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Abstract

Scaling deep reinforcement learning networks is challenging and often results
in degraded performance, yet the root causes of this failure mode remain poorly
understood. Several recent works have proposed mechanisms to address this, but
they are often complex and fail to highlight the causes underlying this difficulty.
In this work, we conduct a series of empirical analyses which suggest that the
combination of non-stationarity with gradient pathologies, due to suboptimal
architectural choices, underlie the challenges of scale. We propose a series of direct
interventions that stabilize gradient flow, enabling robust performance across a
range of network depths and widths. Our interventions are simple to implement and
compatible with well-established algorithms, and result in an effective mechanism
that enables strong performance even at large scales. We validate our findings on a
variety of agents and suites of environments. Source code here.

“We must be able to look at the world and see it as a dynamic process, not a static picture.”
— David Bohm

1 Introduction

Recent advances in deep reinforcement learning (deep RL) have demonstrated the ability of deep
neural networks to solve complex decision-making tasks from robotics to game play and resource
optimization [Mnih et al., 2015, Vinyals et al., 2019, Bellemare et al., 2020, Fawzi et al., 2022].
Motivated by successes in supervised and generative learning, recent works have explored scaling
architectures in deep RL, showing gains in representation quality and generalization across tasks
[Farebrother et al., 2023, Taiga et al., 2023]. However, scaling neural networks in deep RL remains
fundamentally challenging [Ceron et al., 2024b,a]. A central cause of this instability lies in the unique
optimization challenges of RL. Unlike supervised learning, where data distributions are fixed, deep
RL involves policy-dependent data that constantly change during training [Lyle et al., 2022]. Each
update of the policy πθ alters future states and rewards, making the training objective inherently
non-stationary. Value-based methods exacerbate these issues via bootstrapping, recursively using
predicted values as targets.

Estimation errors compound over time [Fujimoto et al., 2018], especially under sparse or delayed
rewards [Zheng et al., 2018], leading to unstable updates, policy collapse, or value divergence
[Van Hasselt et al., 2016, Lyle et al., 2023, 2024]. These dynamics are tightly coupled with archi-
tectural vulnerabilities. Deep networks face well known pathologies such as vanishing/exploding
gradients [Pascanu et al., 2013], ill-conditioned Jacobians [Pennington et al., 2017], and activation
saturation [Glorot and Bengio, 2010]. In deep RL, these are magnified by the “deadly triad” [Sutton
and Barto, 2018, Van Hasselt et al., 2018], off-policy corrections, and changing targets. As networks
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scale, the risk of signal distortion and misalignment increases, resulting in underutilized capacity and
brittle learning [Obando Ceron et al., 2023, Ceron et al., 2024a].

One overlooked source of these failures lies in how gradients propagate through the network. Specifi-
cally, the gradient decomposition, the layer-wise structure of backpropagation as a chain of Jacobians
and weights determine how information flows during learning [Lee et al., 2020]. While gradient
signal preservation has been studied in supervised learning [Schoenholz et al., 2017, Jacot et al.,
2018], its role in deep RL, where both inputs and targets shift continually, remains poorly understood.

In this work, we investigate how gradient decomposition interacts with non-stationarity and network
scaling in deep RL. We demonstrate that in non-stationary settings like RL – where targets are
bootstrapped, policies evolve continually, and data distributions shift – gradient signals progressively
degrade across depth. This motivates the need for methods that explicitly preserve the structure
of gradient information across layers. We explore this through a series of controlled experiments
and ablations across multiple algorithms and environments, demonstrating that actively encouraging
gradient propagation significantly improves stability and performance, even with large networks. Our
work offers a promising approach for scaling deep RL architectures, yielding substantial performance
gains across a variety of agents and training regimes.

2 Preliminaries

Deep Reinforcement Learning A deep reinforcement learning agent interacts with an environment
through sequences of actions (a ∈ A), which produce corresponding sequences of observations
(s ∈ S) and rewards (r ∈ R), resulting in trajectories of the form τ := {s0, a0, r0, s1, a1, r2, . . .}.
The agent’s behavior is often represented by a neural network with parameters θ, composed of
convolutional layers {ϕ1, ϕ2, . . . , ϕLc

} and dense (fully connected) layers {ψ1, ψ2, . . . , ψLd
}, where

ψLd
has an output dimensionality of |A|. At every timestep t, an observation st ∈ S is fed

through the network to obtain an estimate of the long-term value of each action: Qθ(st, ·) =
ψLd

(ψLd−1(. . . (ϕLc
(. . . (ϕ1(st)) . . .)) . . .)). The agent’s policy πθ(· | st) specifies the probability

of selecting each action, for instance by taking the softmax over the estimated values as in Eq. 1. The
training objective is typically defined as the maximization of expected cumulative reward as in Eq. 2,

πθ(at | st) =
eQθ(st,at)∑
a∈A e

Qθ(st,a)
(1) J(θ) = Eτ∼πθ

[ ∞∑
t=0

γtrt

]
(2)

where γ ∈ [0, 1) is a discount factor and τ denotes a trajectory generated by following policy πθ.
Optimization proceeds by minimizing a surrogate loss L(θ), which may be derived from temporal-
difference (TD) errors, policy gradients, or actor-critic estimators [Sutton and Barto, 2018]. In
TD-based methods, the TD error at timestep t is defined as:

δt = rt + γVθ(st+1)− Vθ(st),

where Vθ(s) = Ea∼πθ(a|s)Qθ(s, a). The recurrent nature of δt introduces dependencies on both
current estimates and future rewards, making L(θ) inherently non-stationary. As the policy πθ
evolves, the data distribution used for training shifts, further complicating optimization. Training
is performed by collecting trajectories, computing gradients ∇L(θ), and updating parameters via
θ ← θ − η∇L(θ), where η > 0 is the learning rate. Following conventions from supervised learning,
deep RL algorithms often use adaptive variants of stochastic gradient descent, such as Adam [Kingma
and Ba, 2014] or RMSprop [Hinton, 2012], which adjust learning rates based on running estimates of
gradient statistics. The gradients with respect to each layer are denoted by;

∇ϕi =
∂L
∂ϕi

, ∇ψj =
∂L
∂ψj

,

where ϕi and ψj represent the parameters (i.e., weight matrices or bias vectors) of layer i and j
respectively. The structure and magnitude of these gradients (∇ϕi and ∇ψj) are influenced by the
loss function, data distribution collected from the environment, and the architecture itself. These
per-layer gradients determine how effectively different parts of the network adapt during training.

