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A.1 HYPERPARAMATERS
ViT-Base
Hyperparameter | OxfordPets ~ StanfordCars CIFARIO EuroSAT FGVC RESISC45 CIFAR100
Epochs 10
Optimizer AdamW
perc value 0.95
LR Schedule Linear
Learning Rate (SiVA ) 1E-1 SE-1 1E-1 1E-1 1E-1 3E-1 1E-1
Learning Rate (Head) 5E-3 5E-3 1E-3 7E-3 1E-1 3E-1 1E-2
Weight Decay 1E-4 1E-4 9E-5 1E-3 1E-4 1E-2 1E-2
ViT-Large
Hyperparameter | OxfordPets StanfordCars CIFARIO EuroSAT FGVC RESISC45 CIFAR100
Epochs 10
Optimizer AdamW
perc value 0.95
LR Schedule Linear
Learning Rate (SiVA ) 1E-1 1E-1 1E-1 1E-1 1E-1 1E-1 1E-1
Learning Rate (Head) 5E-3 5E-3 1E-2 TE-3 1E-2 3E-2 1E-3
Weight Decay 1E-4 1E-4 1E-3 1E-3 1E-3 1E-2 1E-4
Table 7: Hyperparameter setup for image classification for ViT-Base and ViT-Large.
Hyperparameter | Value
Optimizer AdamW
perc Value 0.5
Learning Rate 0.7
Warmup Steps 300
Batch Size 8
Epochs 5
LR Schedule Linear
Table 8: Hyperparameter setup for the E2E benchmark.
Model Hyperparameter ‘ SST-2 MRPC CoLA QNLI RTE STS-B
Optimizer AdamW
LR Schedule Linear
prec Value 0.95
Roberta  Epochs 30 60 60 30 60 60
Large Learning Rate (SiVA ) 0.009 0.015 0.01 0.004 0.01 0.008
Learning Rate (Head) le-4 4e-4 0.01 Te-4 6e-5 Se-4
Max Seq. Len 128 512 512 256 512 512
Batch Size 32 32 128 32 32 32
Saw Init Copy Sw Copy Sw  Zeros Zeros Zeros Copy Sw

Table 9: Hyperparameter setup for the GLUE benchmark.
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Hyperparameter | Values
Optimizer AdamW
Warmup Ratio 0.05
Batch Size 4
Accumulation Steps | 4
Epochs 1

LR Schedule Linear
Learning Rate 4e-3
perc Value 0.997

Table 10: Hyperparameter setup for instruction-tuning.

A.2 THEORETICAL RESULTS

Lemma 1 (Change in Entropy). Given a random variable x and any two distributions P, Q over
(Ui1 xi), define 6p; := P(x = xi) — Q(X = X;), and assume that such that |6p;| << 1, V1 <
i < n. Then the change in entropy AH, ,, == H(q) — H(p) is given by:

AHQJ, = — Z 5pz(10gp1)

i=1
Proof. We begin by expanding H (q) as:

H(q)=—Y ailogg
1=1

Substitute ¢; = p; + dp; into this expression:

n

H(q) ==Y (pi + 0pi) log(pi + pi)
i=1
For small perturbations dp;, applying a first-order Taylor expansion for log(p; + dp; ), we have:
opi

i

log(p; + épi) ~ logp; +

Thus, H(q) becomes:

n

H(g)~ - ((pi + 6p;) (logpi + ?))

i=1 ¢
Expanding and simplifying the above expression, and ignoring the second-order term of dp;,:
H(q) = — Xn: (pilog pi + dp; log p; + dp;)
i=1
Now, the change in entropy d H is:
0H =H(q) — H(p) = — i (dp; log p; + 6p;)
i=1

This simplifies to:

0H ==Y op;(logp; +1) =| = > _ dpi(logpi) |,
=1 =1

where the latter follows since Y ;" 0p; = > i P(X =Xi) — >y Qx =xi) =1—1=0.
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Theorem 1 (Optimal Modification of Singular Values to Maximize Entropy Increase). Let A €
R™ ™ be a matrix with singular values o > 0 for i = 1,2,...,n, and let Sy = >, o\,
Consider perturbations 6o; € R such that the singular values of A+ B become U;-A+B = ot + 0y,
for an arbitrary matrix B € R"*". Under the constraint | B||% = >_._ (60;)? < C, the maximum

possible change in entropy AH is:

3)

where

“4)

The optimal adjustments do; are:

doi = ¢ ——. ®)

Further, the coefficients c; satisfy:
e c; >0ifp; < e Ha (lower singular values).
o ¢; <0ifp; > e "4 (larger singular values).
o c; =0ifp; =e M,

