Supplementary Information for MiST: Understanding
the role of Mid-stage Scientific Training in developing
chemical reasoning models

1 Chemical Tasks

This section compiles all of the chemical tasks we have implemented for training models with RLVR,
including details of the dataset compilation, rewards used, along with additional experimental results
not shown in the main manuscript. The details for each task are specified with a table containing a
summary of the rewards used, short explanations of what the input and expected outputs are, and
finally, some sample outputs from the trained models. Following the table, we report additional
experimental results, implementation details, and other task-specific details.

1.1 Reaction Prediction (RxP)

Task: Reaction prediction

Dataset Source USPTO-480K2

Input Reason and predict the correct product in
SMILES notation from the following reaction:
CCN(CC)CC.COc1lccec(0)cecl.C1C(CL)CL.C1CCL.0.0=C(Cl)clcccecel.

Target Molecule COclccc(0C(=0)c2cccce2)ccl

Output <think> The reaction involves the acylation of a phenolic hydroxyl group
using benzoyl chloride 0=C(C1) cicccccl in the presence of triethylamine
CCN(CC)CC as a base. Here’s the step-by-step mechanism: ...

1. Reactants Identification™*: ...

2. Mechanism**: . ..

3. Product®*: ...

Final Answer**: The product SMILES is
COclccc(0C(=0)c2cccec2)ccl representing the acetylation of the
phenolic oxygen [O] in 4-methoxyphenol COclccc(0)ccl by benzoyl
chloride 0=C(Cl)clcccccl, facilitated by triethylamine CCN(CC)CC.
</think>
<answer> COclccc(0C(=0)c2cccec2) ccl </answer>

Answer COclccc(0C(=0)c2cccec2)ccl v/
Table 1: Example of reaction prediction task.

The reaction prediction task requires the model to reason and predict the correct product molecule
given a list of reactants and reagents (Table[T)). Solving this task usually requires expert chemists
to think about the reactivity of the reactants involved, and propose and evaluate different reaction
mechanism hypotheses. These serve as arguments and causal explanations that support the decisions.
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The dataset for the RLVR training of this task was derived from the USPTO-480K after removing
the samples used in the SFT phase. 50K reactions were randomly chosen for the training set, and 500
reactions for the test set.

Given a model output o, from which a final answer a can be extracted, the reward function is the sum
of format correctness (Rformat : 0 — [—1, 1], see Appendix and accuracy of the predicted product
(Ryce : @ — {—1,—0.5,1}). The accuracy reward is determined by an exact match check against the
ground truth:

-1, if Ans cannot be captured from Output or is not a valid SMILES.

Ryc(a) = —0.5, if Ans refers to a molecule different than the ground truth.
+1, if Ans corresponds to the ground truth molecule.
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Figure 1: Accuracy reward evolution.

Figure[T]illustrates the evolution of the accuracy reward throughout training. The base Qwen2.5-3B
model plateaus early at a reward below the -0.5 threshold, indicating that while it frequently generates
syntactically valid SMILES strings, it fails to predict the correct product molecules. In contrast, both
fine-tuned variants (Qwen2.5-3B+SFT and Qwen2.5-3B+MiST+SFT) maintain accuracy rewards
above -0.5 in the majority of the training process. The SFT-only model shows a sharp increase in
reward during the first 8,000 training samples, reflecting rapid format alignment. This is followed
by a more gradual rise, suggesting improved chemical reasoning over time. Notably, the model
pretrained with MiST before SFT follows a similar trajectory but consistently achieves a higher
reward ceiling. This highlights the effectiveness of MiST and SFT in enhancing the model’s learning
capability during RLVFE.



1.2 TUPAC to SMILES (I2S)

Table 2: Example of [UPAC—SMILES conversion.

Task: IUPAC to SMILES Conversion

Dataset Source PubChem (CID 2,000,001 to 3,000,000)8

Input Question: You are an expert in Cheminformatics, who
is very familiar with Simplified Molecular Input Line
Entry System (SMILES) notation, and here’s a task for
you: Given a molecule with the IUPAC name as below,
please provide the corresponding SMILES notation.
Here is the IUPAC name: "4-(azepan-1-ylsulfonyl) -N-
(pyridin-3-ylmethylideneamino) benzamide".

Target Molecule 0=C(NN=CC1=CC=CN=C1)C1=CC=C (S (=0) (=0)N2CCCCCC2)C=C1

Output <think> The SMILES representation of
4-(azepan-1-ylsulfonyl) -N- (pyridin-3-ylmethylideneamino)
benzamide is 0=C(NN=CC1=CC=CN=C1)C1=CC=C(S(=0)
(=0)N2CCCCCC2)C=C1 ...</think>

Answer <answer>0=C (NN=CC1=CC=CN=C1)C1=CC=C (S (=0)
(=D)N2CCCCCC2)C=C1</answer> v

The TUPAC-to-SMILES conversion task presented requires the model to translate a systematic
chemical name into its corresponding SMILES string notation. We source our examples from the
USPTO-480K dataset and prompt the model with a clear generative instruction “Given this [IUPAC
name, please provide the corresponding SMILES notation.” The ground truth is established by the Tan-
imoto similarity score. The model’s chain-of-thought reasoning is captured inside <think>. .. </think>
tags and the final SMILES inside <answer>. .. </answer>. This setup tests the model’s ability to parse
complex nomenclature and generate SMILES structural representations.

For GRPO reward pipeline, we use accuracy reward function that only considers the final ‘<answer>*
SMILES s,,s. After converting both the reference s* and prediction s,,s to Morgan fingerprints, it
computes the raw Tanimoto similarity 7 and then applies a piecewise linear scaling:

+1.0, T = 1.0,
r(1) =< 7—0.3, 03<7<10,
—0.5, T < 0.3.

A perfect match yields ¢ = 1.0, moderate similarity is rewarded proportionally above —0.5, and
very poor matches incur a negative penalty.



1.3 Reaction Naming

Task: Reaction Naming (RxN)

Dataset Source USPTO Reaction 1M1

Input What is the name of this chemical reaction?
The reagents are CC(C) (C)[Si](C)(C)C1
and Nclccc(-c2ccec(0)c2)c2c1C(=0)NC2
and the product CC(C) (C) [Si](C)(C)0Oclcc
cc(-c2ccc(N)c3c2CNC3=0)cl. Choose ONLY
from the following options and write your
response choice inside <answer>...</answer>:
"Acylation", "Aromatic Heterocycle
Formation", "C-C Coupling", "Deprotection",
"Functional Group Addition", "Functional
Group Interconversion", "Heteroatom
Alkylation and Arylation", "Miscellaneous",
"Protection", "Reduction". Do not provide
final answer different than what is provided
in this list.

Target Molecular Reaction Name  Protection

Output <think> First, let’s break down the reagents.  The
first reagent is CC(C)(C)[Si](C)(C)C1 which is
tert-butyldimethylsilyl chloride ...

Answer <answer> Protection </answer>

Table 3: Reaction Naming experiment description.