While training large models in supervised learning settings present challenges, advances in initial-
ization, normalization, and scaling strategies have enabled relatively stable optimization [Ioffe and
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Szegedy, 2015, Ba et al., 2016, Glorot and Bengio, 2010]. Scaling up model size has been a central
driver of progress across domains, improving generalization, enhancing representation learning, and
boosting downstream performance [Kaplan et al., 2020].

Deep RL differs substantially from supervised learning. First, the data distribution is non-stationary,
continually shifting as πθ updates. Second, learning signals are often sparse, delayed, or noisy,
which introduces variance in the estimated gradients [Han et al., 2022, Fujimoto et al., 2018]. These
factors destabilize optimization and lead to loss surfaces with sharp curvature and complex local
structure [Ilyas et al., 2020, Achiam et al., 2019]. Moreover, increasing model capacity often degrades
performance unless regularization or architectural interventions are applied [Gogianu et al., 2021,
Bjorck et al., 2021, Schwarzer et al., 2023, Wang et al., 2025].

These challenges are further compounded by both architectural and environmental factors. Network
depth, width, initialization, and nonlinearity affect how gradients are propagated across layers.
Meanwhile, reward sparsity, exploration dificulty, and transition stochasticity impose additional
structure on the optimization landscape. The resulting geometry reflects the joint dynamics of policy,
environment, and architecture, making deep RL optimization uniquely complex.

Gradient Propagation Training deep networks poses fundamental challenges for effective gradient
propagation [Glorot and Bengio, 2010]. As network depth increases, gradients may either vanish or
explode as they are backpropagated through multiple layers, impeding the optimization of early layers
and destabilizing learning dynamics [Ba et al., 2016]. These issues arise from repeated applications
of the chain rule. For a network with intermediate hidden representations {h0, h1, . . . , hL}, where
hk ∈ Rdk , the gradient of the loss L with respect to a hidden layer hℓ is:

∂L
∂hℓ

=

(
L∏

k=ℓ+1

∂hk
∂hk−1

)
∂L
∂hL

,

where each ∂hk

∂hk−1
∈ Rdk×dk−1 is the Jacobian. If the singular values of these Jacobians are not

properly controlled, their repeated multiplication can cause the norm of the gradient to shrink or grow
exponentially with L. This severely impairs convergence, as earlier layers receive little to no useful
gradient signal or become numerically unstable [Ioffe and Szegedy, 2015, He et al., 2016].

In addition to depth, the width of the network also influences gradient propagation. Consider a fully
connected layer with weight matrix W ∈ Rm×n and input vector h ∈ Rn. The output is Wh ∈ Rm,
and under the assumption that W and h have i.i.d. zero-mean entries with finite variance σW and
σh, respectively, the variance of the output is given by Var[Wh] = nσW σh. Thus, scaling the
width n without adjusting σW and σh leads to instability in forward and backward signal propagation
affecting gradient norms and optimization trajectories.

Beyond depth and width, the choice of nonlinearity also plays a central role in determining how gra-
dients propagate . In a typical feedforward network, hidden activations evolve as hk = ζ(Wkhk−1),
where ζ(·) is a nonlinear activation function (e.g., ReLU, tanh, sigmoid), and Wk is the weight
matrix at layer k. During backpropagation, the gradient with respect to a hidden layer includes the
product of the Jacobian of the linear transformation and the derivative of the nonlinearity:

∂L
∂hk−1

=W⊤
k

(
ζ ′(Wkhk−1)⊙

∂L
∂hk

)
,

where ζ ′(·) denotes the elementwise derivative of the activation function, and ⊙ represents elemen-
twise multiplication. For ReLU, ζ ′(x) = 1x>0, so the gradient is entirely blocked wherever the
neuron is inactive. This leads to the well-known dying ReLU problem, where a significant portion of
the network ceases to update and becomes untrainable [Lu et al., 2019, Shin and Karniadakis, 2020].

3 Diagnosis: Gradients Under Non-stationarity and Scale

A fundamental premise of modern deep learning is that scaling model capacity yields consistent
gains in performance [Kaplan et al., 2020, Chowdhery et al., 2023]. This has held true in large-scale
supervised learning, where training data distributions are stationary and i.i.d., and gradient descent
operates under relatively stable conditions. However, in non-stationary settings, such as RL, gradient-
based optimization faces severe challenges that scaling alone may exacerbate [Ceron et al., 2024a,b].
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In this section, we diagnose how gradient pathologies emerge and intensify across different settings,
with a focus on architectural scaling in width and depth (network scales used specified in Table 1).

3.1 Gradient Pathologies

We train neural networks of varying depths and widths and analyze their training dynamics.

Supervised Learning (Stationary and Non-Stationary) We use the CIFAR-10 image classification
benchmark [Krizhevsky et al., 2009], where the input-output mapping remains fixed over time.
Models consist of standard 6-layer convolutional neural networks (CNN) followed by a multi-layer
perceptron (MLP). We vary the depth and width of the MLP to explore how model scale influences
learning behavior. To introduce non-stationarity, we periodically shuffle the training labels during
training, following the setup by Sokar et al. [2023]. This creates a loss landscape that changes
over time, echoing the challenges of deep RL. Fig. 1 illustrates the contrast in training behavior and
gradient flow between stationary and non-stationary supervised learning. Under non-stationarity, deep
networks fail to recover accuracy, which aligns with a marked degradation in gradient magnitudes.
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Figure 1: Training dynamics under stationary and non-stationary supervised learning. (Left)
In the stationary setting, both shallow and deep models fit the data effectively across widths. Under
non-stationarity only shallow networks partially recover during training, while deeper ones collapse.
(Right) This collapse correlates with degraded gradient flow. In stationary settings, gradient norms
remains stable across all network scales (shaded boxes) while in non-stationary settings (solid-colored
boxes), gradient magnitudes diminish with depth and width, suggesting poor adaptability.

Reinforcement Learning As discussed in Sec. 2, RL introduces fundamentally different sources of
non-stationarity due to the policy-dependent data distribution and moving target estimates. To study
gradient dynamics, we use PQN [Gallici et al., 2025], a recent value-based algorithm that achieves
strong performance without relying on a target network or replay buffer. PQN ensures stability and
convergence using Layer Normalization [Ba et al., 2016] and supports GPU-based training through
vectorized environments for online parallel data collection. In Sec. C.1 we extend our investigation
to DQN [Mnih et al., 2015] and Rainbow [Hessel et al., 2018], demonstrating the generality of our
observations. As shown in Fig. 2, deeper networks trained with PQN exhibit a collapse in both
episode returns and gradient norms2, highlighting the fragility of deep models under non-stationarity.