Proof. 1. Expression for Maximum Entropy Increase

From the previous theorem, the maximum possible increase in entropy when all singular values can
be adjusted is:

AHpax = \/5 : Z 6127 (6)
i=1
where i
ci = —S*(logpri-HA)- (7N
A

The optimal adjustments to the singular values are:

(50’1‘:01"L. (8)

Z;L:1 C?
2. Constraint on the Number of Modifiable Singular Values

When only k singular values can be modified, let S C {1,2,...,n} be the set of indices of the
singular values to be adjusted, with |.S| = k. The maximum increase in entropy is then:

AHg=vC- |y e )

icS
Our goal is to choose S to maximize AHg.
3. Relationship Between c? and p;
The coefficients ¢; depend on p;:
1
ci=——4 (logp; +Ha). (10)
Sa
Consider c?:
1\? 5
= () (logpi +Ha)™. an
Sa
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We analyze how c? varies with p;:

- As p; — 0T (lower singular values):

e logp; — —o0.
e logp; + Ha — —oo (since H 4 is finite).
* ¢; — +o0.

i c? — F00.
-Atp; = e Ma:

e logp; + Ha = 0.

- As p; — 17 (higher singular values):

e logp; — 0.
* logp; + Ha — Ha (positive since H4 > 0).

*C = —% < 0.
2
«c?= (?—2‘) (finite and relatively small).

4. Optimal Selection of Singular Values

To maximize AHg, we need to maximize 3 ics cf. From the analysis above, c? is largest when p;
is smallest. Therefore, the optimal strategy is to select the k singular values with the smallest p;,

i.e., the lowest k singular values.
O

Theorem 2 (Sparse, Optimal Modification of Singular Values to Maximize Entropy Increase). Let
A, B € R" ™ be two matrices, with A being fixed. Suppose we are allowed to perturb at most k
singular values of A+ B (i.e., at most k of the do; are non-zero), using a matrix B € R™*" under the
constraint | B||% = 25:1(%3)2 < C. To maximize the increase in entropy AH = Harp — Ha,
it is optimal to modify the k-smallest singular values of A.

Proof. 1. Expression for Maximum Entropy Increase

From the previous theorem, the maximum possible increase in entropy when all singular values can
be adjusted is:

AHpae =VC - | ¢, (12)
i=1
where 1
ci = ——4 (logp; +Ha). (13)
Sa

The optimal adjustments to the singular values are:

60; = ¢; - L. (14)

Z;L:I C?

2. Constraint on the Number of Modifiable Singular Values
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When only k singular values can be modified, let S C {1,2,...,n} be the set of indices of the
singular values to be adjusted, with |.S| = k. The maximum increase in entropy is then:

AHs=VC- [y 2 (15)

ics
Our goal is to choose S to maximize AHg.
3. Relationship Between c? and p;
The coefficients c¢; depend on p;:
1
ci = — (logp; + Ha). (16)
Sa
Consider c?:
1\2
i = () (logp; +Ha). (17)
Sa

We analyze how c? varies with p;:

- As p; — 0T (lower singular values):

* logp; — —oc.
* logp; + Ha — —oo (since H 4 is finite).
* ¢ — F0Q.

. C? — +o00.
-Atp; = e Ha:

* logp; +Ha=0.

- As p; — 17 (higher singular values):

* logp; — 0.
* logp; + Ha — Ha (positive since Ha > 0).

*C = —7;7: < 0.
2
«c? = (?—2‘) (finite and relatively small).

4. Optimal Selection of Singular Values

To maximize AHg, we need to maximize » ics cf. From the analysis above, c? is largest when p;
is smallest. Therefore, the optimal strategy is to select the k singular values with the smallest p;,
i.e., the lowest k singular values.

O

Theorem 3 (Alignment of Singular Vectors w.r.t Pretrained Weights). Let A € R"*™ be a matrix
with singular values O’ZA arranged in descending order ( Uf‘ > 05‘ > e 2> 0;14 > 0) and corre-
sponding left and right singular vectors uf‘ and VZA. Let B € R™™" be a fixed matrix with exactly k
nonzero singular values O'JB (withoB > oB > ... > U,]f > 0) and corresponding singular vectors

u?

B
j andvj .
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Under the constraint | B||% = Z?Zl (07)? = C, the maximum increase in entropy AH = H A p—

H A is achieved when the following happen, in order:

1. First, the singular vectors of B corresponding to its largest singular value are aligned
with the singular vectors of A corresponding to its smallest singular value; specifically,
B _

A B _ A P
ul =u,_; andvy =vy, .. forj=12..k

2. Since the largest singular value of B is now aligned, AH is further maximized by aligning
the next largest singular value of B with the next smallest singular vector of A, and so on
recursively, for all k singular values of B.

