
Distributed Safe Multi-agent Control Using Neural
Graph Control Barrier Functions

Anonymous Author(s)
Affiliation
Address
email

Abstract: We consider the problem of distributed safe multi-agent control in large-1

scale environments with potentially moving obstacles, where a large number of2

agents are required to maintain safety using only local information and reach their3

goals. This paper addresses the problem of safety, scalability, and generalizability4

by introducing graph control barrier functions (GCBFs) for distributed control.5

The newly introduced GCBF is based on the well-established CBF theory for6

safety guarantees but utilizes a graph structure for scalable and generalizable7

decentralized control. We use graph neural networks to learn both neural a GCBF8

certificate and distributed control. We also extend the framework from handling9

state-based models to directly taking point clouds from LiDAR for more practical10

robotics settings. We demonstrated the efficacy of GCBF in a variety of numerical11

experiments, where the number, density, and traveling distance of agents, as well12

as the number of unseen and uncontrolled obstacles increase. Empirical results13

show that GCBF can constantly outperform leading methods such as MAPPO and14

multi-agent distributed CBF (MDCBF). Trained with only 16 agents, GCBF can15

achieve up to 3 times improvement of success rate (agents reach goals and never16

encountered in any collisions) on < 500 agents, and still maintain more than 50%17

success rates for >1000 agents when other methods completely fail.18

1 Introduction19

Multi-agent systems (MAS) can complete much more complex tasks efficiently as compared to20

single-agent systems such as reconnaissance or sensor coverage of a large unexplored area. Safety of21

MAS, in terms of collision and obstacle avoidance, is a non-negotiable requirement in the numerous22

autonomous robotics applications (see [1] for an overview) such as a swarm of drones flying in a dense23

forest [2, 3], multi-object configuration and manipulation in warehouses [4, 5, 6] and autonomous24

driving [7, 8, 9]. In addition, the agents are required to either follow a pre-defined path or reach25

a destination for completing their individual or team objectives. With the increase in the number26

of robots in the MAS, it becomes difficult to design control policies for all the agents for such a27

multi-task problem as the computational complexity grows exponentially with the MAS scale [10].28

Common multi-agent motion planning methods include but are not limited to solving mixed integer29

linear programs (MILP) for computing safe paths for agents [11, 12] and RRT-based methods [13].30

However, they are not scalable to large-scale MAS. Multi-agent Reinforcement Learning (MARL)-31

based approaches, e.g., Multi-agent Proximal Policy Optimization (MAPPO) [14], have also been32

adapted to solve multi-agent motion planning problems. However, most of the MARL works model33

safety as a penalty rather than a hard constraint and thus, cannot guarantee safety. In recent years,34

safety constraints have been handled via control barrier functions (CBFs) [15]. Particular for MAS,35

generally a CBF is assigned for each safety constraint, and then an approximation method is used for36

accounting for the multiple constraints [16, 17, 18, 19]. The issue with such methods is that it is very37

difficult to construct a handcrafted CBF for large-scale MAS consisting of highly nonlinear dynamics.38

Submitted to the 7th Conference on Robot Learning (CoRL 2023). Do not distribute.

The Multi-agent Decentralized CBF (MDCBF) framework in [20] uses a neural network-based CBF39

designed for MAS, but they do not encode a method of distinguishing between other controlled40

agents and uncontrolled agents such as static and dynamic obstacles. Furthermore, they use a discrete41

approximation of the time derivative of the CBF but do not account for changing graph topology in42

their approximation, which can lead to a wrong evaluation of the CBF constraints and consequently,43

failure. The Control Admissiblity Models (CAM)-based framework in [21] also attempts to address a44

similar problem. However, one of the limitations of their approach is that it involves sampling control45

actions from a set defined by CAM. However, such a sampling method cannot always find a feasible46

control input that satisfies the safety constraint.47

To overcome these limitations, in this paper, we present a novel Graph CBF for large-scale MAS to48

address the problem of safety, scalability, and generalizability. We propose a learning-based control49

policy to achieve a higher safety rate in practice. We use graph neural networks (GNN) to better50

capture the changing graphical topology of distance-based inter-agent communications. We also51

also use LiDAR-based observations for handling unseen and potentially unstationary obstacles in52

real-world environments. With these technologies, our proposed framework can generalize well to53

many challenging settings, including more crowded environments and unseen obstacles.54

We consider a 2D car environment and a 3D drone environment in our numerical experiments. In the55

obstacle-free case, we train with 16 agents and test with over 1000 agents. In particular, for < 50056

agents, the proposed method achieves a threefold improvement in safely reaching tasks, while for57

large-scale experiments (> 1000 agents) where the existing approaches achieve close to 0 success58

rate, our approach achieves 50%− 100% success rate. In the obstacle environment, we consider only59

16 point-sized obstacles in training, while in testing, we consider up to 32 large-sized obstacles. We60

see over 15% improvement in success rate as compared to baselines. The experiments corroborate61

that the proposed method outperforms the existing methods in successfully completing the tasks in a62

variety of 2D and 3D environments. Our contributions are summarized below:63

• We introduce Graph CBF (GCBF), a new kind of barrier function for MAS to encode and64

enforce the safety constraint and to handle different types of agents and obstacles.65

• We use GNNs to jointly learn a GCBF and a distributed controller which is robust to the66

changes of neighbors, and a LiDAR-based observation model for obstacles.67

• Empirical performance shows a significant improvement by our GCBF over other leading68

approaches, especially in difficult settings.69

Related work Sampling-based path planning approaches such as prioritized multi-agent path finding70

[22], conflict-based search for MAPF [23] can be used for multi-agent path planning for known71

environments, but do not generalize to new unseen environments. The work in [24] scales to large-72

scale systems, but it only considers discrete action space and hence does not apply to robotic platforms73

that use more general continuous input signals. Works such as [25, 26, 27] address this problem74

using GNNs for generalization to unseen environments and are shown to work on teams of up to a75

hundred agents. However, they are not scalable to very large-scale problems (e.g., a team of 100076

agents) due to the computational bottleneck. In recent years, the most commonly employed method77

of solving safe motion planning problems involves neural CBF-based approaches [20, 28, 29, 30].78

Machine learning (ML)-based approaches have shown promising results in designing CBF-based79

controllers for complex safety-critical systems [28, 29, 30]. The NN-CBF framework consists of80

model-based learning [31, 30, 32, 33] or model-free learning [34, 35, 36]. Our approach uses a81

model-based learning framework, and in contrast to the aforementioned works, applies to MAS.82

Utilizing the permutation-invariance property, GNN-based methods have been employed for problems83

involving MAS [26, 25, 37, 21, 38, 39, 40, 27, 41]. These prior work only consider static obstacles84

in the environment, or do not consider the presence of obstacles or uncontrolled agents at all. On the85

other hand, there is also a lot of work on MARL-based approaches with focuses on motion planning86

[42, 43, 44, 45, 46, 47, 14, 48, 49, 50]. But these approaches cannot provide safety guarantees due87

to the reward structure and as argued in [51], MARL-based methods are still in the initial phase of88

development when it comes to safe multi-agent motion planning.89

2

2 Problem formulation90

In this work, we consider the problem of designing a distributed control framework for a set of91