3.2 Training Degradation

In Fig. 3 we evaluate diagnostic metrics capturing expressivity and training dynamics, revealing that
deeper networks exhibit pronounced training pathologies and degraded performance. We first measure
the fraction of dormant neurons, defined as units with near-zero activations over a batch of trajectories
[Sokar et al., 2023], and find that dormant neurons grow with depth, signaling underutilized capacity.
Next, we assess representational expressivity using SRank, the effective rank of penultimate-layer
activations [Kumar et al., 2020], observing that deeper networks tend to collapse state representations
into lower-dimensional, and less expressive (as evidenced by declining returns) subspaces.To study
loss curvature, we compute the Hessian trace of the temporal-difference loss. This metric serves as
a proxy for sharpness or smoothness in optimization [Ghorbani et al., 2019], similarly to tracking
the largest eigenvalue. Fig. 3 shows that only shallow networks exhibit high Hessian trace values,

2Unless otherwise specified, all ALE results are averaged over three seeds.
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Figure 2: Mean episode returns and gradient norms across increasing MLP depths and widths on
two ALE games using PQN. (Left) Only shallow networks achieve high episode returns; performance
collapses for deeper networks. (Right) The collapse correlates with vanishing gradient norms,
suggesting that deeper models fail to adapt to non-stationarity in deep RL.
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Figure 3: Training pathologies emerge as MLP depth increases. Deeper networks exhibit a higher
fraction of inactive neurons, reduced representation rank (SRank), vanishing Hessian trace (loss
curvature), and degraded learning performance (mean Q-values and episode returns). These trends
indicate that scaling depth limits expressivity and plasticity, impairing policy quality.

suggesting access to sharper regions of the loss surface with pronounced directions of improvement.
In contrast, deeper architectures consistently show near-zero trace, indicating poorly conditioned
geometry that hinders effective gradient-based updates. These findings suggest a breakdown in
representation, plasticity, and optimization as networks scale, ultimately impeding learning.

Key observations on gradients under non-stationarity and scale:
• Non-stationarity amplifies gradient degradation in deeper and wider networks.
• In deep RL, deeper models suffer from vanishing gradients, reduced activations, and

loss of representational expressivity.
• The flat loss curvature intensifies with depth, correlating with poor learning.

4 Stabilizing Gradients

Having identified the pathologies that emerge in non-stationary regimes, particularly under large-scale
architectures, we investigate strategies to mitigate these instabilities. We focus on two complementary
interventions: skip connections [He et al., 2016] and optimizers [Martens and Grosse, 2015], as these
directly improve gradient flow. We continue to use PQN as our base RL algorithm and evaluate on
the Atari-10 suite [Aitchison et al., 2023]. In Sec. 5, we demonstrate that the effectiveness of our
proposed gradient interventions generalize beyond this specific algorithm and environment suite.

4.1 Intervention 1: Multi-Skip Residuals for Gradient Stability

Gradient instability in deep networks is often aggravated by increasing depth, non-linear activations,
and misaligned curvature across layers. While standard residual connections offer some relief by
introducing shortcut paths for gradient flow [He et al., 2016], they typically span only one or two
layers, which can be insufficient in the presence of severe gradient disruption due to non-stationarity.
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Figure 4: (Left) MLP architectures and (right) scaling strategies studied.

We introduce multi-skip residual connections, in which the flattened convolutional features are
broadcast directly to all subsequent MLP layers. This design ensures that gradients can propagate
from any depth back to the shared encoder without obstruction.

We compare our network architecture against the standard fully connected baseline across varying
depths. As shown in Fig. 5 (left), performance collapses with increased depth in the baseline, while
the multi-skip architecture maintains stable learning and continues to improve across widths. This
improvement is accompanied by consistently higher gradient magnitudes. Complete results across all
network depths and widths are presented in Sec. C.4.
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Figure 5: Gradient-stabilizing interventions improve scalability in deep RL. (Left) Standard
fully connected networks trained with PQN collapse at greater depths due to vanishing gradients. In
contrast, multi-skip architectures maintain gradient flow and scale effectively. (Right) The default
RAdam optimizer leads to instability in deep networks, while switching to the Kron optimizer
preserves gradient signal and enables stable learning without architectural changes.

4.2 Intervention 2: Second-Order Optimizers for Non-Stationarity

First-order optimizers such as SGD and Adam rely on local gradient estimates and fixed heuristics
(e.g., momentum, adaptive step sizes) [Kingma and Ba, 2014], which are agnostic to curvature and
often brittle under shifting data distributions. In contrast, second-order methods adjust parameter
updates using curvature information, enabling more informed and stable adaptation.

Let L(θ) denote the loss function, and g = ∇L(θ) its gradient. A second-order update takes the
form θt+1 = θt − ηH−1g, where H is the curvature matrix, typically the Hessian or the Fisher
Information Matrix (FIM) [Martens, 2020]. Directly inverting H is computationally infeasible in
deep neural networks so Kronecker-factored approximations, such as K-FAC [Martens and Grosse,
2015], address this challenge by approximating H using low-rank Kronecker products.

Kronecker-factored optimizer (Kron for short) approximates the FIM and applies structured precon-
ditioning that captures inter-parameter dependencies, unlike Adam’s diagonal scaling. This yields
directionally aware preconditioning that better aligns with the curvature of the loss surface [Martens,
2020]. In non-stationary settings, such as deep RL, where both the data distribution and curvature
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evolve over time, curvature-aware updates can help preserve gradient signal by maintaining stable
update magnitudes and directions. As shown in Fig. 5 (right), replacing RAdam with Kron prevents
performance collapse at greater depths, even in standard MLP architectures. Complete results across
all network depths and widths are presented in Sec. C.6.

4.3 Combining Gradient Interventions

We combine both gradient interventions to PQN and evaluate it on the full ALE suite (57 games),
across 3 seeds and 200M frames. Fig. 6 shows that our augmented agent outperforms the baseline in
90% of the environments, achieving a median relative improvement of 83.27%. Notably, the baseline
PQN is itself competitive with strong agents such as Rainbow [Gallici et al., 2025], highlighting the
effectiveness of our interventions. Detailed per-environment learning curves can be found in Sec. E.1.

In Fig. 7 we validate the effectiveness of the combined gradient interventions in the non-stationary
SL setting we used as motivation in Sec. 3. The results verify that these interventions enable high
accuracy and sustained adaptability across depths and widths, even under dynamic label reshuffling.
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Figure 6: Gradient-stabilized PQN achieves superior scalability. (Left) On Atari-10, the combined
interventions lead to high HNS even at greater depths, outperforming either intervention alone (see
Fig. 5) and increased gradient gradient flow. (Right) On the full ALE suite, our agent outperforms the
baseline in 90% of the games with a median performance improvement of 83.27%.
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4.4 Alternative Gradient-Stabilization Methods

To ensure that our findings were not specific to a narrow choice of interventions, we conducted a
broader exploration of alternative strategies for improving gradient stability in deep RL. We tested
a variety of approaches inspired by prior work on optimization and representation stability in both
supervised and RL settings (see Sec. C.7 for more details).