The reaction naming task is a classic example of a structured classification problem in cheminformat-
ics, where the goal is to categories the nature of a reaction given reactants, conditions and products.
This approach aim to test the ability of the LLM to conduct chemical reasoning and instruction
following for discrete level answering. In addition to that, this setup also tests the model’s ability
to interpret chemical structures from linear notation and enables us to reveal how chain-of-thought
guidance and prompt design impact classification accuracy. To stimulate reasoning, the model
is tasked to output his thinking process inside <think>...</think> tags before emitting the final
choice in <answer>. .. </answer> tags. The ground-truth class labels are evenly drawn from ten
commonly found reaction type in chemistry: "Acylation", "Aromatic Heterocycle Formation", "C-C",
"Coupling", "Deprotection”, "Functional Group Addition", "Functional Group Interconversion",
"Heteroatom". "Alkylation and Arylation", "Miscellaneous", "Protection" and "Reduction" derived
from curated USPTO reactions dataset.

Reward Functions:

* Continuous Format Reward:
— This reward is described in Section [3.2.1]in the Algorithm 3]
* Accuracy Reward:

— 0if no answer is given
— 0.1 if a single answer is given (but wrong)
— 1 if the answer is entirely correct
— -0.2 penalty if the model always output the same wrong class
* Accuracy Percentage Reward: discrete reward to foster perfect answers

— 0 if the answer is wrong
— 1 if the answer is entirely correct



1.4 Reaction Replacement

Task: Reaction Replacement (RxR)

Dataset Source USPTO Reaction 1M1

Input Question: Which chemical reaction is correct? Choose from
the following options:

A. In the following reaction, the reagents are:
Cclncc(C=0)n1C1CC1, CC(C)0C=C(Br)C=0, C1,
0=C(c1lcc(N2CCNC2=0) ccc1F)N1CCCN(c2nccs2)CCl
and the product is: 0=Cc1cnc2n1CCCC2.

B. In the following reaction, the reagents
are: Cclncc(C=0)n1C1CC1, CC(C)0C=C(Br)C=0,
C1, N=C1CCCCN1 and the product is:
CNC(=0)CC1(0)CCCN(C(=0) c2cncc(F)c2)C1.

C. In the following reaction, the reagents are:
Cclncc(C=0)niC1CC1, CC(C)0C=C(Br)C=0, C1,
N=C1CCCCN1 and the product is:0=Cc1lcnc2n1CCCC2.

D. In the following reaction, the reagents
are:Cclccccc10CCC(=0)N1CCCC(c2cen[nH]2)C1,
CC(C)0C=C(Br)C=0, C1, N=C1CCCCN1 and the product is:
0=Cclcnc2n1CCCC2.

Make sure to give your choice A, B, C, or D inside the
<answer>...</answer> tags.

Target Molecular Reaction (Choice) C

Output <think> Let’s evaluate each option step by step to
determine which one is correct. Option A: The
reagent: Cclncc(C=0)n1C1CC1 matches with the molecule
Cclncc(C=0)n1C1CC1.

Answer <answer> C </answer>

Table 4: Reaction Replacement experiment description.

The reaction replacement tasks challenges the model to understand chemical reaction concepts,
validity and ability to detect subtle structural inconsistencies. By providing the model with four nearly
identical choices, chemical reaction notation coherence understanding is required. Each dummy
reaction has one reagent randomly swapped, where starting from a correct USPTO reaction, we
generate three “corrupted” variants by replacing a single reactant or product with the most Tanimoto-
similar molecule drawn from a random batch of 50 Enamine50k compounds. In the prompt we
provide the lists options A—D, each specifying reagent SMILES, conditions SMILES, and product
SMILES, and the model is then instructed to answer one of the four choices as the correct one. The
model is also instructed to think through each option step by step inside <think>. .. </think> and the
answer is emitted inside <answer>. .. </answer> tags.

Reward Functions:

* Continuous Format Reward:
— This reward is described in Section in the Algorithm 3]
* Accuracy Reward:

— 0 if the answer is wrong
— 1 if the answer is entirely correct



1.5 Reaction Inversion

Task: Reaction Inversion (RxI)

Dataset Source
Input

Target Molecular Reaction (Choice)

Answer

USPTO Reaction 1M;!

Question: Which chemical reaction is correct? Choose
from the following options:

A. In the following reaction, the
reagents are: BrCclcccccl, [K+], [0H-],
0=C(0)clccc(0Cc2ccccc2)ccl and the prod-
uct is: CCOC(=0)clccc(0)ccl.

B. In the following reaction, the reagents
are: C=0, 0=Cclcccccl, [B-1C#N, [Na+],
CN[C@H] 1 [C@@H] (C)C[C@GH] (c2ccncc2NC
(=0)0c(C) (C)CH)C[CeH] 1INC(=0)0C(C) (C)C,
the conditions are: Co, [0H-],
[OH-1, [Pd+2], and the product is:
C[C@H] 1C[C@@H] (c2ccncc2NC(=0)0C(C)
(C)C)C[CeeH] (NC(=0)0C(C) (C)C) [COH] 1N.

C. In the following reaction, the
reagents  are: CCOC(=0)C#N, ccoc(=0)cC1,
CclccociC=Nclcccccl, the condition is:

c1(C)c(C)=Ccc=Ccc=1, and the product is:
CCOC(=0)cicc2ccoc2cenl.

D. In the following reaction, the reagents
are: CC1(C)0B(c2cn[nH]c2)0C1(C)C,
Ncinc(-c2cc3c(s2)-c2ccc(-cd4cn[nH] c4)
cc20CC3)c(-c2ccccc2Cl)sl  and  the  prod-
uct is: Ncinc(-c2cc3c(s2)-c2ccc(Br)
cc20CC3) c(-c2cccecc2Cl) sl
Make sure to give your choice A, B, C, or D inside the
<answer>...</answer> tags.

<think> Starting with option A: The reaction uses benzyl
bromide BrCclcccccl ...

<answer> C </answer>

Table 5: Reaction Inversion experiment description

The reaction inversion task challenges the model to understand chemical reaction concepts, validity
and ability to detect subtle structural inconsistencies. By providing the model with four completely
different choices, strong chemical reaction notation coherence understanding is required. Each
dummy reaction has one reagent randomly swapped with the longest string SMILES among the
products, enabling us to obtain 4 different reaction choices. In the prompt we provide the lists options
A-D, each specifying reagent SMILES, conditions SMILES, and product SMILES, and the model is
then instructed to answer one of the four choices as the correct one. The model is also instructed to
think through each option step by step inside <think>...</think> and the answer is emitted inside

<answer>. .. </answer> tags.

Reward Functions:

¢ Continuous Format Reward:

— This reward is described in Section [3.2.T]in the Algorithm 3]

¢ Accuracy Reward:
— 0if the answer is wrong

— 1 if the answer is entirely correct



1.6 Reaction True/False

Task: Reaction True/False (RxTF)

Dataset Source USPTO Reaction 1M:4

Input Question: Is this chemical reaction correct?
In the following reaction, the reagent is:
COC(=0)cilccc(0C)c(0CCc2cccc(C#HN)c2)cl, the

conditions are: C1COCCO1, [Li+], [0H-], and the product
is: COclccc(C(=0)0)cc10CCclcccc(C#N)cl.

Target Molecular Reaction Validity =~ True

Output <think> First, I remember that LiOH, [Li+] . [OH-] isa
strong base, so it’s likely an acid-base reaction. The ester
group in the starting material ...