N agents Va := {1, 2, . . . , N} to drive them to their goal locations while maintaining safety. The92

motion of each agent is governed by general nonlinear dynamics ẋi = Fi(xi, ui), where xi ∈ Rn and93

ui ∈ Rm are the state, control input for the i-th agent, respectively and Fi : Rn → Rm is assumed to94

locally Lipschitz continuous. Here, the vector xi consists of the position pi along with other state95

variables such as speed, orientation, etc. Note that it is possible to consider heterogeneous MAS96

where the dynamics of agents are different. However, for simplicity, we restrict our paper to the case97

when all the agents have the same underlying dynamics, i.e., Fi = F for all i. The environment98

also consists of stationary or dynamic obstacles Ok for k ∈ {1, 2, . . . ,M}, where Ok represents99

the space occupied by obstacle k. The control objective for each agent is to navigate the obstacle100

environment to reach its goal location while maintaining safety. We use a LiDAR-based observation101

model similar to [31], which can be directly used for real-world robotic applications. The observation102

data consists of nrays evenly-spaced rays originating at the robot and measures the relative locations103

of objects in its sensing radius. The observation data for agent i is denoted by yi ∈ Rnrays×n where104

n = 2 (respectively, 3) for 2D (respectively, 3D) environment.105

The safety requirement imposes that each pair of agents maintain a minimum safety distance 2r106

where r > 0 is the radius of a circle that can contain the entire physical body of each agent. It107

also requires that each agent maintains a safe distance from other obstacles in the environment.108

Furthermore, each agent has a limited sensing radius R. We define the neighbor agents of agent i as109

N a
i = {j ∈ Va | ∥pi− pj∥ ≤ R, j ̸= i}, and the neighbor obstacles of agent i as N o

i = {k | ∥yki ∥ ≤110

R}. Therefore, the agents can only sense other agents or obstacles in the set of their neighbors111

Ni = N a
i ∪N o

i . The formal statement of the problem considered in this work is given below.112

Problem 1 Given a set of N agents of safety radius r, sensing radius R and a set of non-colliding113

goal locations {pgoali ∈ Rn}Ni=1, design a distributed control policy πi = πi(xi, x̄i, ȳi, x
goal
i) for114

each agent i, where x̄i is the conglomerated states of the neighbors j ∈ N a
i and ȳi the conglomerated115

observations from N o
i , such that the following holds for the closed-loop trajectories of the agents:116

• Obstacle avoidance: ∥yji (t)∥ > r,∀j, i.e., the agents do not collide with the obstacles;117

• Inter-agent collision avoidance: ∥pi(t) − pj(t)∥ > 2r for all t ≥ 0, j ̸= i, i.e., the118

inter-agent distance is greater than the safe distance;119

• Liveness: ∥pi(t)− pgoali ∥ → 0, i.e., each agent eventually reaches its goal location pgoali . 1120

3 Methodology121

Noticing that the agents, the hitting points of LiDAR rays, and the information flow between them122

can be naturally modeled as a graph, we propose a novel graph CBF (GCBF) which encodes the123

safety constraint based on the graph structure of MAS. We use a nominal controller for the liveness124

requirement and use GNNs to learn the GCBF jointly with the safe controller. During application,125

the GCBF is used to detect unsafe scenarios and switch between the nominal controller and the safe126

controller to maintain safety. Our GNN architecture is capable of handling a variable number of127

neighbors and so, it leads to a distributed and scalable solution to the safe MAS control problem.128

We start by briefly reviewing the notion of CBF commonly used in literature for safety requirements129

[15]. For a given closed safe set S ⊂ Rn, a function h : Rn → R is termed as a CBF if there exists a130

class-K function2 such that the following holds:131

h(x) > 0 ∀x ∈ int(S), h(x) < 0 ∀x /∈ S, and sup
u

LFh(x, u) ≥ −α(h(x)) ∀x ∈ S, (1)

1In the rest of the paper, we omit the argument t for the sake of brevity.
2A monotonically increasing continuous function α : R+ → R+ with α(0) = 0 is termed as class-K.

3

where Lfh(x) := ∂h
∂xf(x) is the Lie derivative of the function h along f , and int(S) denotes the132

relative interior of a closed set S. The existence of a CBF implies the existence of a control input u133

which keeps the system safe. Based on the notion of CBF, we define a new notion of graph CBF134

(GCBF) for encoding safety in MAS. Before formally introducing GCBF, we briefly review the basics135

of the graph structure. A directed graph is defined as G = (V,E) where V is the set of nodes and136

E = {(i1, i2)} is the set of edges representing the flow of information from node i2 to i1. For the137

considered MAS, the nodes consist of agents Va and the hitting points Vo of LiDAR rays in their138

observations, and hence V = Va ∪ Vo. The edges are defined between each of the observed points139

and the observing agent when the distance between them is within the sensing radius R. Since the140

flow of information is from the observed point to the observing agent, the set of edges E = Va × V .141

We use GNN to represent GCBF, so we first define node and edge features for GCBF.142

Node features and edge features The nodes features vi in GCBF encode the type of the agent with143

vi = 0 for controlled agents (i.e., the agents that operate under the commanded controller) and vi = 1144

for uncontrolled agents (i.e., the hitting points for LiDAR rays). The edge features eij are defined145

as the information shared from node j to agent i, which depends on the states of node j and node i.146

Since the safety objective depends on the relative positions, one of the edge features is the relative147

position pij . The rest of the features can be chosen depending on the underlying system dynamics,148

e.g., relative velocities for double integrators, and relative headings for Dubin’s cars. For brevity,149

we use ēi = (eij1 , eij2 , . . . , eij|Ni|
, ẽij|Ni|+1

, . . . , ẽijN+nrays
) with ēi ∈ Rp for some p > 0, and150

v̄i = (vj1 , vj2 , . . . , vj|Ni|
, ṽj|Ni|+1

, . . . , ṽjN+nrays
) to represent the collected edge and node features151

for agent i. Here, we use ẽij for j /∈ Ni and ṽk for the rays k /∈ Ni with constant values so that the152

sizes of the vectors ēij , v̄i remain fixed.3 Now we are ready to introduce the notion of GCBF.153

Definition 1 (GCBF) A function h : Rp × {0, 1}N+nrays → R is termed as a Graph CBF (GCBF)154

if there exists a class-K function α such that155

h(ēi, v̄i) > 0 ∀xi ∈ Si, h(ēi, v̄i) < 0 ∀xi /∈ Si, and ḣ(ēi, v̄i) ≥ −α(h(ēi, v̄i)) ∀ xi ∈ Si, (2)

where Si =

{
xi

∣∣∣ (∥yki ∥ > r,∀k ∈ nrays)
∧
(min
j∈Va,k ̸=i

∥pi − pj∥ > 2r)

}
is the safe set for agent i.156

Since the node features are constant, ḣ is computed with respect to the edge features as157

ḣ(ēi, v̄i) =
∂h(ēi, v̄i)

∂ēi

∂ēi
∂xi

F (xi, ui) +
∂h(ēi, v̄i)

∂ēi

∑
j∈Ni

∂ēi
∂xj

F (xj , uj). (3)