As summarized in Tab. 3, none of these methods consistently improved stability or performance
compared to our proposed combination of multi-skip residuals and Kronecker-factored optimization.
In many cases, the alternatives yielded either negligible gains or degraded performance as network
depth increased, reinforcing that architectural and curvature-aware interventions are key to preserving
gradient flow at scale.
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5 Beyond the ALE and PQN

To evaluate the generality of our findings, we extend our analyses. Specifically, we: (i) apply our
proposed methods to PPO [Schulman et al., 2017] on the full ALE and on continuous control tasks in
Isaac Gym [Makoviychuk et al., 2021]; (ii) assess the impact of richer convolutional encoders by
replacing the standard CNN backbone used in the ALE with the Impala CNN architecture [Espeholt
et al., 2018]; (iii) augment Simba [Lee et al., 2025] with our proposed techniques and evaluate
performance on the DeepMind Control Suite (DMC) [Tassa et al., 2018]; and (iv) investigate whether
our interventions can stabilize and scale a wide range of Q-learning algorithms in challenging offline
RL benchmarks [Park et al., 2025].
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Figure 8: PPO with gradient interventions. Left: On the full ALE suite, applying the combined
gradient interventions to PPO yields a median performance improvement of 31.40% and outperforms
the baseline in 83.64% of the games. Right: In the Cartpole and Anymal tasks from IsaacGym, only
the augmented PPO maintains stable performance across depths and widths.

PPO with Gradient Interventions. Fig. 8 (left) shows that augmenting PPO with the same
strategies as in PQN (Layer Normalization by default on PQN, multi-skip residual connections, and
Kronecker-factored optimization) significantly boots performance. On the ALE benchmark, the
augmented PPO outperforms the baseline in 83.64% of the environments, achieving a median relative
improvement of 31.40%. In Isaac Gym’s continuous control tasks, including Cartpole and Anymal
(Fig. 8, right), the baseline PPO collapses as model size increases, while the augmented variant
remains stable and achieves superior performance at all depths and widths.

Gradient Interventions in Scaled Encoder Variants The Impala CNN is a scalable convolutional
architecture that has demonstrated strong performance gains in agents such as Impala [Espeholt
et al., 2018] and Rainbow [Hessel et al., 2018]. We investigate whether, given its capacity to
extract richer representations from visual input, combining Impala CNN with our gradient flow
interventions enables effective scaling of the MLP component. As shown in Fig. 9, PPO and PQN
benefit significantly from replacing the standard CNN with the Impala CNN. For PQN, the Impala
encoder enables successful scaling of the MLP, in contrast to the performance collapse seen without
our interventions. These results suggest that the expressivity of richer visual encoders is more
effectively leveraged by deeper networks when gradient flow is preserved.
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Figure 9: Scaling performance with standard vs. Impala CNN encoders on PQN (left) and PPO
(right). Each agent is evaluated using both the Atari CNN (left sub-panels) and the Impala CNN
(right sub-panels) as the encoder. Gradient interventions enable successful scaling in both cases.

Simba with Kron Optimizer. Simba [Lee et al., 2025] is a scalable actor-critic framework that
integrates normalization, residual connections, and LayerNorm. We augment Simba by replacing its
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Figure 10: Performance comparison between AdamW (dashed lines) and Kron (solid lines)
optimizers using the SimBa architecture with SAC and DDPG, averaged over 5 random seeds.
As model size increases, AdamW leads to consistent performance degradation, while Kron enables
stable and improved learning with larger networks.

default AdamW optimizer with Kron while keeping all other hyperparameters fixed. We evaluate
SAC [Haarnoja et al., 2018] and DDPG [Lillicrap et al., 2015] on challenging DMC tasks, using
the Simba architectures of varying depth and width. Despite its design for scalability, default Simba
collapses across all tasks as networks grow as shown in Fig. 10 (additional results in Sec. E.2).
In contrast, the Kron-augmented version successfully scales in both depth and width, achieving
consistent and stable performance gains. These findings underscore the generality of our approach as
effectively enabling parameter scaling in deep RL agents.

Gradient Interventions for Scalable Offline Q-Learning. Park et al. [2025] highlight significant
challenges in scaling Q-learning algorithms for complex offline RL tasks, demonstrating that many
standard offline RL baselines fail to learn effective policies, even on large, high-quality datasets. Their
key finding was that performance improvements were primarily driven by techniques that shorten the
effective credit assignment horizon, such as n-step returns and hierarchical methods. This led to their
proposal of two new high-performing algorithms, SHARSA and DSHARSA, which are designed
to operate with shorter effective horizons. This finding motivates a parallel investigation: can our
proposed gradient interventions, which are designed to stabilize and accelerate deep network training,
also address the scaling limitations of offline Q-learning? To test this, we augment the full suite of
baselines and novel algorithms from Park et al. [2025] with our proposed gradient interventions. The
results, presented in Fig. 11, show that our methods provide a complementary path to scalability.
Applying our interventions generally improves the performance of the baselines across all tasks.

The performance gains are particularly pronounced in the most sparse-reward task,
humanoidmaze-giant-navigate, where our gradient interventions enable multiple methods to
achieve near-optimal performance, whereas their baseline counterparts largely fail. Furthermore,
this stability extends to generalization across task difficulty. When moving from puzzle-4x5-play
to the harder puzzle-4x6-play task, many baselines exhibit a sharp performance degradation. In
contrast, the performance of several algorithms with our interventions remains consistent and high,
demonstrating improved robustness. Finally, we note that while the primary focus of this paper is to
address gradient pathologies arising from scaling and non-stationarity, these results highlight that our
interventions are also highly beneficial in offline deep RL, where inputs are stationary.

6 Related Work

A central challenge in scaling deep RL lies in the inefficient use of model capacity. Increasing param-
eter counts often fails to yield proportional gains due to under-utilization. Sokar et al. [2023] and Liu
et al. [2025b] show that online RL induces a growing fraction of inactive neurons, a phenomenon
also observed in offline settings. Ceron et al. [2024a] report that up to 95% of parameters can be
pruned post-training with negligible performance drop, underscoring substantial redundancy. These
findings have motivated techniques such as weight resetting [Schwarzer et al., 2023], tokenized
computation [Sokar et al., 2025], and sparse architectures [Ceron et al., 2024b, Willi et al., 2024, Liu
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Figure 11: Performance of offline Q-learning algorithms with and without our gradient inter-
ventions. We compare the original algorithms from Park et al. [2025] against our augmented versions.
The results, averaged over 3 seeds demonstrate a general improvement in scalability.

et al., 2025a, Ma et al., 2025], along with auxiliary objectives to promote capacity utilization [Fare-
brother et al., 2023]. While scaling model size offers greater expressivity, its benefits depend on
appropriate training strategies [Ota et al., 2021]. Architectural interventions such as SimBa [Lee
et al., 2025] improve robustness by regularizing signal propagation through components such as
observation normalization, residual feedforward blocks, and layer normalization. Complementarily,
BRO [Nauman et al., 2024] shows that scaling the critic network yields substantial gains in sample
and compute efficiency, provided it is paired with strong regularization and optimistic exploration
strategies.

