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Abstract
Underwater images, often plagued by complex degradation, pose

significant challenges for image enhancement. To address these

challenges, the paper redefines underwater image enhancement as

an image decomposition problem and proposes a deep invertible

neural network (INN) that accurately predicts both the latent image

and the degradation effects. Instead of using an explicit formation

model to describe the degradation process, the INN adheres to the

constraints of the image decomposition model, providing necessary

regularization for model training, particularly in the absence of

supervision on degradation effects. Taking into account the diverse

scales of degradation factors, the INN is structured on a multi-scale

basis to effectively manage the varied scales of degradation factors.

Moreover, the INN incorporates several asymmetric design ele-

ments that are specifically optimized for the decomposition model

and the unique physics of underwater imaging. Comprehensive ex-

periments show that our approach provides significant performance

improvement over existing methods.
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1 Introduction
Underwater imaging is a challenging image acquisition task due to

many factors such as water turbidity, scattering, absorption, and

poor lighting. These factors can significantly degrade the quality

of the captured images, resulting in various types of degradation

such as low contrast, color distortion, haze effects, and blurring.

Underwater image enhancement (UIE) aims to mitigate these issues,

producing clearer and more visually appealing images. UIE has

played a vital role in underwater exploration, research, surveillance,

and engineering, with a broad spectrum of applications including

oceanography, archaeology, marine biology, as well as underwater

vehicles and robotics; see e.g. [24, 46, 59].
Owing to the degradation complexity in underwater environ-

ments, conventional UIE methods (e.g. [1, 2, 5, 6, 10, 13, 15, 18,
26, 39, 48, 61, 65–67, 69, 70]) typically focus on handling specific

degradation effects often seen in digital photography, such as dehaz-

ing [10, 33, 61], color balancing [5, 13, 65, 67], and deblurring [61].

These methods often employ handcrafted models or predefined

rules, which may be too simplistic to effectively address the com-

plex degradation effects encountered in real-world underwater

scenes, limiting their performance.

Recently, deep learning has become the dominant tool for UIE;

see e.g. [8, 9, 12, 16, 17, 21, 22, 24, 25, 28–30, 35, 41, 43, 49, 50, 55,
58, 59]. Deep learning utilizes neural network (NN)-based models

trained on datasets to address the complexity inherent in under-

water images. While deep learning-based methods have surpassed

traditional ones in UIE, there remains considerable room for perfor-

mance improvement, especially in practical, real-world scenarios

with diverse degradation factors and limited training data. Towards

this end, we propose a deep NN called AMSIN (Asymmetric Multi-

Scale Invertible Network).

1.1 Main Idea
Recasting UIE as a decomposition problem: Our AMSIN is de-

veloped by reinterpreting UIE as an image decomposition task. An

underwater image is understood as a result of a complex, non-linear

process involving two key elements: a distortion-free image and

https://doi.org/10.1145/3664647.3681098
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a distortion map. This map encapsulates all degradation charac-

teristics of the underwater image, enabling the model to perfectly

recreate the original underwater image by working with the latent

image. With this reformulation, the NN needs to predict these two

components from the underwater image, thus being inherently

tasked with understanding the underlying degradation model to

accurately infer the latent image. This perspective is crucial for

effectiveness, making the NN more competently manage complex

degradation effects typically found in practical underwater imagery,

thereby improving the quality of reconstructed latent images.

Implicit regularization via INN-based decomposition for UIE:
The decomposition-based reformulation for UIE holds promise, but

also introduces challenges on NN training. The training data only

contains underwater and ground-truth (GT) images, but without

distortion maps. Together with the absence of explicit composition

models, it is likely to cause potential model overfitting [21, 35]. To

mitigate the over-fitting issue in a decomposition-based paradigm,

we introduce an INN architecture. This architecture is pivotal as

it guarantees no loss of information during the feature extraction

and disentanglement processes for both the latent image and the

distortion map. Such a property ensures that the perfect reconstruc-

tion of the original underwater image from the predicted distortion

map and latent image at each stage. Therefore, it implicitly imposes

the reconstruction constraint inherent in the image decomposition

model, effectively introducing extra regularization during training.

Multi-scale invertible processing: Considering the diverse scales
of degradation factors inherent in underwater images, it is impor-

tant to tackle underwater degradation across multiple scales. Thus,

our AMSIN is designed with a multi-scale structure, featuring spe-

cialized encoder and decoder blocks for cross-scale representation.