Note that while choosing the edge features ēi, it is important to make sure that the time derivates of158

the features of agent i include the control ui, so that the input can help keep the system safe. To this159

end, we assume ∂
∂ui

(
∂h(ēi,v̄i)

∂ēi
∂ēi
∂xi

F (xi, ui)
)
̸≡ 0. Note that this is similar to assuming Lgh ̸≡ 0 for160

CBF in (1) where F (x, u) = f(x)+g(x)u, which is very common (see [15]). Under this assumption,161

we can state the following result on the safety of the system under GCBF.162

Theorem 1 Given a set of N agents, assume that there exists a GCBF h satisfying (2) for some163

class-K function α. Then, the resulting closed-loop trajectories of agents with non-colliding initial164

conditions under any smooth control input ui ∈ U safe
i :=

{
u ∈ Ui | ḣ(ēi, v̄i) + α(h(ēi, v̄i)) ≥ 0

}
165

satisfy xi(t) ∈ Si for all i ∈ Va and t ≥ 0.166

Note that the presence of moving obstacles and controlled agents make the safe set Si time-varying.167

The proof of Theorem 1 is based on the CBF-based forward invariance arguments for time-varying168

safe sets [19, 52] and is skipped here.169

Safe control policy For the multi-objective Problem 1, we use a hierarchical approach for the170

goal-reaching and the safety objectives. First, we design a nominal controller unom
i = πnom(xi, x

goal
i)171

3We use GNN to model GCBF with input (eij1 , . . . , eij|Ni|
) and (vj1 , . . . , vj|Ni|

) since GNN can have
variable-size inputs. We use fixed-size input (ēi, v̄i) so that GCBF is mathematically well-defined.

4

0.40

0.07

0.31
0.22

0.032

0.024

0.016

0.008

0.000

0.008

0.016

0.024

E
m

bedding

A
ttention

C
oncatenation

Node features

Edge features

Neighbors

M
L

P

𝒖𝒊𝐧𝐨𝐦

M
L

P

𝒖𝒊

𝒉𝒊

𝒖𝒊𝐬𝐚𝐟𝐞

Information

Figure 1: Left: the contours of the learned GCBF of the agent with a diamond mark, where the blue
boundary is the 0-level set of the GCBF. Orange circles are agents and black dots are obstacles. The
weights on the edges show the attention values. Right: the overview of the proposed framework.

for the goal-reaching objective. In this work, we use LQR and PID-based nominal controllers. Next,172

using the nominal controller, we design a minimum-norm controller that satisfies the safety constraint173

using an optimization framework. With GCBF h, a solution to the following optimization problem:174

min
ui∈Ui

∥ui − unom
i ∥2, (4a)

s.t.
∂h(ēi, v̄i)

∂ēi

∂ēi
∂xi

F (xi, ui) +
∑
j∈Ni

∂h(ēi, v̄i)

∂ēi

∂ēi
∂xj

F (xj , uj) ≥ −α(h(ēi, v̄i)), (4b)

keeps agent i in its safety region. Note that (4) is not a distributed framework for finding the control175

policy, since the constraint for computing ui depends on uj . Thus, it is not straightforward to solve176

(4) in a distributed manner, although there is some work on addressing such problems [53]. To this177

end, we use an NN-based control policy that satisfies the safety constraint and does not require178

solving a centralized non-convex optimization problem online. Next, we discuss the training setup179

for jointly learning both GCBF and a distributed safe control policy (see Figure 1).180

GCBF and distributed control policy training We parameterize the GCBF as NNs with parameters181

θ, denoted as hθ. The NN contains a GNN component and a multilayer perceptron (MLP) component.182

In the GNN component, each connected edge {i, j} first goes through an MLP layer fθ1 , which183

encodes the edge feature eij and the node features vj to the latent space, i.e., qij = fθ1(eij , vj).184

Then, we use the attention mechanism [54] to aggregate the information of the neighbors, i.e.,185

qi =
∑

j∈Ni
softmax(fθ2(qij))fθ3(qij), where fθ2 and fθ3 are two NNs parameterized by θ2 and186

θ3. The function fθ2 is often called “gate” NN in literature [55], and the output of softmax(fθ2(qij))187

is called “attention”, which is a scatter value between 0 and 1 for each agent j ∈ Ni represents how188

critical agent j is to agent i. We discuss later the necessity of applying the attention mechanism.189

After the GNN component, aggregated information is processed by another MLP with parameters θ4190

to get the GCBF value for each agent, i.e., hi = fθ4(qi).191

We design the safe distributed controller as usafe
i = πϕ(ēi, v̄i, πnom(xi, x

goal
i)). The distributed192

control policy πϕ is an NN with a similar structure as GCBF, designed for collision and obstacle193

avoidance. The GNN component of πϕ is the same as the GNN component of hθ, except that πϕ also194

uses πnom as its feature. This helps the NN controller to learn how to modify the agent’s behavior195

given a nominal policy to keep it safe. Thus, we concatenate the nominal control signal unom
i with the196

output of the GNN component as the input to the MLP component of πϕ (see Figure 1). Note that the197

input to the control policy is only the local information (ēi, v̄i), and unlike (4), it does not require198

knowledge of neighbors’ inputs. In this way, the controller is fully distributed, and thanks to GNN’s199

ability to handle variable sizes of inputs, πϕ generalizes to larger graphs with much more neighbors.200

We train the GCBF and the distributed controller by minimizing the empirical loss L =
∑

i∈Va
Li,201

where Li is the loss for agent i defined as202

Li(θ, ϕ) =
∑
xi∈Si

[
γ − ḣθ(ēi, v̄i)− α(hθ(ēi, v̄i))

]+
+

∑
xi∈Si

[γ − hθ(ēi, v̄i)]
+

+
∑
xi ̸∈Si

[γ + hθ(ēi, v̄i)]
+
+ η

∥∥∥πϕ(ēi, v̄i, πnom(xi, x
goal
i))− πnom(xi, x

goal
i)

∥∥∥ , (5)

5

where [·]+ = max(·, 0), and γ > 0 is a hyper-parameter to encourage strict inequalities. The first203

three terms in the loss correspond to the GCBF conditions in (2), while the last term encourages204

small controller deviation from πnom so that the control input πϕ(ēi, v̄i, πnom(xi, x
goal
i)) can have205

better goal-reaching performance with η > 0 as a hyper-parameter to balance the weight of the206

GCBF constraint losses and the norm of the resulting input. Note that ḣθ(ēi, v̄i) is calculated using207

(3). Therefore, during training, when we use gradient descent and backpropagate LGCBF
i (θ, ϕ), the208

gradients are passed to not only the controller of agent i but also the controllers of all neighbors in209

Ni.4 For the class-K function α, we simply use α(h) = α · h, where α > 0 is a positive constant.210

During training, we use the on-policy strategy and collect data by executing the learned controller πϕ.211

One of the challenges of evaluating the loss function L is how to estimate ḣθ. Similar to [21],212

we estimate ḣθ by (hθ(ēi(tk+1), v̄i(tk+1))− hθ(ēi(tk), v̄i(tk))) /δt, where δt = tk+1 − tk is the213

simulation timestep. However, the discretized approximation may cause an issue if the graph214

connections change between any two consecutive time steps. Fortunately, the attention mechanism215

we use naturally addresses this problem. During training, the agents learn to pay more attention (i.e.,216

close to 1) to nodes that are near while the attention value is close to 0 for the nodes that are at the217

boundary of the sensing region. Therefore, if an edge breaks in between time steps and a node gets218

out of the sensing radius, the CBF value does not change significantly. In this manner, the estimation219

of ḣθ does not encounter large errors due to changes in edges in between time steps.220