Therefore, the largest increase in entropy is achieved by aligning the singular values of B in de-
creasing order with the singular vectors of A in increasing order of their indices.

Proof. We will prove that the optimal way to maximize the increase in entropy AH is by aligning
the largest singular values of B with the smallest singular vectors of A as described.

1. Expression for the Change in Entropy

The change in entropy A H can be expressed as:

AH = Z cibo, (18)
=1
where 1
ci = ——o—(logp; +Ha), (19)
Sa

g

A
with p; = Si; and S4 = 2?21 0;4. The coefficients ¢; are positive for lower ¢ (smaller singular

values of A) and negative for higher ¢ (larger singular values of A).

2. First-Order Perturbation of Singular Values

Under first-order perturbation theory, the change in the singular values do; due to B is given by:
T

Bvi, (20)

602‘211

Substituting the singular value decomposition (SVD) of B:

k
B=Y oPulvP' @1
j=1
we get:
i T T
do; = Zof(uf uf)(v]l-3 Vf‘). (22)
j=1

Our objective is to choose the alignment of uf and Vf to maximize AH.
3. Maximizing A H by Aligning Singular Vectors
Step 1: Aligning the Largest Singular Value of B with the Smallest Singular Vector of A

To maximize A H, we need to maximize ¢;dc; for the terms where ¢; is positive and largest. Since
c; is largest for the smallest o’ZA (i.e., for i = n), we should maximize do,.

This is achieved by aligning the largest singular value o with the smallest singular vector u?' and

v, ie., set:
B A B A
uy =u;,,, Vi =v,. (23)
Then,
B¢ AT . B\/( BT A B
60“ =0 (un u; )(Vl Vn) =01, (24)
: AT A AT A _
sinceu;; u;, = landv) v; =1
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For i # n, 60; receives no contribution from o because the singular vectors are orthogonal:

0o; = UlB(u;4T u{g)(vavf‘) =0. (25)

Step 2: Aligning the Next Largest Singular Values of B

Next, we align the second largest singular value o with the next smallest singular vector u?* ; and
A .
Vnot A A
B B
uy; =u, |, Vg =V,_1. (26)

Then,
50n-1 =03, 27)

and 5052) =0fori#mn—1.

Continuing the Process for All £ Singular Values

A

We continue this process for all £ singular values of B, aligning each af with o ;4 by setting:

ujB = uﬁ7j+1, Vf :v;ijﬂ, forj=1,2,...,k. (28)

Thus,

(SO'n,jJrl = O'f, (29)
andéal(j) =0fori#n—j+1.
4. Maximizing AH

With this alignment, the change in entropy becomes:

n k
AH = Zciéai = ch,jJrlO'jB. (30)
Jj=1

i=1
Note that ¢,,— ;41 and O'JB form a list arranged in decreasing order. By Rearrangement Inequality, the
sum of these products is maximized when the corresponding elements of the lists are paired together.
O

Theorem 4 (SiVA Style Solutions Lie in Set of Minimizers for Linear Regression). Ler A € R™*™
be a full-rank matrix with singular value decomposition A = UxX. 4 VJ , where Uy € R™*"™ and
Va € R"™ ™ are orthogonal matrices, and ¥4 € R"*"™ is a diagonal matrix with positive entries

OA1,0A2,---,04n. Let x € R™ and y € R™ be given vectors. Define B = UASVJ, where
S € R™™" is a diagonal matrix with entries o1,03,...,0y,. Consider the mean squared error loss
function
2
Lot o) = |(A+ Ba — y|*.
Then, L(o1,...,0,) is minimized by choosing
T
g; = Yiy — O A;
1 /UTJ/‘ 19

(2

for each i such that v x # 0, where u; and v; are the i-th columns of U 4 and V4, respectively.

In the proof presented below, we present the pertinent calculations showing the existence of an
optimal solution for the SiVA form. The formal framework to rigorously prove this has been outlined
in the main paper, via a proof by contradiction argument.
Proof. Our goal is to find the values of o; that minimize the loss function
L(ot,....00) = [(A+ Bz —y|.
Since A = Ua% 4V, and B = UsSV,], we have
A+B=Ua(Sa+ 95V, .
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Therefore,
(A+B)x =Ux(Xa + SV, .
Let us define
z=Viz and ¢y =Ujy.
Because U4 and V4 are orthogonal matrices (UXU 4 = I and VAT Vi = I), the loss function
becomes
2
L(o1,. . 00) = |Ua(Za+8)z —ylI> = |(Za +8)z = ULyl = |(Za +8)z —¢'|°.
Since Y4 + S is a diagonal matrix with diagonal entries 6; = o4; + 0;, we can express the loss
function as a sum of squares:

n

L(O’l,...,an) = 2(5222 _yg)za

=1
T

where z; = v z and y} = u, y.