Each block consists of a series of invertible coupling layers and an

invertible scaling module, maintaining dual feature flows for the

latent image layer and the degradation layer. We also implement

short pathways using split and concatenation operators between

the encoder and decoder, which significantly enhances the trans-

mission of multi-scale features. This multi-scale approach is also

important for latent image estimation.

Asymmetric structure: In the encoder (decoder) blocks of AM-

SIN, we asymmetrically employ pixel unshuffling and Haar wavelet

transform for the feature flows of latent image layer and the dis-

tortion map layer, respectively. This asymmetric design is tailored

for enhanced spatial and frequency analysis, aiding in addressing

the complex mixed degradation in an underwater image. Notably,

for the latent image layer, we place greater emphasis on frequency

information using Haar-wavelet-based features. In addition, we also

asymmetrically define the reconstruction loss at different scales to

improve gradient propagation during training, aligning with the

asymmetric NN structure.

Another asymmetry is on the treatment on color channels. Specif-

ically, we replicate the red channel of the degraded image for three

times as the additional input and supervise it in training. This

scheme emphasizes the recovery of red channel. It is motivated

by the fact that the red channel of an underwater image usually

experiences more severe degradation compared to the green and

blue ones, due to the selective absorption of light in water.

1.2 Contributions
To summarize, the main contributions of this work include:

• The UIE is reformulated as an image decomposition problem,

better aligning the NN design for UIE to effectively handle

complex degradation in underwater images.

• We leverage INNs to implement the decomposition process of

UIE, imposing the inherent perfect reconstruction constraint

of decomposition for necessary regularization, particularly

in the absence of GT degradation maps.

• We introduce a multi-scale structure to the INN for UIE, tai-

lored for addressing the diverse scales of degradation factors

in underwater images.

• We have integrated several asymmetric design elements op-

timized for the decomposition model and the physics of

underwater imaging.

Extensive experiments demonstrate that our proposed AMSIN

provides noticeable performance improvement over existing deep

learning-based UIE methods.

2 Related Work
2.1 Conventional Methods for UIE
Conventionalmethods are roughly classified asmodel-free ormodel-

driven, based on their use of physical models.

Model-driven methods leverage a physical model of underwa-

ter imaging, typically estimating parameters with certain priors

and inverting the model for UIE. Due to the similarities between

underwater scenes and atmospheric haze in terms of light scat-

tering and absorption, atmospheric image formation models are

commonly adapted, supplemented by various priors for regulariza-

tion. Examples include the dark channel prior and its generaliza-

tions [10, 11, 32, 39, 48] , red channel prior [61], hazy line prior [6],

attenuation curve prior [57], and illumination channel sparsity

prior [18]. Motivated by that light underwater attenuates with

wavelength dependence [3], Akkaynak and Treirbitz [1] proposed

a refined underwater imaging model and applied it to UIE [2].

Model-free methods adjust pixel values without leveraging phys-

ical models. The contrast enhancement methods [15, 67] improve

image contrast through specific rules. The Retinex-based meth-

ods [13, 65, 69, 70] enhance separate illumination and reflectance

layers from Retinex decomposition. The fusion-based methods [4,

5, 26, 66] combine differently enhanced images into one result.

2.2 Deep Learning Methods for UIE
Deep learning-based UIEmethods primarily vary in their NN design.

Convolutional NNs (CNNs) are widely used due to their effective

local feature extraction; see [22, 28–30, 43, 44, 49, 50, 58, 59]. Wu et
al. [59] introduced a two-stage CNN for sequential enhancement

and refinement. Li et al. [28] developed a CNN featuring a multi-

color space channel-attentive encoder and a medium transmission-

guided decoder. Huo et al. [22] proposed a wavelet-enhanced multi-

stage CNN for progressive refinement. Mu et al.[43] utilized a three-
branch CNN to leverage multi-domain cues. Qi et al. [49] introduced
a CNN with semantic attention and multi-scale perception. Mu et
al. [44] proposed a CNN structure with dynamic convolutions and

multi-scale design.
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Generative adversarial networks (GANs) are also popular, with

the capability of exploiting unpaired training data; see [8, 12, 17,

24, 25, 35, 41, 55]. Fabbri et al. [12] applied a CycleGAN. Guo et
al. [17] proposed a multi-scale GAN. Islam et al. [24] developed a

lightweight GAN for real-time UIE. Chen et al. [8] integrated object
detection to enhance CycleGAN-based UIE. Liu et al. [41] presented
a twin GAN with contrastive learning. Jiang et al. [25] introduced
joint global and local discriminators.