GCBF detector and online policy refinement When the training finishes, we can execute our221

controller in a fully distributed manner. To achieve better goal-reaching performance, we use the222

learned GCBF as a detector to detect unsafe scenarios and use a switching control policy to reduce223

potential conservatism due to only using safe policy πϕ. In particular, we define the control assignment224

for each agent as ui = unom
i if unom

i ∈ U safe
i and ui = usafe

i , otherwise. Namely, at each time step,225

the system uses the nominal controller if the GCBF conditions (2) are satisfied with the nominal226

controller unom
i . If not, it switches to the learned policy usafe

i to ensure safety.227

While the control policy πϕ is designed to satisfy the GCBF conditions (2), the GCBF conditions228

can still be violated because of various reasons, such as distribution shift in testing and difficulty229

in exploring the state-space in high-dimensional and large-scale MAS during training. To this end,230

similar to [20], we use an online policy refinement technique to make the learned policy safer. At a231

given time instant, if the learned policy πϕ does not satisfy the GCBF conditions (2), we compute the232

residue δ(usafe
i) = max

(
0, γ − ḣθ(ēi, v̄i)− α(hθ(ēi, v̄i))

)
and use gradient descent to update the233

control policy πϕ until δ(usafe
i) = 0 or the maximum iteration is reached.234

4 Experiments235

Environments We conduct experiments on three different environments consisting of a Sim-236

pleCar modeled under double-integrator dynamics, a DubinsCar model, and a Drone modeled237

under linearized drone dynamics (see Appendix A.2 for more details). Both car environments238

are 2D while the drone environment is 3D. The parameters in the 2D car environments are239

R = 1, r = 0.05, uM = 0.8 where uM denotes the maximum speed of each agent. For the240

3D drone environment are R = 0.5, r = 0.05, uM = 0.6. The workspace X = ln of each of the241

environments is a hyper-rectangle of side-length l > 0. The total timesteps of experiments are 2500242

for 2D environments and 2000 for 3D environments.243

Evaluation criteria We use safety rate, reaching rate, and success rate as the evaluation criteria for244

the performance of a chosen algorithm. The safety rate is defined as the ratio of agents not colliding245

with either obstacles or other agents during the experiment time period over all agents. The reaching246

rate is defined as the ratio of agents reaching their goal location by the end of the experiment time247

period. The success rate is defined as the ratio of agents that are both safe and goal-reaching. We note248

that the safety metric in [21] is slightly misleading as they measure the portion of collision-free states249

for safety rate. For each environment, we evaluate the performance over 16 instances of randomly250

4We re-emphasize on the fact that during testing, the neighbors’ inputs are not required for πϕ.

6

Increase
density

Keep
density

Keep
distance

GCBF MDCBF MAPPO

Figure 2: Success rate of GCBF, MDCBF, and MAPPO algorithms across the three environments and
the three sets of experiments, namely, increasing density of the agents in a fixed workspace, increasing
the size of the workspace to keep the density same, and increasing the size of the workspace but
limiting the average distance traveled by agents.

chosen initial and goal locations from the workspace X for 3 policies trained with different random251

seeds. Here, we report the mean success rate and their standard deviations for the 16 instances for252

each of the 3 policies. We report the safety rate, reaching rate, and ablation results in Appendix B.253

Baselines We use MDCBF [20] and MAPPO [14] as the baselines for comparisons. MDCBF254

learns pair-wise CBFs between agents and takes the minimum on one agent as the CBF value of255

this agent. Furthermore, it considers each neighbor equally important without attention and does not256

use CBF as a detector but directly uses the learned controller. MAPPO is a MARL-based algorithm257

that learns to be safe and goal-reaching by maximizing the expected reward. For fair comparisons,258

we re-implement the algorithm from [14] using GNN. We do not perform comparisons with other259

MARL-based methods due to two main reasons: first, we perform comparisons with MDCBF which260

is already illustrated to outperform MARL-based methods, and second, it takes a lot of computational261

resources and cost to re-implement, train and test numerous baselines.262

Experiment settings We conduct four sets of experiments for demonstrating the scalability, gen-263

eralizability, and reliability of the proposed method. First, we fix the workspace size X where the264

agent trajectories evolve. In this experiment, we use X = 32 × 32 for 2D car environments and265

X = 16× 16× 16 for the 3D drone environment and perform experiments with up to 1024 agents for266

the 2D environments and up to 4096 agents for the 3D environment. In the second set of experiments,267

we keep the per-unit agent density constant. To this end, we increase the size of X as the number268

of agents increases from 16 to 4096 (see Appendix A.2 for workspace sizes). In the third set of269

experiments, we further constrain the maximum traveling distance to 4.0 units for each agent while270

increasing the size of the workspace to keep the per-unit agent density constant. In the fourth set271

of experiments, we introduce moving obstacles where we perform experiments in the DubinsCar272

environment with up to 32 obstacles and 64 agents in a workspace X = 12× 12. The obstacles are273

assumed to be moving with a bounded, constant, unknown speed up to 0.2 units and the size of the274

obstacle varies between 0 to 0.5 units. Agents use LiDAR to detach obstacles. Each agent generates275

equally-spaced 32 rays with a maximum sensing radius R = 1.0 unit. For the first three experiments,276

we train all the algorithms with 16 agents, and for the fourth experiment, we train with 64 agents and277

with 16 randomly generated point-sized obstacles to model LiDAR observations.278

Results Figure 2 shows the performance of the proposed framework (GCBF) against the baselines279

MDCBF and MAPPO. In all the experiments, the success rate of GCBF is higher than that of the280

considered baselines. Particularly as the number of agents increases, the decrement in the success281

rate of MAPPO and MDCBF is very high. For the SimpleDrone environment, we notice that there is282

7

GCBF

MDCBF

Figure 3: Left: Illustration of the DubinsCar environment with obstacles. The green circles are goal
points and the red rectangles are obstacles. The solid blue line shows the connection between agents
and the orange lines show LiDAR rays. Right: Success rate plots for GCBF and MDCBF.

almost no drop in the success rate with an increase in the number of agents. We speculate that this283

is because the agents in 3D have more degrees of freedom to move to avoid collisions and hence,284

achieve a very high safety rate (see the individual safety and goal-reaching plots in Appendix B). For285

the first two sets of experiments, the success rate drop is primarily because the inter-agent interactions286

are increasing. In the first set of experiments, it is clear with an increase in the density of agents for a287

fixed workspace, the inter-agent interactions increase. For the second set of experiments, although288

the per-unit agent density is the same, with an increase in the workspace size, the average distances289

traveled by the agents in randomly generated initial and goal location instances also increase. Thus,290

the inter-agent interaction increases. We designed the third set of experiments to further analyze291

the effect of traveling distance on success rate. In the third set of experiments, not only the density292

but also the average distance traveled by each agent is fixed, which keeps the number of inter-agent293

interactions constant. It can be observed that in this case, the success rate of GCBF remains very294

close to 1 in all three environments. Thus, we can conclude on the basis of these experiments that the295

main deciding factor for success rate is the average inter-agent interactions. Figure 3 illustrates that296

the proposed method using GCBF achieves a higher success rate across obstacle environments as297

compared to MDCBF since it can deal with different types of neighbors. The success rate of MAPPO298

with obstacles is consistently lower than 0.1, so we do not include it in the plot.299