Answer <answer> True </answer>

Table 6: Reaction True/False experiment description

The Reaction True/False task is a binary derivative of the Reaction Replacement task. In this case,
the model is asked to analyze and judge based on one single reaction, whether the reaction is correct
or wrong. Each prompt presents one reaction—Ilisting the reagent SMILES, the reaction conditions
SMILES, and the product SMILES—and then asks “Is this chemical reaction correct?”. The examples
are drawn from the Reaction Replacement set, where some of the reactions have been corrupted by
swapping one random molecule in the reaction string by a new candidate. The model is instructed
to reason step by step inside <think>...</think>, then has to emit <answer>True</answer> or
<answer>False</answer> accordingly. This format was designed to simplify the reaction replacement
task by providing only a binary label choice, allowing us to not only reduce the task complexity but
also diminish the hallucination effects emanating from providing many examples in the prompt. In this
scenario, the model only ever sees one reaction, and its ability to detect subtle mismatches in chemical
transformations and to follow a true/false classification protocol with transparent chain-of-thought is
tested.

Reward Functions:

* Continuous Format Reward:
— This reward is described in Section [3.2.T]in the Algorithm 3]
¢ Accuracy Reward:

— 0if the answer is wrong
— 1 if the answer is entirely correct



1.7 Chemical Formula Balancing Task (CeB)

Task: Chemical Formula Balancing Task (CeB)

Dataset Source The Perovskite Dataset®

Input You are now acting as a skilled chemistry expert. Your
goal is to identify and complete the missing compound(s)
represented by [MASK] in the given chemical reaction.
Reaction: 6 BaCO3 + 1 Na2CO3 + 4 SiO2 == [Mark]
Na2Ba[Mark](Si[Mark]O[Mark])(SiO[Mark])2 + 7 CO2.
Analyze the equation carefully, considering the law of conser-
vation of mass and stoichiometry. Ensure the total number of
atoms of each element on both sides of the equation remains

balanced.

Target Molecule (Material) 6 BaCO3 + 1 Na2CO3 + 4 SiO2 = 1 Na2Ba6(Si209)(Si03)2
+7CO2

Output <thinking>1. Element Count Analysis: - Reactants: - Ba:

6 (from 6 BaCO3) - Na: 2 (from Na2CO3) - Si: 4 (from
4 Si02) - C: 7 (6 from BaCO3 + 1 from Na2CO3) - O:
6x3 (BaCO3) + 1x3 (Na2CO3) + 4x2 (Si02) = 29 - Prod-
ucts: - CO2: 7 CO2 (7 C, 14 O) - Missing compound
must account for remaining elements: 6 Ba, 2 Na, 4 Si,
and 15 O (29 total O - 14 from CO2). 2. Structure
of Missing Compound: - The formula template [MASK]
Na2Ba[Mark](Si[Mark]O[Mark])(SiO[Mark])2 suggests: -
2 Na, 6 Ba (to balance Ba from reactants), 4 Si (from SiO2),
and 15 O. - Silicate groups: (Si209) and (Si03)2 (to total
4 Si and 15 O). 3. Charge Balance: - Cations: Na2 (2+) +
Ba6 (12+) = +14 charge. - Anion: Si4015 (4 Si x +4 + 15
O x -2 = +16 -30 = -14) balances the +14 charge. 4. Final
Formula: - Na2Ba6(Si209)(Si03)2 consolidates all elements
and charges correctly.</thinking>

Answer <answer>6 BaCO3 + 1 Na2CO3 + 4 SiO2 = 1
Na2Ba6(Si209)(Si03)2 + 7 CO2</answer>

Table 7: Template for reporting RL experiments.

The goal of this task is to evaluate the performance of large language models (LLM) in predicting
balanced chemical equations, specifically leveraging a reward mechanism to enhance the accuracy of
chemical formula generation. The GRPO reinforcement learning data set was derived from a data set
of chemical formulas focusing on perovskite compounds. The dataset was prepared by selectively
masking certain products or their stoichiometric coefficients within balanced chemical equations.

Reward Function Design: The reward function combines two distinct components: format correct-
ness and prediction accuracy.

* Format Reward:
— Initial reward is set to O if the generated chemical equation does not follow the correct
format.
— An additional reward of 0.3 is given if the left-hand side (reactants) of the generated
equation matches exactly with the ground truth.

* Accuracy Reward: This reward component assesses the similarity between the generated
right-hand side (products) (yrrm) and the ground truth (ygr) using a predefined similarity
metric, formulated as:

reward = format_reward + sim(yrLm, YGr)



1.8 Conditional Material Generation (CMG)

Task: Conditional Material Generation (CMG)

Dataset Source Materials Project’

Input Build a material that has O, Te, Tm. Please keep your reasoning as concise
as possible. For example <material> A A B B B <sgl2></material> where
A, B refer to elements and <sg12> denotes the space group for example:
<material> Pa In Tc Tc <sg225></material>.

Target Material Composition ~ Any valid composition made up of the elements O, Te and Tm with a valid
space group number e.g. <material> O O Te Tm Tm Te <sg127></material>

Output To combine O, Te, and Tm, a space group like sg127 (for a 1:1:1 ratio)
could work. A possible structure could be: <material> O O Te Tm Tm Te
<sgl27></material> This fits the space group 127, which is a common space
group for spacefilling structures.(Note: Space groups can vary, but this is a
reasonable choice for a simple ternary compound.)

Answer <material> O O Te Tm Tm Te <sgl127></material>

Table 8: Conditional Material Generation experiment description

This task aims to leverage the scientific knowledge embedded in MiST-trained LLMs to generate
novel materials from a specified set of elements. The experiment focuses on the model’s ability
to understand three-dimensional atomic relationships within crystal structures and, based on that
understanding, produce valid compositions. If the model can perform this task with high accuracy, it
could significantly enhance the efficiency and cost-effectiveness of the material generation phase in
the materials discovery process.

Reward Function Design: The quality of the generated composition is measured by the metrics:
validity, precision and novelty. Validity is assessed using SMACT® validity, which checks whether
the generated composition adheres to fundamental chemical rules, such as charge neutrality. Precision
measures the model’s ability to follow instructions and correctly include the specified elements. It is
computed using the following equation:

|Epi N Eqi|
E,

where I, is the set of elements specified in the i-th prompt and E; is the corresponding generated
element'’. The novelty of the generated composition was determined based on whether the com-
position was present within the materials project dataset or was previously generated by the model.
Furthermore, to ensure the model provided its generated solution in a valid format, the reward function
also checked that the generated composition was enclosed within the <material>...</material> tags
and that the assigned space group number lies within the valid range of 1 to 230.

Precision =

Therefore, the reward function used to train the LLM for the conditional material generation task was:

R = «; Validity + agPrecision + asNovelty + a4 Format,
where the parameters «; for ¢ = 1, ..., 5 are scaling factors for each portion of the reward.



1.9 Binary Compound Structure Relaxation Task (CrR)

Task: Binary Compound Structure Relaxation Task (CrR)

Dataset Source  Materials Project Trajectory (MPtrj) Dataset®, Materials Project”

Input Given a perturbed binary compound: formula Ti 1_int Ni 1_int,
space_group_symbol "P1’ lattice_parameters a 2.74603000 b 2.94419691 ¢
2.94419691 alpha 119.99997545 beta 90.00000000 gamma 90.00000000 Zr
1_int 0.00000000 0.00000000 0.00000000 N 1_int 0.50000000 0.66670000
0.33330000 perform multiple steps Structural Relaxation on the given per-
turbed binary compound and reduce the internal energy. Please document
your thought process within <think> </think> tags, and provide the final
corrected structure in <answer> </answer> tags

Target Material A more stable structure of the same material with lower inner energy.