Beyond CNNs and GANs, Chi et al. [9] proposed a gradient-

guided Swin Transformer for global information exploitation. Guo et
al. [16] developed a quality ranker for underwater images to en-

hance the performance of deep UIE models. Addressing the chal-

lenge of limited paired training data, in the context of UIE, various

studies have been done on weakly-supervised color transfer learn-

ing [31, 36], semi-supervised learning [21, 51], unsupervised end-

to-end training [14], and zero-shot self-supervised learning [27].

2.3 INNs for Image Restoration/Enhancement
INNs have been used in diverse image restoration and enhance-

ment tasks, e.g., super-resolution [37, 38, 60], denoising [19, 20, 42],

desnowing [53], demoiréing [52], relighting [64], and raw recon-

struction [62]. For instance, Lie et al. [37] implemented INNs for

super-resolution with multi-scale analysis within a coupling block

using varying convolution kernel sizes. In contrast, our approach

conducts multi-scale analysis across coupling blocks, leading to

greater efficiency.

The study of INN-based UIE is still scarce. A very recent study [68]

introduced an INN-based conditional normalization flow for UIE.

Our work differs from [68] in two significant perspectives. Firstly,

we conceptualize UIE as a decomposition problem, unlike the con-

ditional generation process in [68], leading to distinct roles for

INNs in both studies. Secondly, our model employs an explicit

multi-scale structure, optimizing efficient cross-scale processing of

various degradation factors in underwater images.

3 Proposed Method
3.1 Overall Framework
Our proposed AMSIN aims at decomposing an underwater image

𝒀 with distortion into a distortion-free image 𝑿 and a distortion

map 𝑫 via a forward pass. The formation of 𝒀 is totally dependent

on (𝑿 , 𝑫) through a complex and unknown composition process

𝑓 : 𝒀 = 𝑓 (𝑿 ,𝑫). Then UIE can be done by the inverse 𝑓 −1. In
our approach, these composition and decomposition models are

simultaneously learned by the AMSIN with an INN structure.

See Fig. 1 for the outline of AMSIN. To fit the input-output

dimension consistency required in an INN, the AMSIN replicates

the red channel of the degraded image for three times, denoted

by RC3 (𝒀 ), as the additional input. emphasizing the recovery of

red-channel intensities in UIE. Specifically, let G denote the AMSIN

and we have then:

Forward mode: G :

(
𝒀 , RC3 (𝒀 )

)
→ (𝑫,𝑿 ),

Reverse mode: G−1
: (𝑫,𝑿 ) →

(
𝒀 , RC3 (𝒀 )

)
.

The invertibility of G is achieved by its invertible structure, con-

taining three encoder blocks (EBs) and decoder blocks (DBs), each

with coupling layers for invertible feature processing and invertible

scaling layers for multi-scale representation. Each EB/ DB has dual

paths for processing latent and degradation features, with split-

concatenation short paths between them for multi-scale feature

integration. Conceptually, each EB/DB in AMSIN can be viewed an

iterative step for separating latent image and degradation map in a

fracture space, with the embedded perfect reconstruction constraint

fulfilled by the network’s invertibility.

The invertible downscaling (upscaling) operations on the two

paths are defined by two different pairs of operations: (a) pixel un-

shuffle (PUS) and pixel shuffle (PS); and (b) Haar transform (HT) and

the inverse HT (IHT). This scheme forms asymmetric dual paths,

enhancing spatial and frequency analysis, with high-frequency

emphasis given to latent image layer using Haar-wavelet-based fea-

tures. In addition, an asymmetrically designed reconstruction loss at

various scales aids in gradient propagation and fits the asymmetric

input and structure of AMSIN.

3.2 Detailed Structures
Coupling layers: Coupling layers, as basic invertible units in AM-

SIN, enable feature interaction and information exchange across

dual paths. These layers can operate in the forward or reverse

modes. In the forward mode, they transform an input pair (𝑨1,𝑨2)
to an output pair (𝑩1,𝑩2) of identical dimensions, using the follow-

ing scheme:

𝑩1 = 𝑨1 + F (𝑨2), (1)

𝑩2 = 𝑨2 ⊙ exp(G(𝑩1)) + H (𝑩1), (2)

where ⊙ denotes element-wise multiplication, and F , G, H are

learnable modules implemented as residual blocks with channel

attention [56]. In the reverse mode, (𝑩1,𝑩2) is perfectly mapped

back to (𝑨1,𝑨2) through the process:

𝑨2 = (𝑩2 −H(𝑩1)) � exp(G(𝑩1)), (3)

𝑨1 = 𝑩1 − F (𝑨2), (4)

where � denotes element-wise division.