5 Limitations300

In the current framework, there is no cooperation among the controlled agents, which leads to301

conservative behaviors. In certain scenarios, this non-cooperation can also lead to deadlocks or302

oscillatory behavior. Another limitation is the assumption of knowledge of the neighbors’ velocities.303

From a practical point of view, measuring relative position is possible using LiDAR or other sensors,304

but accurate estimation of other agents’ velocities and accelerations is not possible. Similar to305

any other NN-based control policy, the proposed method also suffers from difficulty in providing306

formal guarantees of correctness. In particular, it is difficult, if not impossible, to verify that the307

proposed algorithm can always keep the system safe via formal verification of the learned neural308

networks. These limitations inform our future line of work on relaxation of the assumption on309

available information, introducing cooperation among agents to reduce conservatism, and looking310

into methods of verification of the correctness of the control policy.311

6 Conclusions312

In this paper, we introduce a new notion of GCBF to encode inter-agent collision and obstacle313

avoidance in control for large-scale multi-agent systems with LiDAR-based observations, and jointly314

learn it with a distributed controller using GNNs. The proposed control framework is completely315

distributed as each agent only uses local information in its sensing region, and thus, is scalable316

to large-scale problems. Experimental results demonstrate that even when trained on small-scale317

MAS, the proposed method can achieve higher success rates in completing goal-reaching tasks while318

maintaining safety for large-scale MAS even in the presence of dynamic obstacles.319

8

References320

[1] C. Ju, J. Kim, J. Seol, and H. I. Son. A review on multirobot systems in agriculture. Computers321

and Electronics in Agriculture, 202:107336, 2022.322

[2] Y. Tian, K. Liu, K. Ok, L. Tran, D. Allen, N. Roy, and J. P. How. Search and rescue under the323

forest canopy using multiple uavs. The International Journal of Robotics Research, 39(10-11):324

1201–1221, 2020.325

[3] K. A. Ghamry, M. A. Kamel, and Y. Zhang. Multiple uavs in forest fire fighting mission using326

particle swarm optimization. In 2017 International Conference on Unmanned Aircraft Systems327

(ICUAS), pages 1404–1409. IEEE, 2017.328

[4] B. Li and H. Ma. Double-deck multi-agent pickup and delivery: Multi-robot rearrangement329

in large-scale warehouses. IEEE Robotics and Automation Letters, 8(6):3701–3708, 2023.330

doi:10.1109/LRA.2023.3272272.331

[5] A. Kattepur, H. K. Rath, A. Simha, and A. Mukherjee. Distributed optimization in multi-agent332

robotics for industry 4.0 warehouses. In Proceedings of the 33rd Annual ACM Symposium on333

Applied Computing, pages 808–815, 2018.334

[6] A. Krnjaic, J. D. Thomas, G. Papoudakis, L. Schäfer, P. Börsting, and S. V. Albrecht. Scalable335

multi-agent reinforcement learning for warehouse logistics with robotic and human co-workers.336

arXiv preprint arXiv:2212.11498, 2022.337

[7] L. M. Schmidt, J. Brosig, A. Plinge, B. M. Eskofier, and C. Mutschler. An introduction to338

multi-agent reinforcement learning and review of its application to autonomous mobility. In339

2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), pages340

1342–1349. IEEE, 2022.341

[8] P. Palanisamy. Multi-agent connected autonomous driving using deep reinforcement learning.342

In 2020 International Joint Conference on Neural Networks (IJCNN), pages 1–7. IEEE, 2020.343

[9] M. Zhou, J. Luo, J. Villella, Y. Yang, D. Rusu, J. Miao, W. Zhang, M. Alban, I. Fadakar, Z. Chen,344

et al. Smarts: An open-source scalable multi-agent rl training school for autonomous driving.345

In Conference on Robot Learning, pages 264–285. PMLR, 2021.346

[10] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo. Swarm robotics: a review from the347

swarm engineering perspective. Swarm Intelligence, 7:1–41, 2013.348

[11] J. Chen, J. Li, C. Fan, and B. C. Williams. Scalable and safe multi-agent motion planning with349

nonlinear dynamics and bounded disturbances. In Proceedings of the AAAI Conference on350

Artificial Intelligence, volume 35, pages 11237–11245, 2021.351

[12] R. J. Afonso, M. R. Maximo, and R. K. Galvão. Task allocation and trajectory planning for352

multiple agents in the presence of obstacle and connectivity constraints with mixed-integer353

linear programming. International Journal of Robust and Nonlinear Control, 30(14):5464–5491,354

2020.355

[13] J. Netter, G. P. Kontoudis, and K. G. Vamvoudakis. Bounded rational rrt-qx: Multi-agent motion356

planning in dynamic human-like environments using cognitive hierarchy and q-learning. In357

2021 60th IEEE Conference on Decision and Control (CDC), pages 3597–3602. IEEE, 2021.358

[14] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu. The surprising effectiveness359

of ppo in cooperative multi-agent games. Advances in Neural Information Processing Systems,360

35:24611–24624, 2022.361

[15] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada. Control362

barrier functions: Theory and applications. In 2019 18th European Control Conference (ECC),363

pages 3420–3431. IEEE, 2019.364

9

http://dx.doi.org/10.1109/LRA.2023.3272272

[16] P. Glotfelter, J. Cortés, and M. Egerstedt. Nonsmooth barrier functions with applications to365

multi-robot systems. IEEE Control Systems Letters, 1(2):310–315, 2017.366

[17] M. Jankovic and M. Santillo. Collision avoidance and liveness of multi-agent systems with367

cbf-based controllers. In 2021 60th IEEE Conference on Decision and Control (CDC), pages368

6822–6828. IEEE, 2021.369

[18] R. Cheng, M. J. Khojasteh, A. D. Ames, and J. W. Burdick. Safe multi-agent interaction through370

robust control barrier functions with learned uncertainties. In 2020 59th IEEE Conference on371

Decision and Control (CDC), pages 777–783. IEEE, 2020.372

[19] K. Garg and D. Panagou. Robust control barrier and control lyapunov functions with fixed-time373

convergence guarantees. In 2021 American Control Conference (ACC), pages 2292–2297. IEEE,374

2021.375

[20] Z. Qin, K. Zhang, Y. Chen, J. Chen, and C. Fan. Learning safe multi-agent control with decen-376

tralized neural barrier certificates. In International Conference on Learning Representations,377

2021. URL https://openreview.net/forum?id=P6_q1BRxY8Q.378

[21] C. Yu, H. Yu, and S. Gao. Learning control admissibility models with graph neural networks379

for multi-agent navigation. In Conference on Robot Learning, pages 934–945. PMLR, 2023.380