To minimize L with respect to o;, we consider each term individually:
- 2
Li(oi) = (Gizi —y;)" -
For each i such that z; # 0, we set the derivative of L; with respect to o; to zero:

oL;
80’1‘

Solving for ¢;, we obtain:

/ /
~ / Yi Yi
0i%i =Y; =7 0Ai T Oi= "0 = 0i= 7= 04i
(2 (2
T

; © = 0), the term L;(0;) becomes independent of o

Li(o)) = (5:- 0 —y))* = (—y))°.

In this case, any value of o; minimizes L;, as L; does not depend on o;.

For ¢ such that z; = 0 (i.e., v

Therefore, the loss function L is minimized by choosing

T
_ iy

0; = T — O Ai,
Ui X

for each i where v, x # 0. O
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A.3 EXAMPLE OF INSTRUCTION-TUNED MODEL GENERATION

We provide a practical example generated by the LLaMA2-7B model that is fine-tuned with Fouri-
erFT and SiVA . The example includes a two-turn question from MT-Bench, the answer and the
review assigned by GPT-4.

Question:

Turn 1: Draft a professional email seeking your supervisor’s feedback on the ’Quarterly Financial
Report’ you prepared. Ask specifically about the data analysis, presentation style, and the clarity of
conclusions drawn. Keep the email short and to the point.

Turn 2: Take a moment to evaluate and critique your own response.

FourierFT - Turn 1

Dear [Supervisor],

I am writing to request your feedback on the Quarterly Financial Report I prepared for the
company. [ would appreciate your comments on the data analysis, presentation style, and
the clarity of conclusions drawn.

The report can be found attached. I have analyzed the company’s financial data over the past
quarter and have drawn the following conclusions:

The company’s revenue increased by 5% over the previous quarter, with significant growth
in the consumer products division.

The company’s operating expenses decreased by 2% over the previous quarter, resulting in
an increase in net income of 3%.

The company’s cash flow increased by 10% over the previous quarter, indicating a healthy
financial position.

I have used charts and graphs to visualize the data and make it more accessible to readers. I
have also provided detailed explanations of the data analysis in the report.

I would appreciate your feedback on the report’s presentation and clarity of conclusions.
Your comments will help me improve my work and contribute to the company’s financial
success.

FourierFT - Turn 2

My response is well-structured and professional. The email is short and to the point, with
a clear request for feedback on the report. I have provided a summary of the data analysis,
presentation style, and the clarity of conclusions drawn. The report is attached to the email
for easy reference.

Overall, I believe my response is effective in seeking feedback on the report and communi-
cating my professionalism and attention to detail.

9

The assistant’s response is highly relevant, accurate, and detailed. It follows the profes-
sional tone and format of an email, and it addresses the user’s request to seek feedback on
the data analysis, presentation style, and clarity of conclusions drawn in the ’Quarterly Fi-
nancial Report’. The assistant also provides a brief summary of the report’s content, which
is a good practice in professional communication. However, the assistant could have been
more creative by adding a line about being open to improvements or eager to learn from the
supervisor’s feedback. Overall, the response is very helpful and to the point.
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SiVA - Turn 1

Dear [Supervisor],

I am writing to request your feedback on the Quarterly Financial Report I prepared for the
[company name] Board of Directors. I have attached the report for your review.

I have analyzed the financial data for the past quarter, and have made some observations and
recommendations based on the findings. I have also included a summary of the report in the
body of the email.

I am always eager to learn and grow, and would appreciate your feedback on my analysis
and presentation style. Please let me know if there are any questions or concerns you have
about the report.

Thank you for your time and consideration, and I look forward to your feedback.

r
\

SiVA - Turn 2

I believe that the email was clear and concise, and it included all the relevant information.
The summary in the body of the email was well-written and succinct. I also think that the
tone of the email was respectful and professional.

SiVA - GPT4 Evaluation (Rating: 10)

I believe that the email was clear and concise, and it included all the relevant information.
The summary in the body of the email was well-written and succinct. I also think that the
tone of the email was respectful and professional.

10
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