Encoder and decoder blocks: Leveraging coupling layers, each

EB and DB keep dual paths for processing. In the forward pass,

these paths disentangle distortion map features from latent image

features, extracting a distortion-free latent image in the end. For

multi-scale processing, each EB initially down-scales dual-path

features to the current scale using invertible downscaling, then dis-

entangles and interacts features across paths with coupling layers.

Each DB processes features at the current scale via coupling layers

and up-scales them to the next level with invertible upscaling. The

downscaling, upscaling, and coupling layers ensure that all EBs and

DBs maintain invertibility.

Invertible downscaling and upscaling: Two pairs of downscal-

ing and upscaling operations are used in AMSIN. The first pair

is (PUS, PS), being inverse to each other. The PUS rearranges ad-

jacent pixels within a 2×2 window into four downscaled images

with half resolution, and the PS reassembles these images into

the original data. The second pair is (HT, IHT), also functioning

as complementary operations. The HT reduces input size using

stride 2 convolution with kernels 𝑳𝑳⊤,𝑯𝑳⊤, 𝑳𝑯⊤,𝑯𝑯⊤
, where

𝑳 = 1√
2

[1, 1]⊤ and 𝑯 = 1√
2

[1,−1]⊤. The 𝑳𝑳⊤ acts as average pool-

ing, while𝑯𝑳⊤, 𝑳𝑯⊤,𝑯𝑯⊤
capture edge details (high frequencies).
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Figure 1: Architecture of proposed AMSIN. Operations before (after) “/” indicate those used in forward (reverse) modes.

The IHT reconstructs original data using transposed convolution

with these kernels.

These two pairs of operations facilitate multi-scale analysis by

reducing the input’s size. The key distinction is that the PUS yields

spatial content, whereas the HT generates frequency content. Con-

sequently, the PUS-based path excels in spatial analysis, while the

HT-based path is more attuned to frequency analysis, enhancing

image detail restoration. This asymmetric design facilitates the

separation between latent image features and degradation features.

Split-concatenation short paths: Skip connections are vital for

the performance of a CNN, but adding them to an INN can com-

promise its invertibility. To facilitate feature transmission during

multi-scale analysis in AMSIN while preserving invertibility, we

use split and concatenation operations for short paths between the

middle EBs and DBs. On the encoder side, the EB’s outputs are

divided: one part is downscaled and passed to the next EB, while

the other is sent to the corresponding DB. On the decoder side, the

previous DB’s output is upscaled and merged with features from

the corresponding EB for the next DB. The split ratio is set to 1:1

for the PUS/PS-based path and 1:3 for the HT/IHT-based path.

3.3 Loss Function
Though the GTs of degradation map 𝑫 are always unavailable, su-

pervision on𝑿 suffices as𝑫 is complementary to𝑿 in the invertible

AMSIN. The invertibility also allows using both the forward and

reverse modes for loss calculation:

L
total

:= L
forward

+ 𝛼Lreverse, 𝛼 ∈ R+ . (5)

Let 𝑶PS

𝑖
and 𝑶 IHT

𝑖
denote the output of the 𝑖th DB at the PS-based

and IHT-based paths, respectively. The final output, denoted by

(𝑶PS,𝑶 IHT), is the output pair of the last DB. Let 𝑿PUS

𝑖
and 𝑿HT

𝑖

denote the GT image downscaled to the scale of the 𝑖th DB via PUS

and HT, respectively. The forward loss is then defined by

L
forward

:=SSIM(𝑶 IHT,𝑿 ) + 𝜆1MSE(𝑶 IHT,𝑿 )

+𝜆2MSE(𝑶PS

2
,𝑿PUS

2
) + 𝜆3MSE(𝑶 IHT

3
,𝑿HT

3
),

(6)

where 𝜆1, 𝜆2, 𝜆3 ∈ R+
, MSE denotes the mean squared error, and

SSIM denotes the structural similarity loss. In implementation, 𝑶PS

2

has 6 channels while 𝑿PUS

2
contains 12 (4× RGB). Three blue and

green channels are discarded from𝑿PUS

2
for dimension consistency,

and for emphasizing the recovery on red channel, corresponding to

the red-channel replicates in the input for the PUS/PS-based path.

Remark 1. A simpler definition of Lforward involves replacing
MSE(𝑶PS

2
,𝑿PUS

2
) with MSE(𝑶 IHT

2
,𝑿HT

2
). However, (6) is used as it

improves gradient flow along the PUS/PS-based path in training
and encourages the NN to exploit both paths with distinct down-
scaling/upscaling schemes for latent image prediction. We cannot
supervise both paths at the same scale with GT latent images, as
AMSIN predicts both latent images and degradation maps.

