A  Proofs

Proof of Proposition[l} For all z,y € R, it holds u(z) — u(y) < |lu(z) — u(y)|2 < ||z — yl2
since u is 1-Lipschitz. Let 7* be an OT plan. We compute

W, (P,Q) = / & = ylladn* (2, y) > / (u() — uly))dn*(z,y) = (14)

RDP xRDP RD xRD

[u@ar@ - [uwiow = [ @) - u@)isen = [ o yldrt). 03
RDP xRP RP xRP
where in line (T3], we use the fact that u(x) — u(y) = ||z — y||2 holds m-almost surely for all

x,y € RP. As aresult, the transport cost of 7 is not greater than the OT cost and 7 is an OT plan.
Thus (T4) is an equality, and v attains the maximum in (), i.e., it is an optimal dual potential. ]

Proof of Proposition Since S C RP isa compact set, there exists a finite %-coverage, i.e., a set of
points a,, € RP (n = 1,2,..., N) such that for all z there exists n(z) with ||z — a,,z)||2 < 3€. We

put b, = f*(ay) and cons1der the MinFunnel u (TT) with parameters {a,,, b, } 2

n=1-

Now we pick any x € S and show that |u(xz) — f*(x)| < e. First, we note that
. 1 «
'LL(SU) = m;n{”x - anHQ + bn} < ||£C - an(m)”2 +bp < 56 + f (an(x)) <

ST @) 1 ) = @l S 5o+ @) + lowey — 2l = @)+ (6

where we use the fact that f* is 1-Lipschitz continuous. Now we note that for every n it holds:
fH(@) < fH(an) + |z — anllz = bn 4[|z = anll2. (17)

By taking min over all n in (I7), we get that f*(x) < u(z) for all z. By combining this fact with
(T6), we see that u(z) € [f*(x), f*(x) + €| forall z € S, i.e., sup |f*(z) — u(z)| <e. O
€S

Propos1t10n 2] yields that MinFunnels (TT) can approximate any 1-Lipschitz optimal potential f*
in (@) in supremum norm. Be careful as this does necessarily guarantee that for f*-ray monotone
map T : RP — RP, there exists a MinFunnel u (approximating f*) for which one may construct
u-ray monotone map 7' approximating 7. We do not know if this holds for MinFunnel functions.
However, this is indiffirent for us as we do not aim to approximate a specific OT map 7™ but construct

a random one (§3.3).

Proof of Proposition[3] We split the proof into 4 parts.

Part 1 [Uniqueness of m.] We show that arg min,, {u,(z)} contains only one index, i.e., m is
uniquely defined. Assume the contrary, i.e., that there exist m = m’ such that at = we have

w(@) = um () = ||z = amll2 + bm =t (2) = [|2 = ap |2 + b = min {un (2)} .
Since w is 1-Lipschitz, we have u(a.,) > u(x) — ||z — amll2 = um(x) — || — aml|2 = bm. On the

other hand, u(a,;,) = min,{u,(am)} < um(am) = ||am — am|| + by = by. We combine these
two inequalities and obtain u(a,) = Um (am) = by,. This means that

w(z) — u(am) = um(x) — um(am) = ||z — amll2. (18)

Consequently, u is affine on the segment [a,,, ], see [47, Lemma 3.5]. Analogously, we get that
w(@p) = U/ (@mr) = by and w is affine on the segment [a,,/,z]. By the assumption of the

proposition, u is diffirentiable at z. As a result, we obtain Vu(z) = el = H;—_;T/Hz' This
yields that vectors © — a,,,y and x — a,;, are collinear, i.e., @, € [z, Ay OF Gy, € [T, Gy ]. Without
loss of generality, we consider the first case. We have (@, ) = by = ||@ms — am||2 + by This is

a contradiction since ||y, — G ||2 # |bm — b | by the assumption of the proposition. We conclude
that arg min,, {u,,(z)} contains only one index m. In particular, we see that z is not an intersection
point of funnels u,,. Also, = is not a center a,,, as a funnel is not differentiable at its center.
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Part 2 [Direction of ray(x).] Since w is 1-Lipschitz, we have u(a.,) > w(z)—||am—z||2 = wm(x)—

||am — x||2 = by On the other hand, u(ay,) = min, {uy(am)} < Uum(am) = ||am — amll2 + bm.
Thus, u(an,) = Um(am) = by, equation (I8) holds, w is affine on [z, a,,| and Vu(z) = Vu,,(z) =
ﬁ. Thus, the direction of a transport ray of x is given by v = Vu(z) = ﬁ By the

definition of a transport ray (§3.1), we conclude that [a,,, z] C ray(z).

Part 3 [Lower endpoint of ray(x).] We prove that a,, is the lower endpoint. Assume that there exists
xo # am, such that a,, € [zo,z] and u(zo) + ||am — xo||l2 = w(am) = Um(am) = by,. Consider any
m' € arg min,, {u,(x0)}, i.e., u(xo) = U (x0) = ||T0 — @mr||2 + by . Note that m # m’ since
w(@o) = ulam) — ||vo — amll2 < u(am) = tm(ay) = min u,(z').
~—— z’ €RDP
>0
We are going to prove that a,, € [an/,x]. Again, we note that due to 1-Lipschitz continuity of u,
we have u(am,) > u(zg) — ||r0 — am/||* = tm/(70) — |70 — @/ ||* = bpr. On the other hand,
w(@py) = ming {u, (an)} < U (@) = byr. Thus, w(am) = U (amr) = by We have
u(xo) — w(am’) = um (o) = tm/ (am’) = [[Zo — am|[2-

We also know that u(a,, ) —u(xg) = tm(@m) —tm(2o) = ||am —2ol|2- By summing these equalities,
we get u(am) — U(ams) = ||@m — am||2. On the other hand, the same quantity equals b, — by,.
Thus, ||@m — @mll2 = |bm — bme|, which is a contradiction to the assumption of the proposition.