[22] H. Ma, D. Harabor, P. J. Stuckey, J. Li, and S. Koenig. Searching with consistent prioritization381

for multi-agent path finding. In Proceedings of the AAAI Conference on Artificial Intelligence,382

volume 33, pages 7643–7650, 2019.383

[23] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant. Conflict-based search for optimal multi-384

agent pathfinding. Artificial Intelligence, 219:40–66, 2015.385

[24] L. Zheng, J. Yang, H. Cai, M. Zhou, W. Zhang, J. Wang, and Y. Yu. Magent: A many-agent386

reinforcement learning platform for artificial collective intelligence. In Proceedings of the AAAI387

Conference on Artificial Intelligence, volume 32, 2018.388

[25] E. Tolstaya, J. Paulos, V. Kumar, and A. Ribeiro. Multi-robot coverage and exploration using389

spatial graph neural networks. In 2021 IEEE/RSJ International Conference on Intelligent Robots390

and Systems (IROS), pages 8944–8950. IEEE, 2021.391

[26] Q. Li, F. Gama, A. Ribeiro, and A. Prorok. Graph neural networks for decentralized multi-robot392

path planning. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems393

(IROS), pages 11785–11792. IEEE, 2020.394

[27] C. Yu and S. Gao. Reducing collision checking for sampling-based motion planning using graph395

neural networks. Advances in Neural Information Processing Systems, 34:4274–4289, 2021.396

[28] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick. End-to-end safe reinforcement learning397

through barrier functions for safety-critical continuous control tasks. In Proceedings of the398

AAAI Conference on Artificial Intelligence, volume 33, pages 3387–3395, 2019.399

[29] C. Dawson, Z. Qin, S. Gao, and C. Fan. Safe nonlinear control using robust neural lyapunov-400

barrier functions. In Conference on Robot Learning, pages 1724–1735. PMLR, 2022.401

[30] A. Robey, H. Hu, L. Lindemann, H. Zhang, D. V. Dimarogonas, S. Tu, and N. Matni. Learning402

control barrier functions from expert demonstrations. In 2020 59th IEEE Conference on403

Decision and Control (CDC), pages 3717–3724. IEEE, 2020.404

[31] C. Dawson, B. Lowenkamp, D. Goff, and C. Fan. Learning safe, generalizable perception-based405

hybrid control with certificates. IEEE Robotics and Automation Letters, 7(2):1904–1911, 2022.406

10

https://openreview.net/forum?id=P6_q1BRxY8Q

[32] M. Saveriano and D. Lee. Learning barrier functions for constrained motion planning with407

dynamical systems. In 2019 IEEE/RSJ International Conference on Intelligent Robots and408

Systems (IROS), pages 112–119. IEEE, 2019.409

[33] M. Srinivasan, A. Dabholkar, S. Coogan, and P. A. Vela. Synthesis of control barrier functions410

using a supervised machine learning approach. In 2020 IEEE/RSJ International Conference on411

Intelligent Robots and Systems (IROS), pages 7139–7145. IEEE, 2020.412

[34] Z. Qin, D. Sun, and C. Fan. Sablas: Learning safe control for black-box dynamical systems.413

IEEE Robotics and Automation Letters, 7(2):1928–1935, 2022.414

[35] A. Taylor, A. Singletary, Y. Yue, and A. Ames. Learning for safety-critical control with control415

barrier functions. In Learning for Dynamics and Control, pages 708–717. PMLR, 2020.416

[36] A. J. Taylor, V. D. Dorobantu, H. M. Le, Y. Yue, and A. D. Ames. Episodic learning with control417

lyapunov functions for uncertain robotic systems. In 2019 IEEE/RSJ International Conference418

on Intelligent Robots and Systems (IROS), pages 6878–6884. IEEE, 2019.419

[37] J. Blumenkamp, S. Morad, J. Gielis, Q. Li, and A. Prorok. A framework for real-world multi-420

robot systems running decentralized gnn-based policies. In 2022 International Conference on421

Robotics and Automation (ICRA), pages 8772–8778. IEEE, 2022.422

[38] X. Jia, L. Sun, H. Zhao, M. Tomizuka, and W. Zhan. Multi-agent trajectory prediction by423

combining egocentric and allocentric views. In Conference on Robot Learning, pages 1434–424

1443. PMLR, 2022.425

[39] X. Ji, H. Li, Z. Pan, X. Gao, and C. Tu. Decentralized, unlabeled multi-agent navigation in426

obstacle-rich environments using graph neural networks. In 2021 IEEE/RSJ International427

Conference on Intelligent Robots and Systems (IROS), pages 8936–8943. IEEE, 2021.428

[40] A. Khan, A. Ribeiro, V. Kumar, and A. G. Francis. Graph neural networks for motion planning.429

arXiv preprint arXiv:2006.06248, 2020.430

[41] Q. Li, W. Lin, Z. Liu, and A. Prorok. Message-aware graph attention networks for large-scale431

multi-robot path planning. IEEE Robotics and Automation Letters, 6(3):5533–5540, 2021.432

[42] X. Xiao, B. Liu, G. Warnell, and P. Stone. Motion planning and control for mobile robot433

navigation using machine learning: a survey. Autonomous Robots, 46(5):569–597, 2022.434

[43] S. H. Semnani, H. Liu, M. Everett, A. De Ruiter, and J. P. How. Multi-agent motion planning435

for dense and dynamic environments via deep reinforcement learning. IEEE Robotics and436

Automation Letters, 5(2):3221–3226, 2020.437

[44] B. Wang, Z. Liu, Q. Li, and A. Prorok. Mobile robot path planning in dynamic environments438

through globally guided reinforcement learning. IEEE Robotics and Automation Letters, 5(4):439

6932–6939, 2020.440

[45] W. Zhang, O. Bastani, and V. Kumar. Mamps: Safe multi-agent reinforcement learning via441

model predictive shielding. arXiv preprint arXiv:1910.12639, 2019.442

[46] M. Everett, Y. F. Chen, and J. P. How. Motion planning among dynamic, decision-making agents443

with deep reinforcement learning. In 2018 IEEE/RSJ International Conference on Intelligent444

Robots and Systems (IROS), pages 3052–3059. IEEE, 2018.445

[47] Z. Dai, T. Zhou, K. Shao, D. H. Mguni, B. Wang, and H. Jianye. Socially-attentive policy446

optimization in multi-agent self-driving system. In Conference on Robot Learning, pages447

946–955. PMLR, 2023.448

11

[48] X. Pan, M. Liu, F. Zhong, Y. Yang, S.-C. Zhu, and Y. Wang. Mate: Benchmarking multi-agent449

reinforcement learning in distributed target coverage control. Advances in Neural Information450

Processing Systems, 35:27862–27879, 2022.451

[49] Z. Cai, H. Cao, W. Lu, L. Zhang, and H. Xiong. Safe multi-agent reinforcement learning452

through decentralized multiple control barrier functions. arXiv preprint arXiv:2103.12553,453

2021.454

[50] B. Wang, J. Xie, and N. Atanasov. Darl1n: Distributed multi-agent reinforcement learning455

with one-hop neighbors. In 2022 IEEE/RSJ International Conference on Intelligent Robots and456