The reverse loss in AMSIN is defined using a data substitution

strategy. For an output pair (𝑶PS
,𝑶 IHT

) from AMSIN where 𝑶PS

denotes predicted distortion map and 𝑶 IHT
denotes the predicted

latent image, we replace 𝑶 IHT
by the GT 𝑿 and feed (𝑶PS

,𝑿 ) to the

AMSIN in a reverse mode (i.e., from the right to the left in Fig. 1),

resulting a pair (𝑷PS,𝑷 IHT
). Then, the reverse loss is defined by

Lreverse := MSE(𝑷PS, RC3 (𝒀 )) +MSE(𝑷 IHT, 𝒀 ). (7)

As the invertible structure of AMSIN has already ensured the perfect

reconstruction property of the decomposition process, the reverse

loss acts as a data augmentation for regularization.
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4 Experiments
4.1 Experimental Settings
Datasets: Six benchmark datasets are utilized for performance

evaluation in our experiments: including UIEBD [30], SUD [29],

UCCS [40], EUVP [24], SUIM [23], and U45 [34]. The UIEBD dataset

is composed of two subsets: (a) UIEBD-P consisting of 890 raw real

underwater images paired with corresponding high-quality refer-

ence images as GTs; and (b) UIEBD-UP consisting 60 challenging

real underwater images without references nor GTs. The SUD is a

synthesized dataset consisting of 10 different types, each character-

ized by different attenuation coefficients [7]. There are 130 paired

images in each type. The UCCS dataset contains three subsets cate-

gorized into bluish, greenish, and blue-green tones, each containing

100 real underwater images. For the EUVP dataset, its validation

set is used, comprising 330 real underwater images. The SUIM is a

dataset for semantic segmentation of underwater images. Its test

set containing 110 real underwater images is used. The U45 [34]

dataset contains 45 real underwater images for test.

The experimental configurations of training data on these datasets

vary in existing literature. Following [41], we train models using

the training set of UIEBD. The test set of UIEBD is composed of two

parts: UIEBD-P with paired data and UIEBD-UP with unpaired data.

To evaluate the generalization performance, the UIEBD-trained

models are also tested on four datasets: EUVP (validation set), UCCS,

SUIM (test set) and U45. As for SUD, 100 (30) images of each type

are randomly selected for training (test).

Metrics and methods for comparison: When GTs are available,

we quantify performance using PSNR and SSIM, two standard full-

reference metrics. Otherwise, we adopt two non-reference metrics

tailored for underwater images quality assessment: UIQM [45] and

UCIQE [63]. For performance comparison, we choose (a) two tra-

ditional non-learning methods: EUIVF [4] and AACP [57]; and (b)

ten deep learning-based UIE methods: Water-Net [30], FGAN [24],

SGUIENet [49], TACL [41], USFormer [47], TrinityNet [9], NU
2
Net

[16], GUPDM [44], DM-Water [54], Semi-UIR [21]. We also com-

pare with a representative INN of image processing, InvDN [42],

increasing its coupling layers to match our model size. Whenever

applicable, we quote the results of these methods from existing lit-

erature; otherwise, we retrain them using the same data as ours. For

Semi-UIR, the unpaired set of EUVP is also utilized in its retraining.

Implementation details of AMSIN: Through all experiments,

we set the number of coupling layers in AMSIN as follows: 3, 3, 2

for the encoder blocks, and 2, 8, 8 for the decoder blocks. For the

parameter of loss function, we set 𝛼 to 0.5, and set 𝜆1, 𝜆2, 𝜆3 as 4, 2, 1,

respectively. In training, the model weights are initialized by the

Xavier method. The Adam optimizer is called with batch size 1. The

initial learning rate is set to 2𝑒−4 for the first 600 epochs and 2𝑒−5

for the last 50 epochs. Our code is written in PyTorch and run on

an NVIDIA GTX 4090 GPU, which is released on GitHub.

4.2 Results and Analysis
Quantitative comparison in terms of full-reference metrics:
Table 1 summarizes the PSNR and SSIM results on two GT-available

datasets, UIEBD-P and SUD. We can see that our AMSIN is the best

performer across all the datasets with respect to both PSNR and

Table 1: Quantitative comparison in full-referencemetrics on
two benchmark datasets. Bold: best; and Underline: 2nd-best.

