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1 INTERPRETATION FROM DECOMPOSITION
Recall that in our proposed approach, an input underwater image
𝒀 is perceived as the composition of a distortion-free image 𝑿 and
a distortion map 𝑫 through a non-linear process 𝑓 (·, ·). The map 𝑫
encapsulates all necessary degradation information of 𝑿 , enabling
perfect reconstruction of 𝒀 from 𝑿 and 𝑫 . Our method can be
envisioned as learning to simultaneously predict both𝑿 and𝑫 from
𝒀 , i.e., G(𝒀 ) → (𝑿 ,𝑫). In this context, the composition process
𝑓 = G−1 naturally arise as an integrated outcome. In other words,
our approach can be conceptually interpreted as the integration of
three inter-connected components:

Gcp (·;𝜽cp) [implicit],Gdm (·;𝜽dm),Gim (·;𝜽im),
which accounts for the composite function, distortionmap predictor,
and distortion-free image predictor, parametrized by 𝜽cp, 𝜽dm, 𝜽im,
respectively. Then, the interactions among these components across
stages in the NN can be conceptually described as follows: for
𝑡 = 1, 2, . . . ,𝑇 :

𝑫𝑡 := Gdm (𝑿𝑡−1,𝑫𝑡−1;𝜽 𝑡dm),
𝑿𝑡 := Gim (𝑿𝑡−1,𝑫𝑡−1;𝜽 𝑡im),
s.t. Gcp (𝑫𝑡 ,𝑿𝑡 ; {𝜽 1cp, · · · , 𝜽 𝑡cp}) = 𝒀 ,

where𝑫𝑡 ,𝑿𝑡 denote the features of distortionmap and the distortion-
free image at the 𝑡-stage, respectively.

2 DETAILS OF COMPARED METHODS
Training data varies in exiting literature of UIE. Following TACL [2],
the training set of UIEBD with GTs is used in our experiment.
Therefore, for TACL, we directly quote the results in PSNR and SSIM
from its original paper [2]. Note that the programs for calculating
the results of UIQM and UCIQE are not included in the released
codes of [2], and different implementations may lead to different
results. Therefore, we utilize the code of UIQM provided by [1] and
the code of UCIQE provided by [5] to re-calculate the UIQM and
UCIQE results of TACL as well as all other compared methods. As
a result, the UIQM and UCIQE results differ from the ones reported
in [2]. In addition, we also note that TACL does not perform very
well on SUD. The reason is probably that TACL utilizes a detector
model trained on real-world underwater images, which does not
work well on the synthetic images of SUD.

Regarding Waternet and SemiUIR which need to call traditional
methods before inference, we omit their computational time of
running those traditional methods. Hence, the actual test time of
these two methods is longer than that reported in the main paper.

3 SUPPLEMENTAL EXPERIMENTAL RESULTS
3.1 Comparison on LSUI dataset
We also perform evaluation on the LSUI (large-scale underwater
image) dataset [3] which contains 3879 paired underwater images
for training and 400 for test. See the quantitative results on Table 1
and the visual results in Fig. 1.

Table 1: PSNR/SSIM on LSUI. Bold: best; Underline: 2nd-best

.

NU2Net Semi-UIR EUIVF AACP

24.33/0.915 24.29/0.898 17.50/0.663 17.71/0.711

USFormer DM-Water GUPDM AMSIN

24.16/0.930 27.65/0.886 25.35/0.922 28.29/0.926

3.2 Comparison to General Transformer Models
Table 2 compares AMSIN to two recent Transformer-based methods
designed for general image restoration: Uformer [4] and Restormer [6].
For Restormer, in addition to its original model, we also evaluate
a reduced-size version (denoted by Restormer*) whose channel
number is reduced to have a similar model size as AMSIN. From
the results in the table, we can see that AMSIN outperforms those
Transformer-based method. We can also see that Uformer performs
worse than Restormer. The reason is probably that the channel
self-attention of Restormer is more efficient for recovering chromi-
nance information in underwater images, compared to the spatial
self-attention used in Uformer.

3.3 More Visual Comparison
Demo on underwater video enhancement: See Fig. 2 for the
frame-by-frame processing using our method on underwater videos.
Visualization on residuals: See Fig. 3.
Additional visual results: See Figs. 4, 5, 6, 7, 8, 9 for more visual
results. It can be observed that our method better enhances the
brightness and contrast in almost all examples.Moreover, in compar-
ison to other methods, it achieves more accurate color restoration
(as demonstrated in UIEBD-UP, the second example from UCCS,
SUIM, and U45), along with better detail restoration (as exemplified
in the second example from UIEBD-P).
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Table 2: Quantitative comparison on six datasets. Bold: best.

Method Source UIEBD-P UIEBD-UP EUVP UCCS SUIM U45
PSNR SSIM UIQM UCIQE UIQM UCIQE UIQM UCIQE UIQM UCIQE UIQM UCIQE

Uformer [4] CVPR2022 19.86 0.869 2.0902 0.5153 2.9343 0.5210 3.5921 0.4533 2.1004 0.5810 4.0898 0.5577
Restormer [6] CVPR2022 22.40 0.904 2.2341 0.5580 3.0812 0.5726 4.0659 0.5251 2.2972 0.6014 4.0584 0.5924
Restormer* [6] CVPR2022 22.21 0.903 2.1298 0.5548 3.0870 0.5763 3.9523 0.5213 2.2633 0.6019 4.0760 0.5942

AMSIN Proposed 24.16 0.918 2.2843 0.6081 3.2115 0.6141 4.1493 0.5780 2.3758 0.6348 4.4598 0.6216

Input AACP Semi-UIR USFormer

DM-Water GUPDM AMSIN GT

Figure 1: Visual comparison on LUSI.

Frame #1 Frame #2 Frame #3 Frame #4 Frame #5 Frame #6

Figure 2: Visual results on frame-by-frame underwater video enhancement. Upper row: Input; Bottom row: Enhanced results.

Input TACL NU2Net SemiUIR GUPDM AMSIN (Ours)

0 0.2

Figure 3: Visual comparison on absolute residuals between enhanced images with GTs.
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Figure 4: Visual comparison of UIEBD-P. Images at even rows correspond to the cropped regions of the images at odd rows.
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Figure 5: Visual comparison of UIEBD-UP.
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Input WaterNet InvDN SGUIENet TACL TrinityNet
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Figure 6: Visual comparison of EUVP.
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Input WaterNet InvDN SGUIENet TACL TrinityNet
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Figure 7: Visual comparison of UCCS. Images at even rows correspond to the cropped regions of the images at odd rows.
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Input WaterNet InvDN SGUIENet TACL TrinityNet
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Input WaterNet InvDN SGUIENet TACL TrinityNet

NU2Net SemiUIR GUPDM Uformer Restormer AMSIN (Ours)

Figure 8: Visual comparison of SUIM. Images at even rows correspond to the cropped regions of the images at odd rows.
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Input WaterNet InvDN SGUIENet TACL TrinityNet

NU2Net SemiUIR GUPDM Uformer Restormer AMSIN (Ours)

Input WaterNet InvDN SGUIENet TACL TrinityNet
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Figure 9: Visual comparison of U45. Images at even rows correspond to the cropped regions of the images at odd rows.
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