Gradient flow, however, remains a central bottleneck. We complement prior efforts by explicitly
targeting vanishing gradients as a mechanism for improving scalability. Our approach builds on the
role of LayerNorm in stabilizing training and enhancing plasticity [Lyle et al., 2024], and leverages its
theoretical effect on gradient preservation as formalized in PQN [Gallici et al., 2025]. Optimization-
level interventions such as second-order methods [Martens and Grosse, 2015, Muppidi et al., 2024]
and adaptive optimizers [Ellis et al., 2024, Bengio et al., 2021, Wu et al., 2017] also address instability
under non-stationarity. Our approach integrates architectural and optimizer-level interventions to
enable stable gradient flow and unlock parameter scaling in deep RL agents.

7 Discussion

Our analyses in Sec. 3 suggest that the difficulty in scaling networks in deep RL stems from the
interaction between inherent non-stationarity and gradient pathologies that worsen with network
size. In Sec. 4, we introduced targeted interventions to address these challenges, and in Sec. 4.3,
we demonstrated their effectiveness.We validated the generality of our approach across agents and
environment suites, consistently observing similar trends. These findings reaffirm the critical role
of network design and optimization dynamics in training scalable RL agents. While our proposed
solutions may not be optimal, they establish a strong baseline and provide a foundation for future
work on gradient stabilization in deep RL. More broadly, our findings suggest that scaling limitations
in deep RL are not solely attributable to algorithmic instability or insufficient exploration, but also
stem from gradient pathologies amplified by architectural and optimization choices. Addressing
these issues directly, without altering the learning algorithm, yields substantial gains in scalability
and performance. This suggests that ensuring stable gradient flow is a necessary precondition for
effective parameter scaling in deep RL.

Limitations. Our study is constrained by computational resources, which limited our ability to
explore architectures beyond a certain size. While our interventions show consistent improvements
across agents and environments, further scaling remains an open question. While using second order
optimizers introduced additional computational overhead (see Tab. 12), this cost is mitigated by
leveraging vectorized environments and efficient deep RL algorithms, narrowing the gap relative
to standard methods. These limitations highlight promising directions for future work, including
the development of more computationally efficient gradient stabilization strategies and scalable
optimization techniques.
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A Environment Details

Throughout the paper, we evaluate the deep reinforcement learning agents’ performance on the Atari-
10 suite [Aitchison et al., 2023], a curated subset of games from the Arcade Learning Environment
(ALE) [Bellemare et al., 2013]. Atari-10 consists of 10 games selected to capture the maximum
variance in algorithm performance, achieving over 90% correlation with results on the full ALE
benchmark. This makes it a computationally efficient yet representative testbed for deep reinforcement
learning. We follow the experimental protocol of Obando Ceron et al. [2023], Ceron et al. [2024b],
Agarwal et al. [2021], running each experiment with three random seeds and reporting the aggregate
human-normalized score across games.

The games in Atari-10 are:

• Amidar, Battle Zone, Bowling, Double Dunk, Frostbite, Kung Fu Master, Name This Game,
Phoenix, Q*Bert and River Raid.

Additionally, to further support the generality of our findings, we evaluate the proposed combined
gradient interventions on the full ALE benchmark. We also assess their effectiveness on continuous
control tasks from the IsaacGym simulator [Makoviychuk et al., 2021] and the DeepMind Control
Suite (DMC) [Tassa et al., 2018], extending our analysis to robotics-based environments. We conduct
experiments on the 4 challenging tasks of DMC:

• Humanoid Walk, Humanoid Run, Dog Trot and Dog Run.

B Network Sizes

Throughout the paper, we experiment with models of varying depths and widths. Unless stated
otherwise (e.g. in Sec. 5, where we evaluate the Impala CNN), the convolutional feature extractors
are kept fixed. Consequently, our experiments focus primarily on scaling strategies and architectural
variations in the MLP components of the networks.

To enable meaningful comparisons across different learning regimes, the MLP architectures are
kept consistent across supervised learning (SL), non-stationary SL, and reinforcement learning (RL)
experiments. This consistency ensures that observed differences in gradient behavior arise from the
learning setting itself, rather than confounding factors due to domain-specific architectures.

Table 1 provides detailed information on the number of parameters for each depth–width configuration,
categorized as small, medium, or large, as used throughout the paper.

Table 1: Number of parameters (in millions) for different MLP architectures.
Depth / Width Small Medium Large
Small 2.39 11.90 27.70
Medium 3.45 21.35 53.93
Large 4.50 30.79 80.15

C Additional Experiments

C.1 Scaling with DQN and Rainbow

To further support our hypothesis on the emergence of gradient pathologies in deep reinforcement
learning, we investigate whether similar issues arise in algorithms beyond PQN and PPO, as discussed
in the main paper. Specifically, we study the effects of architectural scaling on two widely used
value-based algorithms: DQN [Mnih et al., 2015] and Rainbow [Hessel et al., 2018].

DQN is a foundational deep RL algorithm that learns action-value functions using temporal difference
updates and experience replay, serving as a standard baseline for value-based methods. Rainbow
extends DQN by integrating several enhancements, such as double Q-learning, prioritized experience
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replay, dueling networks, multi-step learning, distributional value functions, and noisy exploration, to
achieve improved sample efficiency and stability.

In Fig. 12, we report the performance of DQN and Rainbow as we scale the depth and width of their
networks. As with PQN and PPO, we observe consistent degradation in performance at larger scales.
In Fig. 13, we present the corresponding gradient behavior, which reveals the same vanishing and
destabilization phenomena discussed in this work. These findings reinforce the generality of the
identified gradient pathologies across both policy-based and value-based deep RL algorithms.

(a) DQN HNS (b) Rainbow HNS

Figure 12: Median human normalized scores for DQN (left) and Rainbow (right) as a function
of total network parameters. Lines of different colors denote varying network depths, while marker
shapes indicate different widths. For both agents, performance consistently declines as network size
increases, highlighting the adverse effects of scaling.