Method Source

UIEBD-P SUD

PSNR(dB)/SSIM PSNR/SSIM

EUIVF [4] CVPR2012 17.59/0.787 13.15/0.712

AACP [57] TCSI2017 18.51/0.795 14.01/0.688

WaterNet [30] TIP2019 20.44/0.852 19.03/0.835

FGAN [24] RAL2020 18.52/0.811 17.95/0.719

InvDN [42] CVPR2021 19.71/0.778 20.81/0.792

SGUIENet [49] TIP2022 23.08/0.895 22.52/0.832

TACL [41] TIP2022 22.30/0.888 16.97/0.701

USFormer [47] TIP2023 22.01/0.893 22.19/0.845

TrinityNet [9] TGRS2023 21.58/0.891 21.31/0.837

NU
2
Net [16] AAAI2023 22.99/0.899 22.28/0.844

GUPDM [44] ACMMM2023 22.15/0.889 21.80/0.851

DM-Water [54] ACMMM2023 23.52/0.907 23.24/0.878

Semi-UIR [21] CVPR2023 23.31/0.897 22.37/0.861

AMSIN Proposed 24.16/0.918 24.70/0.912

SSIM. Impressively, AMSIN outperforms other compared methods

by a significant margin on SUD, a synthetic dataset. Moreover, on

UIEBD-P which is a real-world dataset, our AMSIN also surpasses

the second-best performer noticeably, with 0.64dB improvement in

PSNR. These results on two types of datasets highlight the excep-

tional capabilities of AMSIN. Specifically, AMSIN shows significant

superiority over the InvDN that has a representative INN structure,

demonstrating the effectiveness of our NN architecture design.

Quantitative comparison in terms of no-referencemetrics: The
quantitative results of different methods on the six datasets in terms

of UIQM and UCIQE are listed in Table 2. It can be observed that

AMSIN achieves the best UCIQE results on 5/6 datasets, demon-

strating its superiority over existing methods, particularly in terms

of chroma, saturation, and contrast, measured by the UCIQE metric.

In addition, AMSIN ranks among the top two on three datasets in

terms of UIQM measuring colorfulness, sharpness, and contrast. Its

UIQM results are worse than that of Semi-UIR, a semi-supervised

method exploiting additional unpaired training data. Even that,

AMSIN is the best performer overall.

Qualitative comparison via visual inspection: The qualitative

comparison results are shown in Fig. 2 and Fig. 3. It can be seen

that AMSIN also outperforms other compared methods in terms

of visual quality. For instance, as seen in Fig. 2, AMSIN excels in

handling images with a bluish or greenish tint, resulting in superior

visual effects. In contrast, the WaterNet removes the green effect

excessively or exhibits residual haze effects; see e.g., the green moss

in the first sample or the residual yellowish haze in the second

sample; the NU
2
Net showcases a relatively weak color correction

effect; and the SemiUIR tends to excessively eliminate the green

effect and haze. AMSIN also demonstrates advantages in preserving

color contrast and details. As seen in Fig. 3, AMSIN effectively

corrects the color distortion on the rocks and retains the intricate

texture details in the second sample. In the third sample, AMSIN

removes the green tone caused by water while retaining the natural

green hues of the fish and the grass on the ground.
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Table 2: Quantitative comparison in non-reference metrics on six datasets. Bold: best; and Underline: 2nd-best.

Method Source

UIEBD-P UIEBD-UP EUVP UCCS SUIM U45

UIQM UCIQE UIQM UCIQE UIQM UCIQE UIQM UCIQE UIQM UCIQE UIQM UCIQE

EUIVF [4] CVPR2012 3.0943 0.6261 2.1900 0.5592 3.1790 0.5924 3.5596 0.5683 2.3092 0.6011 4.0223 0.5926

AACP [57] TCSI2017 3.1455 0.6145 2.2975 0.5914 3.1351 0.6120 3.9469 0.5453 2.2831 0.6129 4.2553 0.6039

WaterNet [30] TIP2019 3.2983 0.5680 2.1424 0.5509 3.2363 0.5584 3.2739 0.5348 2.6614 0.5809 4.3102 0.5553

FGAN [24] RAL2020 3.2279 0.5857 2.1868 0.5488 3.1648 0.5618 3.7785 0.5436 2.3681 0.5941 4.2799 0.5976

InvDN [42] CVPR2021 3.4105 0.5818 2.2159 0.5440 3.0982 0.5539 3.8111 0.5054 2.2864 0.5958 4.1941 0.5553