Output <thinking>The input structure describes ZrN in a hexagonal P-6m?2 space
group with significant initial distortions. The relaxation process improves
stability through three key mechanisms: 1. Symmetry Restoration: The
nitrogen position (0.5,0.6667,0.3333) deviated from standard WC-type co-
ordinates (1/3,2/3,1/2). Relaxation shifts N to (0.3333,0.6666,0.5), aligning
with proper Wyckoff positions for P-6m2. This restores three-fold rotational
symmetry about [001], eliminating unnecessary symmetry-breaking dis-
tortions.2. **Bond Strain Reduction**: Initial Zr-N bonds (2.19 1:%) were
compressed relative to ionic radius predictions (Zr3*t CN6: 0.85 A+ N3~
CN6: 1.32 A=2.17 Aideal). However, the metallic character of ZEN allows
for shorter bonds. The relaxation increases bond length to 2.34 A, balanc-
ing ionic size mismatch with metallic bonding contraction while reducing
internal strain energy.3. **Lattice Parameter Optimization**: The origi-
nal a-axis (2.746 A) expanded to 3.15 Apost—relaxation, better matching
hexagonal close-packing requirements for Zr (atomic radius 1.60 A). The
c-axis remained near 2.94 f\, maintaining axial ratio c/a ~ 0.93 - consistent
with known WC-type structures rather than ideal HCP (c/a=1.633).The final
structure shows improved prototype alignment with tungsten carbide (space
group P-6m?2), where both elements occupy high-symmetry positions. How-
ever, residual distortion in the pentagonal pyramidal coordination suggests
possible metastability compared to the more common rock-salt ZrN poly-
morph. The increased symmetry and reduced bond strain would lower total
energy, though the hexagonal phase may still lie above the cubic phase in
energy.</thinking>

Answer formula Zr 1_int N 1_int space_group_symbol 'P1° lattice_parameters
a 3.15089295 b 3.15093266 c¢ 2.93526192 alpha 90.00000000 beta
90.00000000 gamma 119.99958321 Zr 1_int 0.99999066 0.99998132
0.00000000 N 1_int 0.33330934 0.66661868 0.50000000</answer>

Table 9: Template for reporting RL experiments.

This task aims to utilize LLMs to perform preliminary relaxation (pre-relaxation) of unstable crystal
structures, aiming to yield more stable structural configurations. This preliminary step is intended
to substantially decrease computational costs and improve efficiency in subsequent high-accuracy
Density Functional Theory (DFT) calculations. DFT calculations, while accurate, are computation-
ally intensive. By leveraging LLM-generated pre-relaxation adjustments, the experiment seeks to
effectively reduce the quantity of computationally unfavorable structures, thereby streamlining and
accelerating the DFT computational pipeline.

Format Reward:

—1,  if Sy, is valid Mat2Seq format and have lower inner energy than input structure
Riormat = § —5,  if Sgeq is valid Mat2Seq format

—10, otherwise
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2 Benchmarking procedure

In this section we elaborate on the methods used to evaluate the models in the multiple ways displayed
in Table[I8] Here we give details of how diagnostic metrics have been computed (SCS, CCS), which
evaluate the capabilities in LLMs that are necessary for success on chemical tasks in an RL setting.
Additionally, performances on downstream tasks have been computed using benchmarks derived
from each task (see Appendix above), along with different prompting techniques, that mark the
difference between direct answer, or reasoning answer.

2.1 Latent Symbolic and Chemical Knowledge

2.1.1 Symbolic Competence Score benchmark

The Symbolic Competence Score benchmark measures the model’s latent capability to read and write
correct chemical symbols. In this benchmark we focus particularly on SMILES, as organic chemistry
spans a majority of our tasks. For this we collected 10000 valid SMILES from PubChem? , such
that no overlap exists with the MiST data. A second dataset is created with corrupted smiles based
on these smiles, where corruptions are minimal, however render the smiles unvalid. The corruption
procedure is specified in Algorithm[I] The algorithm removes a random subset of key structural
grammar elements (ring/branch brackets and digits) from the SMILES string, producing broken or
ambiguous strings. Corruption rate p controls the proportion of removed elements, which for all our
experiments has been set to 0.2.

Algorithm 1: SMILES Grammar Element Corruption

Input: SMILES string s, corruption rate p
Output: Corrupted SMILES string Scorrupt

LetG ={(,),[,1,0,1,2,3,4,5,6,7,8,9} (grammar elements);
L < length of s;
I < indices of s where s; € G;
if | 7| = 0 then
| return s;

end
Noemove 4= max(L, [p - |1]):
Randomly select R C I with |R| = Niemove;
Scorrupt <— €mMpty string;
fori < 1t L do

ifi ¢ R then

‘ Append s; to Scorrupt>

end

end

return Scorrupt;

Finally, evaluation happens in two stages. First, the log-likelihoods are computed using the model for
the following string, that provides context for the string to look more natural:

The molecule represented with the SMILES [BEGIN_SMILES] smiles
[END_SMILES]

Where smiles is replaced by both the correct, and the incorrect SMILES string. The log-likelihoods
corresponding to the smiles tokens are isolated by dropping the computed likelihoods associated with
the context shown above. The two corresponding strings are thus

Original SMILES:

The molecule represented with the SMILES [BEGIN_SMILES]

0=C(0)C[CeH] (0)C[CeH] (0)CCn2c(c(c(c2cliccc(F)ccl)c3ccecece3)C(=0)Ncdccceccd)C(C)C

[END_SMILES]

Corrupted SMILES:
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The molecule represented with the SMILES [BEGIN_SMILES]
0=C(0)C[C@H] (0)C[CeH] (0)CCn2c(c(c(c2ciccc(F)ccl)c3cccecec3)C(=0)Ncdccceccd)C(C)C
[END_SMILES]

Average loglikelihoods are computed for the whole sample of 10000 SMILES in this manner, and
SCS score is computed as the Cohen’s d effect size between the distributions of loglikelihoods of
correct smiles, vs that of corrupted smiles.

Note that although the structure of material compositions is different from that of SMILES, the
corruption method is similar, as key structural elements such as the space group number tag (<sg12>)
and elemental symbols are replaced with special characters.

2.1.2 Chemical Competence Score benchmark

The Chemical Competence Score (CCS) evaluates a model’s latent ability to distinguish between
chemically accurate and inaccurate factual statements. To construct this benchmark, we selected

1,000 samples from the test split of the SMollnstruct Molecule Description datase

t which was

never used in all post-training stages. Each sample in the dataset consists of a brief description of an
organic molecule. For example, one entry describes an acetamide as:

N-[4-(1,3-thiazol-2-ylsulfamoyl)phenyl]acetamide is a
sulfonamide that is benzenesulfonamide substituted by an
acetylamino group at position 4 and a 1,3-thiazol-2-yl group
at the nitrogen atom. It is a metabolite of sulfathiazole.
It has a role as a marine xenobiotic metabolite. It is

a sulfonamide, a member of acetamides, and a member of
1,3-thiazoles.

For material data, we utilized Robocrystallographer® to generate 600 natural text descriptions
for crystal structures from the Material ProjectZ. Here is an example entry:

Al1N is Wurtzite structured and crystallizes in the hexagonal
P6_3mc space group. Al(1) is bonded to four equivalent N(1)
atoms to form corner-sharing A1N4 tetrahedra. There are three
shorter (1.90 A) and one longer (1.91 &) A1(1)-N(1) bond
length. N(1) is bonded to four equivalent Al1(1) atoms to
form corner-sharing NAl4 tetrahedra.