Systems (IROS), pages 9003–9010. IEEE, 2022.457

[51] Y. Wang, M. Damani, P. Wang, Y. Cao, and G. Sartoretti. Distributed reinforcement learning for458

robot teams: a review. Current Robotics Reports, 3(4):239–257, 2022.459

[52] L. Lindemann and D. V. Dimarogonas. Control barrier functions for signal temporal logic tasks.460

IEEE Control Systems Letters, 3(1):96–101, 2018.461

[53] M. A. Pereira, A. D. Saravanos, O. So, and E. A. Theodorou. Decentralized safe multi-agent462

stochastic optimal control using deep FBSDEs and ADMM. In Robotics: Science and Systems,463

2022.464

[54] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli. Graph matching networks for learning the465

similarity of graph structured objects. In International Conference on Machine Learning, pages466

3835–3845. PMLR, 2019.467

[55] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph sequence neural networks.468

arXiv preprint arXiv:1511.05493, 2015.469

[56] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint470

arXiv:1412.6980, 2014.471

12

Supplementary material472

A Experiment details473

In this section, we introduce the details of the experiments, including the implementation details of474

GCBF and the baselines, the dynamics of the agents, and the settings of the environments.475

A.1 Implementation details476

Our learning framework contains two neural network models: the GCBF hθ and the controller πϕ,477

both of which contain a GNN component and an MLP component. The GNN component of hθ478

consists of three NNs: the embedding NN fθ1 , the NN used in the attention aggregation fθ2 and fθ3 .479

fθ1 is a two-hidden-layer MLP with 2048 neurons each, which maps the input to a 256D information480

space. The gate NN fθ2 is a two-hidden-layer MLP with 128 neurons each. fθ3 is a two-hidden-layer481

MLP with 2048 neurons each, which maps the information to a 1024D space. The output of the GNN482

component of hθ goes through another MLP component fθ4 , which is a three-hidden-layer MLP with483

neurons 512, 128, 32 that generates the GCBF value. In summary,484

hi = hθ ([vj ; eij]|j∈Ni) = fθ4 ◦ (
∑
j∈Ni

softmax(fθ2 ◦ (fθ1([vj ; eij]))) · fθ3 ◦ (fθ1([vj ; eij])))). (6)

To make the training easier, we define πϕ = πNN
ϕ +πnom, where πNN

ϕ is the NN controller and πnom is485

the nominal controller. In this way, πNN
ϕ only needs to learn the deviation from πnom. The controller486

πNN
ϕ uses the same GNN component as hθ, but before passing the output of the GNN component487

to the MLP component, we concatenate the output of the GNN component with the output of the488

nominal controller πnom, and pass the concatenated vectors to the MLP component to get the final489

output of the controller (see Figure 1).490

We use Adam [56] with a learning rate 3× 10−4 for hθ and 1× 10−3 for πϕ to optimize the NNs for491

500, 000 steps in training. The training time is around 60 minutes on a 13th Gen Intel(R) Core(TM)492

i7-13700KF CPU @ 3400MHz and an NVIDIA RTX 3090 GPU. In training, we time each loss term493

with a balancing coefficient, i.e.,494

Li(θ, ϕ) = ηsafe
∑
xi∈Si

max (0, γ − hθ(ēi, v̄i)) + ηunsafe
∑
xi ̸∈Si

max (0, γ + hθ(ēi, v̄i))

+ ηderiv
∑
xi∈Si

max
(
0, γ − ḣθ(ēi, v̄i)− α(hθ(ēi, v̄i))

)
+ η∥πϕ(ēi, v̄i, πnom(xi, x

goal
i))∥,

(7)
and we choose the hyper-parameters following Table 1.495

Table 1: Hyper-parameters used in our training

Environment α γ ηsafe ηunsafe ηderiv η

SimpleCar 1.0 0.02 1.0 1.0 0.5 0.05
Drone 1.0 0.02 1.0 1.0 0.5 0.05

DubinsCar 1.0 0.02 1.0 1.0 0.2 0.0001

In practice, we find that it benefits training if there is a non-empty region between the safe and the496

unsafe regions as it provides the NNs with some flexibility to fit the safe-unsafe boundary. Thus, we497

define the region to be unsafe if the distance between two agents is less than 2r, or the agents hits the498

obstacle, and safe if the distance between two agents or an agent and an obstacle is more than 4r.499

A.2 Environments500

Table 2 provides the side length l for the experiments with keeping density. Next, we provide the501

details of each experiment environment.502

13

Table 2: Side-length l of the workspace X = ln for various N .

N 16 32 64 128 256 512 1024 2048 4096

2D 8 11.3 16 22.6 32 45.3 64 N/A N/A
3D 6.35 8 10.1 12.7 16 20.2 25.4 32 40.3

SimpleCar We use double integrator dynamics for the SimpleCar environment. The state of agent503

i is given by xi = [pxi , p
y
i , v

x
i , v

y
i]

⊤, where [pxi , p
y
i]

⊤ is the position of the agent, and [vxi , v
y
i]

⊤ is504

the velocity. The action of agent i is given by ui = [axi , a
y
i]

⊤, i.e., the acceleration. The dynamics505

function is given by:506

ẋi =

 vxi
vyi
axi
ayi

 (8)

The simulation timestep is δt = 0.03. In this environment, we use eij = xj − xi as the edge507

information. For training MAPPO, we design the reward in this way: in each timestep, the agents508

receive a −0.01 − 0.0001∥ui∥ reward. The agents also receive a −2 reward for collision at each509

timestep and a +4 reward for reaching the goal.510

DubinsCar We use the standard Dubin’s car model in this environment. The state of agent i is given511

by xi = [pxi , p
y
i , θi, vi]

⊤, where [pxi , p
y
i]

⊤ is the position of the agent, θi is the heading, and vi is the512

speed. The action of agent i is given by ui = [ωi, ai]
⊤ containing angular velocity and longitudinal513

acceleration. The dynamics function is given by:514

ẋi =

 vi cos(θi)
vi sin(θi)

ωi

ai

 (9)

The simulation timestep is δt = 0.03. We use eij = ej(xj)− ei(xi) as the edge information, where515

ei(xi) = [pxi , p
y
i , vi cos(θi), vi sin(θi), θi]

⊤. For training MAPPO, we design the reward in this way:516

in each timestep, the agents receive a −0.0001− 0.01∥ui∥ reward. The agents also receive a −0.1517

reward for collision at each timestep and a +10 reward for reaching the goal.518

SimpleDrone We use a linearized model for drones in our experiments. The state of agent i is given519

by xi = [pxi , p
y
i , p

z
i , v

x
i , v

y
i , v

z
i]

⊤ where [pxi , p
y
i , p

z
i]

⊤ is the 3D position, and [vxi , v
y
i , v

z
i]

⊤ is the 3D520

velocity. The control inputs are ui = [axi , a
y
i , a

z
i]

⊤, and the dynamics function is given by:521

ẋi =

vxi
vyi
vzi

−1.1vxi + 1.1axi
−1.1vyi + 1.1ayi
−6vzi + 6azi

 (10)

The simulation timestep is δt = 0.03. We use eij = xj − xi as the edge information. For training522

MAPPO, we design the reward in this way: in each timestep, the agents receive a −0.01− 0.001∥ui∥523

reward. The agents also receive a −1 reward for collision at each timestep and a +10 reward for524

reaching the goal.525

In each case, the simulation terminates when all the agents reach the goal.526

A.3 Baseline methods527

We implement MDCBF [20] based on the official implementation5, and MAPPO [14] based on the528

official implementation6. For fair comparisons, we changed the structure of the actor and the critic to529

GNNs.530

5https://github.com/MIT-REALM/macbf
6https://github.com/zoeyuchao/mappo

14

Increase
density

Keep
density

Keep
distance

GCBF MDCBF MAPPO

Figure 4: Safety rate of GCBF, MDCBF, and MAPPO algorithms across the three environments and
the three sets of experiments, namely, increasing density of the agents in a fixed workspace, increasing
the size of the workspace to keep the density same, and increasing the size of the workspace but
limiting the average distance traveled by agents. Note that there are several overlaps in this figure:
MDCBF with GCBF in the left bottom figure, the middle figure, and the right bottom figure; and all
three lines in the middle bottom figure.