Figure 13: Gradient magnitudes during training for DQN (top) and Rainbow (bottom). As
network depth increases, gradient flow systematically diminishes, ultimately collapsing to near-zero
values. This consistent decay mirrors the performance degradation observed at larger scales.

C.2 Combining Gradient Interventions in Non-stationary Supervised Learning

Building on our findings in Sec. 4.3, we extend our analysis by applying the proposed combined
gradient interventions to the same image classification models used in Sec. 3. Specifically, we train
the models in the non-stationary supervised learning setup, where the CIFAR-10 labels are iteratively
shuffled, following the experimental design from Sokar et al. [2023]. As demonstrated in Sec. 3,
while models in standard supervised learning settings are able to scale effectively and maintain high
performance, introducing non-stationarity leads to failure in adaptation for baselines that use fully
connected layers and the Adam optimizer. This issue is exacerbated as model scale increases.

Our results, presented in Fig. 7, show that combining the multi-skip architecture for the MLP
component with the Kronecker-factored optimizer and Layer Normalization enables near-perfect
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continuous adaptation. The models quickly adapt to the changing optimization problem following
label reshuffling, with gradient magnitudes remaining stable throughout the process.

C.3 Architecture and Optimizer Ablations

In this work, we introduce the multi-skip architecture, an extension of the standard residual MLP
design, and propose the use of the Kronecker-factored optimizer for online deep RL. While these
techniques form the basis of our primary interventions, our broader goal is not to prescribe a fixed set
of methods, but rather to motivate a general class of architectural and optimization interventions that
promote healthy gradient flow in deep networks. To this end, we expand the scope of our evaluation
by incorporating a wider range of baselines. Specifically, we compare various optimizer choices,
including Adam and AdaBelief [Zhuang et al., 2020], alongside MLP architectures such as the
standard residuapl MLP [He et al., 2016] and DenseNet [Huang et al., 2017]. These architectures
have been previously explored in the context of scaling networks in online deep RL [Lee et al., 2025,
Ota et al., 2024], providing a relevant basis for comparison.

We also evaluated state-of-the-art optimizers that have demonstrated success in training large-scale
models such as transformers in supervised learning. Specifically, we tested Shampoo [Gupta et al.,
2018], a second-order optimizer that maintains and preconditions gradients using full-matrix statistics
per layer, and Apollo [Ma, 2020], an adaptive optimizer that leverages curvature information without
explicitly computing or storing second-order matrices.

Despite extensive hyperparameter tuning for both methods, we were unable to achieve strong
performance in the online deep RL setting. This suggests that further investigation is needed to
understand the key properties required for these optimizers to be effective in this regime. Asadi et al.
[2023], Ceron and Castro [2021] demonstrate that optimizer behavior plays a critical role in the
training dynamics of online deep RL methods, with Asadi et al. [2023] showing that stale optimizer
states can hinder learning, and Ceron and Castro [2021] revealing that optimizer sensitivity interacts
with the choice of loss function, particularly when comparing Huber and MSE losses.

We present the results for PPO and PQN across all tested optimizers in Fig. 14.

Figure 14: Median human normalized scores on Atari-10 for PPO (top row) and PQN (bottom
row), comparing a range of optimizers including RAdam, AdaBelief, Shampoo, Apollo, and
Kron (shown in the main curves). While adaptive optimizers like AdaBelief show some robustness,
only Kron consistently enables stable and performant training as models scale. Each curve represents
the mean performance across three random seeds per algorithm, with shaded areas indicating 95%
bootstrap confidence intervals.

19



C.4 Results with the Multi-Skip Architecture.

We present the full learning curves comparing the proposed multi-skip architecture to the baseline fully
connected architecture across all depths and widths studied in the paper. We follow the experimental
protocol of Obando Ceron et al. [2023], Ceron et al. [2024b], Agarwal et al. [2021], running each
experiment with three random seeds.

Figure 15: Median human-normalized scores with PQN on the Atari-10 benchmark, comparing
the baseline agent and the proposed multi-skip architecture across varying depths and widths.
The multi-skip architecture not only improves performance at shallow depths, but also enables PQN
to remain trainable across all scales considered, whereas the baseline MLP rapidly collapses as depth
and width increase. Each curve represents the mean performance across three random seeds per
algorithm, with shaded areas indicating 95% bootstrap confidence intervals.

C.5 Ablation on the number of skip connections.

To isolate the effect of skip length on performance, we fix the main network of our proposed MultiSkip
architecture (in large size, which includes 5 residual blocks) and vary how many of these blocks
receive skip connections from the encoder. When Skip = k, we apply the encoder features as skip
connections to the first k residual blocks immediately following the encoder, while the remaining
(5 − k) blocks operate without direct encoder input. The table below reports human-normalized
scores on the Atari-10 benchmark Agarwal et al. [2021].

Table 2: Human-normalized scores on the Atari-10 benchmark, varying the number of residual
blocks (k) that receive skip connections from the encoder. Performance generally improves as more
connections are added.

Environment Skip=1 Skip=2 Skip=3 Skip=4 Skip=5
Amidar-v5 0.20 0.17 0.19 0.20 0.36
BattleZone-v5 0.01 0.67 0.62 0.60 0.69
Bowling-v5 0.07 0.04 0.04 0.08 0.23
DoubleDunk-v5 -2.09 -2.00 -1.55 -1.36 -1.32
Frostbite-v5 0.67 0.70 0.79 0.92 0.88
KungFuMaster-v5 0.93 0.95 0.93 1.12 0.98
NameThisGame-v5 0.79 0.65 0.72 0.85 1.24
Phoenix-v5 0.69 0.68 0.68 0.66 0.66
Qbert-v5 0.84 1.01 1.06 0.91 1.09
Riverraid-v5 0.42 0.44 0.65 0.69 0.99
Aggregate (mean) 0.25 0.33 0.41 0.47 0.58

Performance steadily improves as more skip connections are added, peaking when all 5 blocks are
connected. This supports our original design decision to broadcast features to all MultiSkip blocks.
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C.6 Results with the Kron Optimizer.

We present the full learning curves comparing the Kron optimizer to the baseline RAdam optimizer
originally used in PQN [Gallici et al., 2025], across all depths and widths studied in the paper. We
follow the experimental protocol of Obando Ceron et al. [2023], Ceron et al. [2024b], Agarwal et al.
[2021], running each experiment with three random seeds.

Figure 16: Median human-normalized scores with PQN on the Atari-10 benchmark, comparing
the Kron optimizer to the baseline RAdam optimizer across varying depths and widths. Similar
to the multi-skip architecture, Kron not only improves performance at shallow depths, but also enables
PQN to remain trainable across all scales considered. In contrast, performance with RAdam rapidly
collapses as depth and width increase. Each curve represents the mean performance across thee
random seeds per algorithm, with shaded areas indicating 95% bootstrap confidence intervals.