To create a contrastive benchmark, we generated an incorrect version for each entry by replacing one
sentence in the original description with a sentence from a different one, while keeping the target
molecule/crystal unchanged. Here is an example of an incorrect version of the above acetamide
example with the edited section highlighted:

N-[4-(1,3-thiazol-2-ylsulfamoyl)phenyl]acetamide is a
tricyclic triterpenoid of the isomalabaricane group. It is
a metabolite of sulfathiazole. It has a role as a marine
xenobiotic metabolite. It is a sulfonamide, a member of
acetamides and a member of 1,3-thiazoles.

2.2 Task Benchmarks

The benchmarks have been obtained by selecting a subset of the datasets defined in Appendix |1} for
each of the tasks.

2.3 Inference techniques

We observed that models’ full text generation often overflows the available context window, without
providing any final answer within <answer> tags, thus preventing its correct evaluation. To overcome
this, upon failure to generate an <answer> tag, we directly append the <answer> tag and retry the
generation, biasing the model towards generating an answer at that point. Pseudo-code for this is
provided in Algorithm 2]
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Table 10: Evaluation methods for each reaction task

Task Evaluation Method

Reaction Prediction (RxP) Exact match with the groundtruth product

Reaction Naming (RxN) Top-1 classification accuracy over the 10 reaction classes.

Reaction Replacement (RxR) Multiple-choice accuracy (selecting the one correct reaction out
of four).

Reaction Inversion (RxI) Multiple-choice accuracy (selecting the one correct reaction out
of four).

Reaction True/False (RxTF) Binary classification accuracy (correct vs. incorrect reaction).

An extension of such an injection technique is that models can be biased from the beginning of the
completion towards directly providing an answer, thereby allowing us to evaluate the effect of the
intermediate text inside <think> tags. In Table[I8]in the main manuscript, direct answer results are
reported outside of the parentheses, while reasoning results are in parentheses.

Algorithm 2: Answer tag injection <answer> - Think and answer procedure

SetKwInOutInputInput
prompt, model_sampling_params, model, nbr_max_retries Output : A completion containing
<answer>...</answer>

result <— llm.generate(prompt, sampling_params);
completion < result.outputs[0].text;
for i + 1 to max_retries do
// Append the ‘<answer>‘ token to coax a proper tag
new_prompt <— prompt ++ competition ++ "<answer>";
result <— llm.generate(new_prompt, sampling_params);
complete_completion <— result.outputs[0].text;
if HasAnswer(complete_completion ) then
L return complete_completion;

return complete_completion ; // fallback if still no tag

13



3 Experimental settings

3.1 MiST: Mid-stage Scientific Training

Our MiST model is based on the Qwen-2.5-3B model. We continue the pre-training and perform
SFT thereafter on a chemically enriched corpus spanning a diversity of sources, targeting the two
prerequisites we proposed in the main manuscript.

The following configuration of hyperparameters was used for training:

Table 11: MiST Pretraining Hyperparameters

Parameter Value

Model Architecture Qwen-2.5-3B
Epochs 4 (~90,000 steps)
Batch Size 32

Max/Min Learning Rate 1 x 107°/1 x 10~°
LR Warmup Steps 1,000

LR Decay Steps 1,000

Optimizer AdamW

Loss Function Cross-Entropy
Hardware 32 x H100 GPUs
Total GPU Hours 640

After this stage, the model is further trained with SFT on instruction and Q&A data, as well as
reasoning traces obtained from a stronger reasoning LLM, on more chemistry-relevant tasks; see the
following section for more details. The following configuration was used:

Table 12: MiST SFT Hyperparameters

Parameter Value

Model Architecture Qwen-3B

Epochs 3 (~32,000 steps)
Batch Size 32

Learning Rate 1x10°6
Optimizer AdamW

Loss Function Cross-Entropy
Hardware 32 x H100 GPUs
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3.2 Reinforcement Learning experiments

The Open-R1 repository from Hugging Face (https://github.com/huggingface/open-rl)
was forked and modified with additional features/optimizations for the GRPO experiments. Each
training was run for 12 hours on four nodes (with four NVIDIA GH200 120GB GPUs), summing to
16 GPUs and 192 GPU-hours per training. The best hyperparameters are summarized in Table
A completion length of 8192 was used to let the model output long reasoning thoughts. The best
hyperparameters and rewards were optimized using a total of 30k GPU-hours with variations in the
experimental setups. The list of used rewards is described in Section [3.2.1]

parameter value
per_device_train_batch_size | 1
gradient_accumulation_steps | 8
learning_rate 2e-6
Ir_scheduler_type cosine
warmup_ratio 0.03
beta 0.04
max_prompt_length 384
max_completion_length 8192
num_generations 8
use_vllm true
vllm_max_model_len 8192

Table 13: Optimized hyperparameters used for the GRPO training experiments.

3.2.1 Rewards

The rewards designed for our GRPO experiments are grouped into two main categories:

» Format reward: the goal is to ensure that the trained model uses the appropriate format with
reasoning (between <think> tags) and answer (between <answer> tags).

* Accuracy reward: the goal is to verify the answer of the model for the given task.

Accuracy reward: For the different tasks, different accuracy rewards are implemented in a continuous
manner if possible. For SMILES-based tasks, the Tanimoto similarity score is generally used.
However, for MCQA-based tasks, the rewards are usually discrete since the answers are correct or
wrong. These rewards typically range from O to 1 (perfect answer).

Accuracy percentage reward: For each task, we also implement a discrete accuracy percentage
reward to foster perfect answers and to log the training accuracy of the models. This reward is O if
the answer is wrong and 1 if the answer is entirely correct.

Continuous format reward: A continuous format reward has been implemented with the structure
described in Algorithm[3] The idea behind this reward is to output a score between -1 (very bad format)
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and 1 (perfect format) with continuous steps to help the model with the learning of the expected format.

Algorithm 3: Incremental Formatting Reward Calculation

Input :Raw model output o € String
Output : Formatting reward r € [—1, 1]

17+ 0.0 // Initialize reward

[

10

11
12

13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28

29

T < {<think>, </think>, <answer>, </answer>}
// Check each tag appears exactly once
foreach tag € T do

if COUNT (o, tag) = 1 then r + r + 0.05

else r < r—0.05
end

// Check correct start and end tags

if STARTS_WITH(o, <think>) then r < r + 0.05
else r < r —0.05

if ENDS_WITH(o, </answer>) then r < r + 0.05
else r < r —0.05

// Check think-answer boundary
if COUNT (o, </think>\n<answer>) =1then r < r+ 0.1
else r <17 —0.1

// Check answer block extraction
my < REGEX_MATCH(<answer>(.x)</answer>, o)
if m; = None then
| r<r—202
else if NUM_GROUPS(m;) # 1 then
| r<r—20.05
else
| r<r+02
end