SGUIENet [49] TIP2022 3.3121 0.6054 2.2448 0.5845 3.2251 0.5850 3.3471 0.5352 2.4409 0.6148 4.3736 0.6148

TACL [41] TIP2022 3.3320 0.6101 2.4966 0.5770 3.1365 0.6065 4.1133 0.5826 2.5011 0.6150 4.3910 0.6198

USFormer [47] TIP2023 3.2925 0.5986 2.1317 0.5658 3.1294 0.5862 4.0145 0.5458 2.3381 0.5983 4.3898 0.5886

TrinityNet [9] TGRS2023 3.4078 0.5845 2.1640 0.5459 3.1544 0.5607 3.4228 0.5140 2.2825 0.6006 4.2119 0.5695

NU
2
Net [16] AAAI2023 3.4062 0.5937 2.2687 0.5652 3.5390 0.5773 4.1407 0.5388 2.4702 0.5989 4.4064 0.5931

GUPDM [44] ACMMM2023 3.3814 0.5902 2.2249 0.5809 3.2474 0.5815 3.9659 0.5392 2.3517 0.6059 4.2360 0.6021

DM-Water [54] ACMMM2023 3.5183 0.6223 2.1701 0.5976 3.2009 0.6012 4.1286 0.5591 2.4439 0.6153 4.3552 0.6188

Semi-UIR [21] CVPR2023 3.5919 0.6170 2.5300 0.5877 3.1408 0.6092 4.3669 0.5530 2.5715 0.6232 4.5150 0.6182

AMSIN Proposed 3.6040 0.6308 2.2843 0.6081 3.2115 0.6141 4.1493 0.5780 2.3758 0.6348 4.4598 0.6216

Input WaterNet NU
2
Net SemiUIR AMSIN (Ours) GT

Figure 2: Visual comparison of UIEBD-P.

Table 3: Complexity results of different methods.

Method Source #Params(M) #MACs(G) Time(s)

Waternet TIP2019 1.09 285.91 0.002

FGAN RA-L2020 7.02 40.96 0.001

InvDN CVPR2021 4.95 356.54 0.020

SGUIENet TIP2022 18.63 693.6 0.153

TACL TIP2022 11.38 227.72 0.007

USFormer TIP2023 65.60 132.4 0.071

TrinityNet TGRS2023 20.14 123.89 0.048

NU
2
Net AAAI2023 3.15 41.92 0.004

GUPDM ACMMM2023 1.49 383.98 0.121

DM-Water ACMMM2023 10.69 534.83 0.275

Semi-UIR CVPR2023 1.67 145.75 0.029

AMSIN Proposed 4.63 148.88 0.012

Complexity comparison: We compare the complexity of different

DNN models in terms of the number of parameters, the number of

multiply-accumulate operations (#MACs), and the running time to

process a 512 × 512 image. See Table 3 for the results. The AMSIN

outperforms its top competitor, Semi-UIR, in terms of running time.

It is also comparable to Semi-UIR in terms of the model size and

#MACs. Therefore, we can conclude that the performance gain of

Table 4: Results of ablation studies on UIEBD-P.

Model Setting PSNR(dB) Model Setting PSNR(dB)

Original model 24.16 - -

(a) Single scale 22.95 (f) Single-path L
forward

23.81

(b) w/o short path 23.33 (g) w/o SSIM loss 23.99

(c) w/o RC emphasis 23.91 (h) w/o Lreverse 23.96

(d) Only HT/IHT 23.62 (i) w/o Coupling 22.15

(e) Only PUS/PS 23.51 (j) Fully non-invertible 21.06

AMSIN is mainly from its efficient architecture, without additionally

introducing noticeable computational complexity. All above results

have shown the advantages of our method in both underwater

image enhancement performance and computational complexity.

Visualization of estimated distortion maps: See Fig. 4 for the

predicted degradation maps and the re-degraded images formed by

GTs and predicted degradation maps. Obviously, we can reconstruct

re-degraded images that closely match the input degraded images.

This observation highlights the capability of the predicted distortion

map to accurately re-produce the true distortion effects.
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Figure 3: Visual comparison of enhanced images by different methods.

Input Distortion map GT Re-degradation

Figure 4: Visualization of distortion maps and re-degraded images. The re-degradation is done by composing the estimated
distortion map and the GT back to a degraded image, using reverse mode of our INN.