C.7 Justification for Selected Interventions.

The choice of Kronecker-factored optimization and the MultiSkip architecture was the result of a
systematic exploration of candidate interventions aimed at improving gradient flow, plasticity, and
stability in deep RL. We evaluated a wide range of alternative methods from prior work known to
mitigate optimization pathologies [Moalla et al., 2024, Juliani and Ash, 2024].

Our evaluated methods, summarized in Tab. 3, included:

• Second-order and adaptive optimizers: Apollo [Ma, 2020], Shampoo [Gupta et al., 2018],
AdaBelief [Zhuang et al., 2020].

• Regularization: L2 norm penalties [Kumar et al., 2023], weight clipping, and weight decay
[Elsayed et al., 2024].

• Activation functions: GELU [Hendrycks, 2016] and CReLU [Abbas et al., 2023].
• Learning rate schedules: Cosine annealing and cyclic schedulers.
• Learning rate scaling: Multiplying and dividing the default learning rate (2.5e-4) by 10 to

compensate for increased network scale.

As shown in the table, none of these interventions consistently improved performance compared to
our proposed combination. This motivated our decision to focus on the combination of Kronecker-
factored optimization and the multi-skip architecture.
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Table 3: Comparison of mean human-normalized scores on Atari-10 for alternative interven-
tions. Our proposed method (Ours) is compared against ablations using only a single alternative
intervention. The results (3 seeds per experiment) show that no single alternative consistently matches
the performance of our combined approach.

Environment Ours Cosine LR Cyclic LR GELU CReLU L2 Norm Weight Clip Weight Decay LR=2.08e-5 LR=3.00e-3
Amidar-v5 0.355897 -0.001663 0.002276 0.015143 0.016514 0.029293 0.012283 0.013013 0.018848 0.078660
BattleZone-v5 0.694566 0.031297 -0.000287 0.015505 -0.004594 -0.004594 0.035604 0.061446 0.019812 0.575407
Bowling-v5 0.231831 0.050145 -0.008721 0.028706 -0.009811 -0.000727 0.030523 0.051235 -0.086483 0.067587
DoubleDunk-v5 -1.318182 -2.318182 -2.318182 -2.363636 -2.318182 -2.363636 -2.454545 -2.454545 -2.454545 -2.090909
Frostbite-v5 0.881087 -0.001921 0.027708 0.008890 -0.010938 0.004755 0.075372 0.021736 0.008034 0.110036
KungFuMaster-v5 0.975251 -0.011055 0.003181 -0.000823 -0.011500 -0.011278 -0.011500 -0.011055 -0.011055 1.362077
NameThisGame-v5 1.242066 -0.030191 -0.132767 -0.261400 -0.198430 -0.068147 -0.197995 -0.148227 -0.134417 0.747251
Phoenix-v5 0.655141 0.072687 -0.087237 -0.090014 -0.090168 -0.068722 -0.090940 -0.093949 -0.102358 0.411968
Qbert-v5 1.094894 0.013814 0.010052 -0.002833 0.008359 0.006102 0.016259 0.000177 0.001305 0.112282
Riverraid-v5 0.993568 -0.000127 0.345100 0.304636 -0.056846 -0.058494 0.293514 -0.044456 0.057765 0.237365

D Hyper-parameters

Below, we provide details of the hyperparameters used throughout the paper for each algorithm. In
general, they match those proposed in the corresponding original papers.

Table 4: PQN Hyperparameters
Hyperparameter Value / Description
Learning rate 2.5e-4
Anneal lr False (no learning rate annealing)
Num envs 128 (parallel environments)
Num steps 32 (steps per rollout per environment)
Gamma 0.99 (discount factor)
Num minibatches 32
Update epochs 2 (policy update epochs)
Max grad norm 10.0 (gradient clipping)
Start e 1.0 (initial exploration rate)
End e 0.005 (final exploration rate)
Exploration fraction 0.10 (exploration annealing fraction)
Q lambda 0.65 (Q(λ) parameter)
Use ln True (use layer normalization)
Activation fn relu (activation function)
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Table 5: PPO Hyperparameters
Hyperparameter Value / Description
Learning rate 2.5e-4
Num envs 8
Num steps 128 (steps per rollout per environment)
Anneal lr True (learning rate annealing enabled)
Gamma 0.99 (discount factor)
Gae lambda 0.95 (GAE parameter)
Num minibatches 4
Update epochs 4
Norm adv True (normalize advantages)
Clip coef 0.1 (PPO clipping coefficient)
Clip vloss True (clip value loss)
Ent coef 0.01 (entropy regularization coefficient)
Vf coef 0.5 (value function loss coefficient)
Max grad norm 0.5 (gradient clipping threshold)
Use ln False (no layer normalization)
Activation fn relu (activation function)
Shared cnn True (shared CNN between policy and value networks)

Table 6: PPO Hyperparameters for IsaacGym
Hyperparameter Value / Description
Total timesteps 30,000,000
Learning rate 0.0026
Num envs 4096 (parallel environments)
Num steps 16 (steps per rollout)
Anneal lr False (disable learning rate annealing)
Gamma 0.99 (discount factor)
Gae lambda 0.95 (GAE lambda)
Num minibatches 2
Update epochs 4 (update epochs per PPO iteration)
Norm adv True (normalize advantages)
Clip coef 0.2 (policy clipping coefficient)
Clip vloss False (disable value function clipping)
Ent coef 0.0 (entropy coefficient)
Vf coef 2.0 (value function loss coefficient)
Max grad norm 1.0 (max gradient norm)
Use ln False (no layer normalization)
Activation fn relu (activation function)
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Table 7: DQN Hyperparameters
Hyperparameter Value / Description
Learning rate 1e-4
Num envs 1
Buffer size 1,000,000 (replay memory size)
Gamma 0.99 (discount factor)
Tau 1.0 (target network update rate)
Target network frequency 1000 (timesteps per target update)
Batch size 32
Start e 1.0 (initial exploration epsilon)
End e 0.01 (final exploration epsilon)
Exploration fraction 0.10 (fraction of total timesteps for decay)
Learning starts 80,000 (timesteps before training starts)
Train frequency 4 (training frequency)
Use ln False (no layer normalization)
Activation fn relu (activation function)