// Check whole think \n answer pattern
mg < REGEX_MATCH(<think>(.*)</think>\n<answer>(.*)</answer>, o)
if mo = None then
| r<r—04
else if NUM_GROUPS(m3) # 2 then
| r<r—0.1
else
| r<r+04
end

return r
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4 Data

4.1 Data sources and processing
4.1.1 FineWeb-Edu

The FineWeb-Edu can be found on Hugging Face (https://huggingface.co/datasets/
HuggingFaceFW/fineweb-edu)®. The subsets "CC-MAIN-2013-20" to "CC-MAIN-2024-10"
were downloaded for a total of ~6 TB, which represents roughly 1.3T tokens and 1.26B individ-
ual texts. Based on the representative subset "sample-10BT" (also downloaded), the text sources
were computed by taking the base URL (from the dataset column "url"), then these sources were
sorted from the most prevalent to the least. We manually labeled the most prevalent sources as
"chemistry", "non-chemistry", or "undetermined". The goal was to label a source as "chemistry"
only if nearly all the texts from that source are about chemistry. On the other hand, a source is
classified as "non-chemistry" only if there is no mention of chemistry in all the texts from that
source. When a source contains a mix, like a school website with chemistry texts and texts for other
fields, the label used is "undetermined", and the source is not used. After this manual labeling, the
texts from "sample-10BT" were classified based on the labeled sources. It led to a ground truth of
approximately 10,000 "chemistry" texts and 50,000 "non-chemistry" texts (out of the ~10M texts
found in "sample-10BT"). Based on this ground truth, a custom non-ML classifier was built using
the word frequencies in "chemistry" and "non-chemistry" texts. The texts were lemmatized before
building word frequency vectors for the two classes using a simple processing script that replaces any
non-standard character with a space, before splitting the strings by the spaces. A custom vocabulary
was also built to store these lemmatized texts in a tokenized manner. Other lemmatization methods
(such as Spacy or NLTK) were also tried, but did not lead to better results and were extremely
expensive to use on the full FineWeb dataset (>6 TB). After building the vocabulary and the word
frequency vectors for the two classes, the formula below was applied to each FineWeb text to create
an associated "chemistry score" (ranging from O to "infinity"). The frequencies of the lemma k in
chemistry texts and non-chemistry texts are denoted f¢ and f}', respectively. The text chemistry
score (TCS) is computed using the following equation:

1 . Tel fis it fg/fe >1
TCS (text) := N Z wy  with wy = {Oj“ k othe’;Wi]sCe ()
g

This labeling strategy was applied to the entire FineWeb-Edu corpus, and the texts with TC'S > 4
were retained, yielding a pretraining set of 1.4 billion tokens of high-quality chemistry-labeled texts.
The threshold 7'C'S > 4 was decided based on the PR curve plot shown in Figure[2] This threshold
allows for high precision, and the quantity of texts retrieved was sufficient for our pretraining pipeline.
Additional plots with the percentage of chemistry texts by threshold and the cumulative number of
chemistry token counts by threshold can be observed in Figures [3|and ] respectively. Some chemistry
text examples (with their associated TCS scores) are shown in Figure[3]

4.1.2 PubChem

The first three million compounds from the PubChem database® (CID from 1 to 3,000,000) were
dumped using the PUG REST API with batched requests in October 2024. Each record contains these
columns (among others): CanonicalSMILES, IsomericSMILES, IUPACName, and InChl. Since the
molecule canonicalization algorithm used in the PubChem database is not the same as the one used
by RDKit, all the compounds were re-canonicalized. The canonical SMILES consistency was also
ensured for each compound by computing four canonical SMILES for each molecule:

* Canonical SMILES — canonicalized using RDKit.
* IsomericSMILES — canonicalized using RDKit.
* JTUPACName — SMILES using py2opsin and then canonicalized using RDKit.
* InChl — canonical SMILES using RDKit.
Then the four newly generated canonical SMILES were compared, and if a mismatch is found, the

compound is discarded. This method filtered out approximately 40% of the compounds, and the
duplicated canonical SMILES were also discarded. For the remaining compounds, four "SMILES
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Figure 2: Precision-recall curve of the estimated retrieved chemistry texts based on the manually
labeled ground truth. The different 7’C'S thresholds are shown in red dots on the PR curve.

Percentage of chemistry texts per chemistry score threshold (assuming 5.00% of chemistry texts)

Figure 3: Estimated percentage of chemistry texts by TCS threshold.

variants" were computed using RDKit based on the canonical SMILES to have four non-canonical
SMILES in each record. At the end of this processing script, an approximate of 1,800,000 compounds
were kept and ready to be used. The dataset was then split in the following manner: the first million
compounds (CID from 1 to 1,000,000) were used for pretraining, the second million compounds
(CID from 1,000,001 to 2,000,000) were used for GRPO training, and the third million compounds
(CID from 2,000,001 to 3,000,000) were used as the test split for benchmarking. Each split contains
~600,000 valid compounds. Multiple derived datasets were also generated for the different chemical
tasks used with GRPO training (explained in Section .2 below).

4.2 Chemical Tasks Data sources

All MCQA-derived tasks for GRPO training are built on the USPTO Reaction 1M dataset, and the
12S dataset was built using the PubChem dataset from Section

Reaction Prediction (RxP)

» The USPTO-480K dataset? consists of approximately 480K organic reactions, divided
into training and test splits.

* We retained only reactions with a single product, resulting in roughly 400K training
samples and 38K test samples.

* The first 10K reactions from the training set are used to generate reasoning traces.
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Figure 4: Estimated cumulative chemistry token count by TCS threshold.

Figure 5: Examples of labeled chemistry texts with the associated TCS scores.

* An additional 50K reactions, randomly selected from the remaining training data, are
used for RLVE.

* A set of 500 reactions, randomly sampled from the test set, is used for benchmarking.
IUPAC to SMILES (12S)

* The processed PubChem compounds (CID from 1,000,001 to 2,000,000) from the
Section .12l are used as the base data.

* The canonical SMILES and the IUPAC were directly used from the dataset.
Reaction Naming (RxN)

* Start from the full USPTO 1M reaction set.
» Use Rxn-Insight’s class generation to detect the reaction name.
* Filter to 600000 samples, evenly distributing across the 10 classes.

Reaction Replacement (RxR)

* Duplicate each USPTO 1M reaction four times.
* For three copies, randomly select one molecule (reactant or reagent) to replace.
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* Draw a batch of 50 candidate molecules from Enamine50k and compute Tanimoto
similarity.
» Swap in the most similar molecule as the replacement.
Reaction Inversion (RxI)
* Take four instances of reactions in USPTO 1M, and invert one reagent with a product
for 3 of them.
* The LLM is required to predict which one of the four reactions is still correct.

Reaction True/False (RxTF)

* Derived from the Reaction Replacement dataset.

* Present a single reaction (original or corrupted) and ask the model to judge its chemical
correctness.

4.3 Material Tasks Data sources

Chemical Formula Balancing Task (CeB)

* A total of 1500 chemical formulas were selected from the Perovskite Dataset® to
form the data set, and the data set was then enhanced by randomly masking individual
stoichiometric coefficients within products or entire product compounds using [MASK].

Conditional Material Generation (CMG)

» We selected 1000 samples from Materials Project” and extracted the constituent ele-
ments from each sample to create our dataset. For example, the compound TeO5 was
decomposed into its constituent elements Te and O to form our training set.,

Binary Compound Structure Relaxation Task (CrR)

» We selected 2,000 binary compound crystal structures from the Materials Project'’
across the following categories: Intermetallics, Semiconductors, Oxides, Sulfides,
Nitrides, Carbides, Hydrides, Halides, Borides, Silicides, Phosphides, Arsenides,
Tellurides, and Selenides. And we applied perturbations to alter the positions of certain
atoms and modify the cell parameters of these structures to form our training dataset.
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4.4 Resulting data mixture

The pretraining dataset was post-processed using an annotation pipeline to detect each molecule in
the texts. For each molecule, the tags "[START_MOL]" and "[END_MOL]" were added to enclose it.
Similarly, the SMILES were computed for each molecule and added between "[START_SMILES]"

and "[END_SMILES]" tags after the molecule.