Increase
density

Keep
density

Keep
distance

GCBF MDCBF MAPPO

Figure 5: Goal-reaching rate of GCBF, MDCBF, and MAPPO algorithms across the three environ-
ments and the three sets of experiments, namely, increasing density of the agents in a fixed workspace,
increasing the size of the workspace to keep the density same, and increasing the size of the workspace
but limiting the average distance traveled by agents. Note that there are several overlaps of the lines:
GCBF and MAPPO in the left three figures and the right bottom figure.

B Supplementary Experimental Results531

B.1 Safety and Goal-reaching rates532

We include the plots of the safety rates and goal-reaching rates for the first three sets of experiments533

(increase density, keep density, and keep distance) in Figure 4 and Figure 5, respectively. In the534

SimpleCar environment, GCBF achieves a higher safety rate in all three sets of experiments, while535

in the Drone environment, the performance of the baselines and GCBF overlap for the third set of536

experiments where we keep the average traveling distance of agents constant. However, As can537

be observed in Figure 5, the goal-reaching rate of GCBF is higher than MDCBF and MAPPO,538

which results in a higher success rate as depicted in Figure 2 in the main paper. Similarly, for the539

15

GCBF MDCBF MAPPO

4 8 16 32
Number of obstacles

0.00
0.25
0.50
0.75
1.00

Su
cc

es
s r

at
e

4 8 16 32
Number of obstacles

0.00
0.25
0.50
0.75
1.00

Sa
fe

ty
 ra

te

4 8 16 32
Number of obstacles

0.80
0.85
0.90
0.95
1.00

R
ea

ch
in

g
ra

te

Figure 6: Left: success rate plots for GCBF and MDCBF. Middle: safety rate plots for GCBF and
MDCBF. Right: goal-reaching rate plots for GCBF and MDCBF. Note that MAPPO and GCBF
overlap in the reaching rate plot on the right.

DubinsCar environment, MDCBF achieves similar or better safety than GCBF, but it has a lower540

goal-reaching rate, resulting in a lower overall success rate. On the other hand, MAPPO achieves541

very high goal-reaching rates in both SimpleCar and DubinsCar environments but fails to achieve a542

high safety rate. This corroborates the reasoning mentioned in the Introduction Section in the main543

paper that MARL-based methods use penalties for safety violations and thus, cannot achieve a high544

safety rate in practice. We emphasize that success rate is a better metric of performance evaluation545

since there is always a trade-off between prioritizing goal-reaching objectives and safety objectives,546

and success rate provides a fair method of evaluating both at the same time.547

For the obstacle environment, we present the success, safety, and goal-reaching rates for all three548

algorithms, namely, GCBF, MDCBF, and MAPPO in Figure 6. In the presence of obstacles also, the549

goal-reaching rate is very high for MAPPO, but the safety rate is close to zero. Furthermore, we can550

observe a sharp drop in the performance of MDCBF with 32 obstacles, while that of GCBF does551

not change significantly. We remind the reader that the training is performed with 16 point-sized552

obstacles to model LiDAR observations, and conduct experiments with 32 large-sized experiments.553

Thus, a high success rate in all the test cases illustrates the generalizability of GCBF.554

B.2 Ablation studies555

Ablation on sensing region We perform ablation experiments to study the effect of the sensing556

radius parameter R on the success rate. We train GCBF for the DubinsCar environment with R = 1557

and perform tests with R = [0.05, 0.1, 0.2, 0.5, 0.75, 1] (note that the safety distance is r = 0.05).558

We observe that the success rate is lower for smaller values of R, as expected since a smaller sensing559

radius implies that agents have lesser time to react to the neighbors. Also, it can be observed from the560

left plot in Figure 7 that the success rate saturates at R = 0.5, which implies that the trained GCBF is561

robust to the sensing radius and can have similar performance even with much smaller sensing region.562

Ablation on online policy refinement Similar to [20], we do ablation studies on online policy563

refinement for improved safety. We change the maximum iteration of the policy refinement gradient564

descent and learning rate for the same in this ablation study. We vary the maximum iterations from 0565

to 50, and the learning rate from 0.003 to 300. From the middle plot in Figure 7, we observe that566

0.00 0.25 0.50 0.75 1.00
Sensing radius

0.25

0.50

0.75

1.00

Su
cc

es
s r

at
e

N=16
N=32
N=64
N=128

0 10 20 30 40 50 60
Max iteration

0.95

1.00

Sa
fe

ty
 ra

te

0.003 0.03 0.3 3.0 30.0 300.0
Learning rate

0.7

0.8

0.9

1.0

Sa
fe

ty
 ra

te

Figure 7: Ablation study for sensing radius R (left), maximum iterations of online policy update
(middle), and learning rate for online policy update (right).

16

without the online policy update (maximum iteration 0), the safety rate is lower as compared to the567

case with the online policy update. The effect of the learning rate on the online policy update is568

captured in the right plot in Figure 7. Here, we observe that for learning rate lr ≤ 3, the safety rate569

remains high, but it drops significantly for higher learning. Thus, in conclusion, there is a wide range570

of hyper-parameters for which GCBF works with a high success rate, and its performance is robust to571

changes in these hyper-parameters.572

Simulation videos We also include simulation videos to illustrate GCBF in action with the supple-573

mentary material. We include videos of 32, 128, and 512 agents navigating in environments with574

side length l = 5, 10, 20, as well as a video of 128 agents navigating in an environment with both575

static and moving obstacles.576

Code We include our code in the supplementary material named “gcbf.zip”. The instructions for577

running the code are included in the README file.578

C Generalization result579

Correctness of the learned control policy The generalization results for the learned control580

policy for safety objectives dictate that the learned controller can keep the system safe even under581

unseen scenarios with high probability. The generalization results in [20, Proposition 3] states that582

generalization error remains bounded with high probability, and under certain regularity assumptions583

(such as Lipschitz continuity) or functions drawn from Reproducing Kernel Hilbert Space, this error584

vanishes with the increase in the number of samples. The same generalization error-bound result585

holds for our learned controller and for the sake of brevity, we refer interested readers to [20].586

17

	Introduction
	Problem formulation
	Methodology
	Experiments
	Limitations
	Conclusions
	Experiment details
	Implementation details
	Environments
	Baseline methods

	Supplementary Experimental Results
	Safety and Goal-reaching rates
	Ablation studies

	Generalization result