4.3 Ablation Studies
To see the performance contribution of each of its key compo-

nents, we conduct ablation studies by forming the following base-

line models from AMSIN. (a) “Single scale”: All scaling opera-

tions in AMSIN are discarded. (b) “w/o short path”: All split-
concatenation short paths are removed from AMSIN. (c) “w/o
RC emphasis”: It replicates the whole degraded image rather

than the red channel, for the AMSIN’s input, and replace the red-

channel emphasized 𝑿PUS

2
by a RGB channel-uniform one in the

loss L
forward

. (d) “Only HT/IHT”: All PUS/PS operations are re-
placed with HT/IHT to form symmetric dual paths. (e) “Only
PUS/PS”: All HT/IHT operations are replaced with PUS/PS to

form symmetric dual paths. (f) “Single-path Lforward”: It replaces
MSE(𝑶PS

2
,𝑿PUS

2
)withMSE(𝑶 IHT

2
,𝑿HT

2
) inL

forward
. (g) “w/o SSIM
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Input SGUIENet TACL NU
2
Net SemiUIR AMSIN (Ours)

Figure 5: Visual results of semantic segmentation on UIE results. Input images are from the the EUVP dataset [24].

loss”: It excludes the SSIM loss from L
forward

. (h) “w/o Lreverse”:
It disables the reverse loss during training. (i) “w/o Coupling”: All
coupling layers are replaced by three residual blocks same as those

contained in the coupling layers. As a result, the EBs and DBs in

AMSIN are now non-invertible. (j) “Fully non-invertible”: Based
on above, the invertible scaling operators are further replaced by

the standard non-invertible ones done within the convolutional

layers, and the split concatenation short paths are replaced by the

common skip connections with addition.

See Table 4 for the results of the ablation studies. The original

AMSIN outperforms all the baselines noticeably, demonstrating

the effectiveness of the key components in AMSIN. We provide a

detailed analysis as follows. (a) A significant PSNR decrease occurs

when using a single-scale structure, emphasizing the significant

role of the multi-scale structure. (b) A noticeable PSNR drop when

removing the split-concatenation short paths, demonstrating their

necessity. (c) Using asymmetric input leads to certain performance

gain, as it enhances the recovery of red-channel information. (d)&(e)

The asymmetric downscaling/upscaling in the dual paths is impor-

tant for the performance. Purely using PUS/PU or HT/IHT yields

sub-optimal results. (f) Without incorporating the asymmetric loss,

a noticeable PSNR loss is observed. (g)&(h) The SSIM loss and

reverse loss have certain contribution to the PSNR gain, though

not big. This is because the invertible structure of AMSIN already

has strong regularization to avoid overfitting. (i)&(j) These two

ablation studies verified the usefulness of introducing invertibility

into AMSIN. Without the invertibility, AMSIN shows a noticeable

performance drop, demonstrating the importance of utilizing an

invertible NN structure for decomposition-based UIE. To conclude,

each proposed component in our AMSIN has a noticeable contribu-

tion to the performance.

4.4 Evaluation on Downstream Segmentation
To further verify the practicability of our AMSIN for subsequent

downstream tasks, we apply the semantic segmentationmethod [23]

Table 5: Segmentation performance on underwater images
enhanced by different UIE methods, in terms of two metrics.

Object Metric SGUIENet TACL NU2Net SemiUIR AMSIN

HD

F-score 82.15 78.40 79.31 81.31 86.02
mIOU 72.20 69.44 71.31 70.91 75.22

FV

F-score 85.82 88.87 87.57 87.05 88.93
mIOU 77.83 79.98 78.68 77.89 79.28

to the UIE results of different methods and then compare the seg-

mentation accuracy. The top competitors in previous experiments

are selected for comparison. See Fig. 5 for the segmentation results

on some enhanced images. We can see that the objects segmented

using the images enhanced by AMSIN are more complete than

that of other compared methods. In addition, we also evaluate the

segmentation accuracy on the categories of Human divers (HD)

and Fish and vertebrates (FV) on the SUIM dateset utilizing two

metrics used in [23]: F -score and mIOU. See Table 5 for the result.

The AMSIN performs the best in 3/4 cases, demonstrating that

our approach not only improves visual quality, but also benefits

downstream visual tasks.

5 Conclusion
This paper addressed the challenges in UIE by proposing a novel

NN architecture. Treating UIE as a decomposition problem, our NN

utilizes a multi-scale invertible structure to maintain reconstruction

constraints and extract cross-scale cues during the decomposition

process. Additionally, we introduced an asymmetric dual-flow scal-

ing design for enhanced spatial and frequency analysis. We also

incorporated an asymmetric input form to enhance the recovery

of red-channel information, with an asymmetric multi-scale re-

construction loss introduced to improve model training. Extensive

experiments have demonstrated the superior performance of our

approach compared to existing ones.
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