Table 14: MiST Pretraining Dataset Composition

Data Source Tokens Proportion
ChemRxiv + S20RC 1.2B 41.37%
FineWeb (Q4-6) 1.4B 48.27%
PubChem Synthetic 120M 4.14%
Synthetic Reactions 100M 3.44%
CommonCrawl Replay 8OM 2.75%
Total 2.9B 100%

Supervised fine-tuning was performed on the MiST - Qwen-3B model, primarily using chemistry-
specific reasoning and instruction datasets, as follows:

Table 15: MiST SFT Dataset Composition

Data Source Contents/Size

DeepSeek Rxn Traces ~7,000 samples

SmollInstruct 128, S2I, captioning, gen.

MMLU 350 general + 300 chemistry samples

Chain-of-Thought (CoT) ~27,000 samples
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5 Compute resources

As described in Section [3.2]for the GRPO experiments, each training was run for 12 hours on four
nodes (with 4 NVIDIA GH200 120GB GPUs or 8 AMD MI250x 128GB GPUs), summing to 16
GPUs and 192 GPU-hours per training. The best hyperparameters and rewards were optimized using
a total of 30k GPU-hours with variations in the experimental setups. An additional 10k GPU-hours
were used for the final runs, summing to a total of 40k GPU-hours.
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6 Additional experimental results

6.1 MiST

We conducted other experiments to evaluate our MiST model’s performance on other tasks and in
comparison with strong baselines from the literature. In particular, we compare against NatureLM"°
and other general-purpose LLMS, on the task of SMILES to ITUPAC and IUPAC to SMILES con-
version. The results shown below put our MiST model (3B) on par with NatureLM 8B, while
approaching the 8x7B MoE variant on [UPAC-to-SMILES conversion.

Table 16: Accuracy for IUPAC-to-SMILES and SMILES-to-IUPAC on benchmark datasets. The
best value in each column is shown in bold.

Model IUPAC-to-SMILES SMILES-to-IUPAC
STOUT 0.735 0.565

GPT-4 0.033 0.0

Claude 3 Opus 0.177 0.0
LlaSMol_Mistral 0.701 0.29
NatureLM (1B) 0.476 0.284
NatureLM (8B) 0.679 0.517
Owen+MiST+SFT 0.682 0.445

6.2 RL

From Table it can be observed that the base model, Qwen-2.5 3B, possesses a degree of domain
knowledge in materials science sufficient to generate some valid compositions. However, the
relatively low scores suggest that the model is primarily retrieving compositions seen during training
or generating valid combinations through rough heuristics. This is further supported by its low SCS,
which indicates a limited understanding of compositions at the symbolic level.

The introduction of MiST leads to a significant improvement in SCS, as MiST specifically targets
symbolic competence during training. However, since the model was not trained directly on materials
science data and has a relatively small parameter size, it likely replaced some of its prior knowledge
with representations more aligned with SMILES syntax. This shift contributes to the lower validity
and precision scores, reflecting a reduced ability to follow instructions in non-SMILES-based tasks.
As a result, the model often fails to generate outputs in the required format, especially when it
encounters ambiguous prompts or reaches its maximum output length.

Fine-tuning the MiST model using SFT yields improvements in both SCS and instruction-following
ability, as evidenced by higher validity and precision scores. These gains suggest that the model
is able to recover some materials science knowledge while refining its symbolic understanding.
However, the low novelty score indicates limited generalization, implying that the model is overfitting
to training data and struggles to produce truly new compositions.

In comparison, SFT applied directly to the base Qwen-2.5 3B model results in high validity and
precision but retains a poor SCS score. This contrast highlights that symbolic competence is primarily
achieved through MiST, not SFT. Additionally, the low novelty score again suggests overfitting, as
the model continues to rely on memorized examples rather than generating original compositions.

When combining MiST, SFT, and RL, there is a substantial improvement in novelty, indicating that
the model is better able to utilize its symbolic understanding and domain knowledge to generate rather
than recall compositions. This suggests that while base models have weak symbolic competence,
MiST significantly enhances this capability. Though MiST initially reduces instruction-following
ability due to longer and more complex outputs, SFT helps regain this ability for specific tasks.
Ultimately, RL fine-tuning balances symbolic competence with domain-specific generation, enabling
the model to produce valid, precise, and novel compositions using the specified elements.

In contrast to the findings observed in the Conditional Material Generation task, we did not detect any
notable improvement in CCS after introducing MiST to the Binary Crystal Structure Relaxation task.
This discrepancy arises because the Binary Crystal Structure Relaxation task specifically emphasizes
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Table 17: CMG = Conditional Material Generation.

Model SCST CCStT Validity T Precision T  Novelty 1
Qwen-2.5 3B 0.122  0.828 58.6 68 74.8
+MiST 0.989  0.795 1.2 0.67 84.6
+SFT 1.142  0.785 34.8 38.5 49.2
+RL 0.893  0.777 73.8 97.1 91.3
Ablations
no MiST + SFT  0.199  0.824 87.4 93.9 60.2

Table 18: CrR = Binary crystal stucture relaxation, CeB = Chemical formula balancing.

Metrics Reasoning tasks
Model SCST CCStT CrRtT CeB?
Qwen-2.5 3B 0346  0.834 0 1.2
+MiST 0.355  0.795 0 26
+SFT 0.528  2.361 16.2 29.2
MatSci Tasks
+RL(CrR) 0.447  2.599 65 —
+RL(CeB) 1.653  0.666 — 47
Ablations
no MiST + SFT(CrR)  0.573  2.652 12.6 -
no MiST + SFT(CeB) 1.494  0.849 — 45

structural relaxation, a domain not directly targeted by MiST training. Consequently, MiST did not
enhance the model’s chemical competence related to structural relaxation.

However, subsequent fine-tuning via SFT successfully incorporated relevant domain knowledge into
the model, resulting in substantial performance improvements on the task. This step notably increased
the model’s capability to accurately execute structural relaxations, which was previously limited.
Moreover, further refinement through reinforcement learning (RL) effectively enhanced the model’s
success rate, demonstrating that the integration of RL optimally balances domain-specific expertise
with task-oriented performance improvements.

We further conducted an additional analysis across all 200 test set datapoints, and observed that the
model performed comparably across the five crystal systems included in the test set.

Table 19: Summary of Crystal Systems for the MiST + SFT + RL (CrR) Model. This table presents a
detailed breakdown of the performance (accuracy) of the MiST + SFT + RL (CrR) task, as shown in
the Table, evaluated separately across different crystal systems.

