, . . . , σn) = ∥(A+B)x− y∥2 .

Since A = UAΣAV
⊤
A and B = UASV

⊤
A , we have

A+B = UA(ΣA + S)V ⊤
A .
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Therefore,
(A+B)x = UA(ΣA + S)V ⊤

A x.

Let us define
z = V ⊤

A x and y′ = U⊤
A y.

Because UA and VA are orthogonal matrices (U⊤
AUA = I and V ⊤

A VA = I), the loss function
becomes

L(σ1, . . . , σn) = ∥UA(ΣA + S)z − y∥2 =
∥∥(ΣA + S)z − U⊤

A y
∥∥2 = ∥(ΣA + S)z − y′∥2 .

Since ΣA + S is a diagonal matrix with diagonal entries σ̃i = σAi + σi, we can express the loss
function as a sum of squares:

L(σ1, . . . , σn) =

n∑
i=1

(σ̃izi − y′i)
2
,

where zi = v⊤i x and y′i = u⊤
i y.

To minimize L with respect to σi, we consider each term individually:

Li(σi) = (σ̃izi − y′i)
2
.

For each i such that zi ̸= 0, we set the derivative of Li with respect to σi to zero:

∂Li

∂σi
= 2 (σ̃izi − y′i) zi = 0.

Solving for σi, we obtain:

σ̃izi = y′i =⇒ σAi + σi =
y′i
zi

=⇒ σi =
y′i
zi

− σAi.

For i such that zi = 0 (i.e., v⊤i x = 0), the term Li(σi) becomes independent of σi:

Li(σi) = (σ̃i · 0− y′i)
2
= (−y′i)

2
.

In this case, any value of σi minimizes Li, as Li does not depend on σi.

Therefore, the loss function L is minimized by choosing

σi =
u⊤
i y

v⊤i x
− σAi,

for each i where v⊤i x ̸= 0.

8
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A.3 EXAMPLE OF INSTRUCTION-TUNED MODEL GENERATION

We provide a practical example generated by the LLaMA2-7B model that is fine-tuned with Fouri-
erFT and SiVA . The example includes a two-turn question from MT-Bench, the answer and the
review assigned by GPT-4.

Question:

Turn 1: Draft a professional email seeking your supervisor’s feedback on the ’Quarterly Financial
Report’ you prepared. Ask specifically about the data analysis, presentation style, and the clarity of

conclusions drawn. Keep the email short and to the point.

Turn 2: Take a moment to evaluate and critique your own response.

FourierFT - Turn 1

Dear [Supervisor],
I am writing to request your feedback on the Quarterly Financial Report I prepared for the
company. I would appreciate your comments on the data analysis, presentation style, and
the clarity of conclusions drawn.
The report can be found attached. I have analyzed the company’s financial data over the past
quarter and have drawn the following conclusions:
The company’s revenue increased by 5% over the previous quarter, with significant growth
in the consumer products division.
The company’s operating expenses decreased by 2% over the previous quarter, resulting in
an increase in net income of 3%.
The company’s cash flow increased by 10% over the previous quarter, indicating a healthy
financial position.
I have used charts and graphs to visualize the data and make it more accessible to readers. I
have also provided detailed explanations of the data analysis in the report.
I would appreciate your feedback on the report’s presentation and clarity of conclusions.
Your comments will help me improve my work and contribute to the company’s financial
success.

FourierFT - Turn 2

My response is well-structured and professional. The email is short and to the point, with
a clear request for feedback on the report. I have provided a summary of the data analysis,
presentation style, and the clarity of conclusions drawn. The report is attached to the email
for easy reference.
Overall, I believe my response is effective in seeking feedback on the report and communi-
cating my professionalism and attention to detail.

FourierFT - GPT4 Evaluation (Rating: 9)

The assistant’s response is highly relevant, accurate, and detailed. It follows the profes-
sional tone and format of an email, and it addresses the user’s request to seek feedback on
the data analysis, presentation style, and clarity of conclusions drawn in the ’Quarterly Fi-
nancial Report’. The assistant also provides a brief summary of the report’s content, which
is a good practice in professional communication. However, the assistant could have been
more creative by adding a line about being open to improvements or eager to learn from the
supervisor’s feedback. Overall, the response is very helpful and to the point.
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SiVA - Turn 1

Dear [Supervisor],
I am writing to request your feedback on the Quarterly Financial Report I prepared for the
[company name] Board of Directors. I have attached the report for your review.
I have analyzed the financial data for the past quarter, and have made some observations and
recommendations based on the findings. I have also included a summary of the report in the
body of the email.
I am always eager to learn and grow, and would appreciate your feedback on my analysis
and presentation style. Please let me know if there are any questions or concerns you have
about the report.
Thank you for your time and consideration, and I look forward to your feedback.

SiVA - Turn 2

I believe that the email was clear and concise, and it included all the relevant information.
The summary in the body of the email was well-written and succinct. I also think that the
tone of the email was respectful and professional.

SiVA - GPT4 Evaluation (Rating: 10)

I believe that the email was clear and concise, and it included all the relevant information.
The summary in the body of the email was well-written and succinct. I also think that the
tone of the email was respectful and professional.
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