Table 8: Rainbow Hyperparameters
Hyperparameter Value / Description
Learning rate 6.25e-5
Num envs 1
Buffer size 1,000,000 (replay memory size)
Gamma 0.99 (discount factor)
Tau 1.0 (target network update rate)
Target network frequency 8000 (timesteps per target update)
Batch size 32
Start e 1.0 (initial exploration epsilon)
End e 0.01 (final exploration epsilon)
Exploration fraction 0.10 (fraction of total timesteps for decay)
Learning starts 80,000 (timesteps before training starts)
Train frequency 4 (training frequency)
N step 3 (n-step Q-learning horizon)
Prioritized replay alpha 0.5
Prioritized replay beta 0.4
Prioritized replay eps 1e-6
N atoms 51 (number of atoms in distributional RL)
V min -10 (value distribution lower bound)
V max 10 (value distribution upper bound)
Use ln False (no layer normalization)
Activation fn relu (activation function)

Table 9: Image Classification Hyperparameters (CIFAR-10)
Hyperparameter Value
Batch size 256
Epochs 100
Learning rate 0.00025
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Table 10: SAC Hyperparameters
Hyperparameter Value / Description
Critic block type SimBa
Critic num blocks {2, 4, 6, 8}
Critic hidden dim {512, 1024, 1536, 2048}
Target critic momentum (τ ) 5e-3
Actor block type SimBa
Actor num blocks {1, 2, 3, 4}
Actor hidden dim {128, 256, 384, 512}
Initial temperature (α0) 1e-2
Temperature learning rate 1e-4
Target entropy (H∗) |A|/2
Batch size 256
Optimizer {AdamW, Kron}
AdamW’s learning rate 1e-4
Kron’s learning rate 5e-5
Optimizer momentum (β1, β2) (0.9, 0.999)
Weight decay (λ) 1e-2
Discount (γ) Heuristic
Replay ratio 2
Clipped Double Q False

Table 11: DDPG Hyperparameters
Hyperparameter Value / Description
Critic block type SimBa
Critic num blocks {2, 4, 6, 8}
Critic hidden dim {512, 1024, 1536, 2048}
Critic learning rate 1e-4
Target critic momentum (τ ) 5e-3
Actor block type SimBa
Actor num blocks {1, 2, 3, 4}
Actor hidden dim {128, 256, 384, 512}
Actor learning rate 1e-4
Exploration noise N (0, 0.12)
Batch size 256
Optimizer {AdamW, Kron}
AdamW’s learning rate 1e-4
Kron’s learning rate 5e-5
Optimizer momentum (β1, β2) (0.9, 0.999)
Weight decay (λ) 1e-2
Discount (γ) Heuristic
Replay ratio 2
Clipped Double Q False
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E Compute Details

All experiments were conducted on a single-GPU setup using an NVIDIA RTX 8000, 12 CPU
workers, and 50GB of RAM.

Table 12: Training times across model scales for two optimizers K-FAC shows increased cost as
depth and width grow.

Depth Width Optimizer Time
RAdam

Small Small Adam 51m
Small Medium Adam 53m
Small Large Adam 57m
Medium Small Adam 1h 4m
Medium Medium Adam 1h 10m
Medium Large Adam 1h 11m
Large Small Adam 1h 18m
Large Medium Adam 1h 18m
Large Large Adam 1h 27m

Kron
Small Small Kron 1h 59m
Small Medium Kron 2h 27m
Small Large Kron 3h 38m
Medium Small Kron 2h 44m
Medium Medium Kron 3h 32m
Medium Large Kron 5h 59m
Large Small Kron 3h 27m
Large Medium Kron 4h 36m
Large Large Kron 7h 42m

E.1 Results on the Full ALE

In this section, we provide the full training curves corresponding to the aggregated results shown
in Sec. 4.3, where we evaluate the performance of the PQN and PPO agents on the full set of
environments from the ALE after applying our two proposed gradient interventions. The per-
environment learning curves are presented in Fig. 17 for PQN and Fig. 18 for PPO. We follow the
experimental protocol of Obando Ceron et al. [2023], Ceron et al. [2024b], Agarwal et al. [2021],
running each experiment with three random seeds.
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Figure 17: Mean human-normalized score on the full ALE suite, comparing the baseline PQN agent
(light curves) with the augmented agent using our combined gradient interventions (dark curves).
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Figure 18: Mean human-normalized score on the full ALE suite, comparing the baseline PPO agent
(light curves) with the augmented agent using our combined gradient interventions (dark curves).
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E.2 Simba on DMC

In this section, we present the full results accompanying the experiments combining Simba [Lee et al.,
2025] with our proposed gradient interventions, as introduced in Sec. 4.3. For these experiments, we
retain Simba’s original architectural choices but replace the AdamW optimizer with Kron.

We compare Simba using both SAC and DDPG as the underlying RL algorithms. While SAC generally
outperforms DDPG, we consistently observe that scaling depth and width, either independently or
jointly, leads to a degradation in performance with Simba. However, this degradation is mitigated,
and in many cases reversed, when using the Kron optimizer, resulting in improved performance as
model capacity increases.

The following figures illustrate these findings:
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Figure 19: SAC scaling depth
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Figure 20: SAC scaling width
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Figure 21: SAC scaling both depth and width
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Figure 22: DDPG scaling depth
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Figure 23: DDPG scaling width
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Figure 24: DDPG scaling both depth and width
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction are grounded in empirical evidence
gathered under controlled settings, spanning both supervised and reinforcement learning
regimes. We identify and characterize gradient pathologies that emerge with increasing
model scale. The proposed gradient-based interventions are evaluated in a modular fashion
throughout the paper. Furthermore, the scope of our conclusions is clearly delineated,
with detailed descriptions of the specific algorithms and environments studied, ensuring
alignment between claims and contributions. While our claims are carefully scoped, our
extensive experimentation provides preliminary evidence suggesting that the uncovered
phenomena may generalize to broader applications in deep learning.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Sec. 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best

31



judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper does not include novel theoretical results, but presents well-
established claims in Section 2.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental setup is thoroughly documented in each section presenting
results. We specify the number of independent runs, the methods used for aggregating
results, and provide detailed descriptions of the algorithms, hyperparameters, and tasks.
This level of disclosure ensures that the main experimental findings and conclusions can be
independently reproduced.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Although the data and code will not accompany the submission of this work,
they will be released upon publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all essential details of the experimental setup in the main paper,
including key training configurations. Additional specifics, such as hyperparameter values
and environment settings, are included in the Appendix (Appendix D, Appendix A), ensuring
that readers have access to all necessary information to understand and interpret the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Throughout the paper, we report statistical variability using confidence intervals
and standard deviations in training curves, error bars in bar plots, and percentiles in boxplots.
We also clearly state the aggregation methods used for each plot (e.g., mean, median,
inter-quantile mean), ensuring transparency and appropriate interpretation of the statistical
significance of our results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This information is provided in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors preserved anonymity during the submission of this work.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Appendix ??.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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