Crystal System Average Accuracy Total Samples
Tetragonal system 0.6383 47
Orthorhombic system 0.6897 29
Hexagonal system 0.6250 72
Trigonal system 0.6572 35
Monoclinic system 0.7143 7

Cubic system N/A N/A
Triclinic system N/A N/A

We illustrate the capability of our Mist + SFT + RL model to reduce the inner energy of a perturbed,
unstable ZnSe-P4_nmm crystal structure within 10 steps, where the stable state of the ZnSe-P4_nmm
crystal has an inner energy of -2.94069766998291.
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Figure 6: Graph demonstrating the relaxation of the ZnSe-P4_nmm crystal structure with the Mist +
SFT + RL model
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7 Model analysis

Here, we provide some analysis of the models’ behavior. For the following example reaction:

Question

Reason and predict the correct product in

SMILES notation from the following reaction

CC(C) (C)C(=0) cloc2nc(-c3ccc(Cl)cc3Cl) c(-c3ccc(Cl)cc3) cc2ciN. CCBr

Correct answer

CCNc1c(C(=0)C(C) (C)C)oc2nc(-c3ccc(Cl)cc3Cl)c(-c3ccc(Cl)cecl3)ccl2

After RL training, although the output format is correct, the base model Qwen2.5-3B (+RL) fails
to predict the correct product of this reaction, with simple reasoning and incorrect reaction type
(esterification reaction). On the other hand, the variant with SFT exhibits a more detailed reasoning
that delves into the functional groups of the precursors. However, it hallucinates the presence of
sodium hydride and the hydroxyl group, which are not present in the input reagents, leading to an
incorrect result. This could be attributed to the lack of SMILES symbolic understanding. Lastly, the
model that underwent the full pipeline (MiST + SFT + RL) successfully reasons the correct product
with reasonable description of the reactants’ structure and mechanism, showing better symbolic
understanding and Chemical knowledge.

The full responses of these models are given below:

Qwen2.5-3B + RL [Wrong]
OH 0

<think> The given reactants are a carboxylic acid and a bromoalkane.
The reaction between these two compounds is an esterification
reaction, where the carboxylic acid reacts with the alkyl halide to
form an ester and a halide. The product of this reaction is an
ester with the general formula R-COOR’. In this case, the product is
a carboxylic acid ester with the general formula R-COOR’, where R is
the alkyl group and R’ is the alkyl group from the bromoalkane.
</think>

<answer> COC(C)C(0)C(C)C(=0)0CC1CCCCCL1 </answer>
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Qwen2.5-3B + SFT + RL [Wrong]

O, O,

o] ﬁ NH,
8

<think> The reaction involves the alkylation of a phenolic oxygen in
the first compound using ethyl bromide CCBr( CCBr) under basic
conditions. Here’s the step-by-step mechanism:

1. Deprotonation**: Sodium hydride [H-].[Na+]( [Na+][H-])
deprotonates the hydroxyl group(- OH [OH-]) on the benzene clcccccl
ring of the first compound(

CC(C) (C)C(=0)c1oc2nc(-c3ccc(Cl)cc3Cl)c(-c3ccc(Cl)cec3)cc2ciN),
generating a phenoxide [0-Jclcccccl ion. The phenoxide [0-]Jclcccccl
is a strong nucleophile.

2. DNucleophilic Substitution(SN2)*#*: The phenoxide [0-]Jclcccccl
ion attacks the electrophilic carbon [C] in ethyl bromide CCBr(
CCBr). The bromide [Br-] ion( Br) is displaced, forming a new ether
CCOCC bond( C-0-C) between the benzene clcccccl ring and the ethyl
group.

3. Product Formation**: The final product retains the original
fused aromatic system of the first compound, with the hydroxyl group
replaced by an ether CCOCC-linked ethyl group. The tert-butyl
carbonyl( CC(C)(C)C(=0)), oxazole clcocnl ring(oc2...), and amine
group(N) remain unchanged.

Product SMILES**: ¢
CCOCclccc(-c2cc(-c3cc(Cl)cc(Cl)c3)c(N)c(=0)c20C)ccl ¢

Explanation**: CCOC Ethyl ether CCOCC group formed from ethyl
bromide CCBr. clccc(...)ccl**: Benzene clcccccl ring from the
first compound. c2cc(...)c(N)...**: Fused oxazole clcocnl
ring(positions 1-6) with substituents retained. c¢3cc(C1l)cc(Cl)c3*x*:
Chlorinated benzene substituent from the first compound. N Amine
group preserved in the fused ring. O0C Oxazole clcocnl
ring(positions 2-5) with a hydroxyl group replaced by the ether
CCOCC linkage.

This reaction exemplifies a Williamson ether synthesis, where a
phenoxide [0-]Jclcccccl displaces a halide in the presence of a
strong base to form an ether CCOCC. </think>

<answer> CCOCclccc(-c2cc(-c3cc(Cl)cc(Cl)c3)c(N)c(=0)c20C)ccl
</answer>
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Cl

Cl

<think> The reaction involves the alkylation of a primary amine
group in the first molecule by bromoethane CCBr( CCBr). Here’s the
step-by-step mechanism:

1. Reactant Analysisx*x*:

First molecule**: A bicyclic compound with a tert-butyl group(
Ccc(C)(C)C(=0)), a furan clccocl-like ring( cloc2nc(...)cc2clIN), and
two chlorobenzene Clclcccccl substituents( c3ccc(Cl)cc3 and
c4ccc(Cl)ccd) .

Second molecule**: Bromoethane CCBr( CCBr), where the bromine [Br]
is a good leaving group.

2. Mechanism**:

The lone pair on the primary amine nitrogen [N]( N [N]) in the first
molecule acts as a nucleophile. This nitrogen [N] undergoes an SN2
reaction** with bromoethane CCBr. The amine attacks the
electrophilic carbon [C] adjacent to the bromine [Br] in bromoethane
CCBr, displacing the bromide [Br-] ion( Br). The result is the
formation of a secondary amine** in the first molecule, where the
nitrogen [N] is now bonded to an ethyl group( CC).

3. Product Structurex*:

The nitrogen [N] in the furan clccocl-like ring is replaced by a
CH2CH3 group, making it NCC** in the product. All other
substituents( tert-butyl, chlorobenzenes [C-]#CCl, and furan clccocl
ring) remain unchanged.

Final Answer*x:

The product SMILES is

CC(C) (C)C(=0)cloc2nc(-c3ccc(Cl)ce3Cl)c(-c3ccc(Cl)cec3)cc2cINCC. The
reaction selectively alkylates the primary amine group in the
bicyclic compound with bromoethane CCBr, converting it to a
secondary amine while retaining the rest of the structure. </think>
<answer>

CC(C) (C)C(=0)cloc2nc(-c3ccc(Cl)cec3Cl)c(-c3ccec(Cl)cel3) cc2c1NCC
</answer>
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8 Reproducibility

All the code used to produce the results presented in this work can be found under https://
figshare.com/account/articles/29132657, The continued pretraining and supervised fine-
tuning, as described in Section4|and Appendix [3| have been conducted using the nanotron library
(see https://github.com/huggingface/nanotron). The configuration files and datasets used

are released athttps://figshare.com/account/articles/29132657.

Table of Released Assets

Asset Usage Instructions License/Citation Location/URL
Info
Source code Download and wunzip. | MIT License. Please | https://
See README.md for in- | cite this paper. figshare.
stallation and experiment com/account/
scripts (run_train.py). articles/
29132657
Model check- | Download the archive. | MIT License. Please | https://
points Full instructions in | cite this paper. figshare.
README . md. com/account/
articles/
29132657
Datasets Download files; load as a | For research use only. | https://
(pretraining/fine- | HuggingFace Dataset. Cite the original | [figshare.
tuning splits) dataset and this | com/account/
paper. articles/
29132657
Training configs Config YAML files for | MIT License. https://
nanotron available as figshare.
.yaml; pass as argument com/account/
to Nanotron CLIL articles/
29132657

Table 20: List of digital assets released with this work, including usage instructions and licens-
ing/citation information. Note: All assets are hosted anonymously on Figshare for double-blind
review.

All digital assets (code, models, data splits, and configs) are provided through anonymous Figshare
links for double-blind review, as recommended by NeurIPS guidelines. After publication, these will
be migrated to a permanent repository.
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