Part 4 [Upper endpoint of ray(z).] The upper endpoint is a point = + rv such that r is the maximal
non-negative value for which u(z + rv) = u(x) + r. Note that 2 + rv is the point where u,, = u,,
for some n # m. If there is no intersection, the ray is infinite and = +o00. Let us find where u,,
equals u,, (m # n) on the ray x + r,v (r,, > 0). We need to find r,, > 0 by solving
U (T + T 0) = U (T) + 1 = up(x + 790) = ||Tpv + 2 — apl|2 + bn,

or, equivalently,

U () + (1p, — bp) = |7 + & — ap|2. (19)
The left side must be non-negative, i.e., r,, > b,, — u,,(x). We take the square of both sides:

ufn(x) + (rn — bn)2 +2(ry, — bp)um(z) = ||z — anH% + 7”721 +2r{x — an,v).

This is a linear equation in 7, as r2 terms vanish. We derive

1

Tp - [(um(x) — bn) —(v,x — a,,)] =3 [||an —z)|% = |t (z) — bn|2}. (20)

Consider the case when the right side is zero, i.e., ||a, — z|2 = |um(z) — b,|. We know that
U (2) = u(z) < up(x) = ||z — anl|2 + by Thus, ||a, — |2 = by, — um(z), and @20) equals

T [— ||ac—an||2—<v,x—an>] =0. 2D

Recall that ||v|ls = 1. Thus, (ZI) may have a positive solution r,, only when = a, or

(z # an) A (v=— =) In the first case, u,(z) = un(an) = by = up(z) which contra-

dicts to Uy, () # un(x). Thus, this case is not possible. In the second case, (I9) equals

Tn

o= [ = anlla = [1 - ” |- [l = anll2-

|z — anl|2
Thus, all 7, > ||la, — z||2 = by, — wm, () are the solutions. We pick r,, = ||a,, — z||2 and see that
U (T) + T = U (T + 7 0) = Uup (T + 70) = |1 + 2 — anll2 + by = by,

i.e., the expression equals the lowest value b,, of u,,. Thus,  + r,v = a,, i.e., it is the center of the
funnel w,,. In particular, x € [a,,, a,]. We also derive that

U () + 75 = U () + |2 — anll2 = un(an) = by.

Recall that u,, () = ||& — am||2+bm. Thus, [|£—aml|l2 +bm + ||z —an|l2 = by. Since z € [am, ax),
we conclude that ||a, — am||2 + by, = by. This provides |la, — amll2 = |bn, — by| Which is a
contradiction to the assumptions of the proposition. Thus, the second case is also not possible.
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If the right side of (20) is non-zero, we derive

1
Tp = B [”an -zl — |u(z) — bn\Q]/[(U(x) - b") —(v,z - a””' (22)
When the denominator is zero, we put r,, = 400, i.e., funnels w,,, u,, do not intersect in any x + r,v.

To conclude, the intersection with w,, does not happen when r,, < b, — u,,(x). Otherwise, the
intersection happens at a point x + r,v, where r,, is defined by and equals +oo if denomi-
nator/numerator is zero (no intersection). The upper endpoint of ray(z) is given by = + rv with
r = minr, (the first intersection), where the min is taken over r,, such that r,, > b, — u,,(z). O

Proof of Propositionl] We compute W by substituting f* to (3):

WiP,Q) = [ F@)ipa) - [ £ @i /f ip(a) ~ [ 5 (T@)a@) = @)
[ 7@ - 5@ e))ap) < [ e - T@)d@) = @), @4

where in line (23), we use the change of variables for y = T'(z) and equality TP = Q. In
line (24), we use the fact that f* is 1-Lipschitz. From lines and (24), we conclude that
f*(x) — f*(T(x)) = ||# — T(x)]||2 holds P-almost surely, T'is f*-ray monotone and (24) is the
equality. Recall that we have T'(x) # z by the assumption. Consequently (, f* is affine on a
segment [x, T'(x)] which is contained in some transport ray of f*. If f* is diffirentiable at x, then it
necessarily holds

o =T
)=
YD = T,

Since P is absolutely continuous, the set of points x where V f*(x) does not exist is P-neblibigle.
Therefore, (25)) holds P-almost surely. By conducting the same analysis for u, we derive that Vu(x)
also equals (25). Therefore, Vu(x) = V f*(z) holds P-almost surely. O

(25)

B Implementation Details

In this section, we provide the details of the training of the OT solvers that we consider. The PyTorch
source code to create the benchmark pairs and evaluate existing solvers is publicly available at

https://github.com/justkolesov/WassersteinlBenchmark

B.1 Neural Networks

High-dimensional pairs. We use multi-layer perceptrons (MLP) for potentials fy and g, (where
applicable) with ReLU activations and the following hidden layer sizes:

[max(2D,128), max(2D, 128), max(D, 128)]. (26)

Here D is the dimension of the ambient space. In | SN ﬂ we apply spectral normalization to weights of
the linear layers by using the power iteration method. In SO}ﬁ we use FullSort activations instead of
ReLU. Besides, we enforce ortho-normality on weight matrices by using geotorch. orthogonalE]
In maximin |[ MM, | MM:R], mover Tj (or H,,) is a ReLU MLP with the same layer sizes as (26).

Images pairs. The potential fy (or g,,) has DCGANE] architecture without the batch normalization.
n [SN], we apply spectral normalization to weights of the linear layers by using the power iteration
method. In maximin [MM, [MM:R], mover Tj (or H,,) has UNef| architecture.

Note that we remove the last tanh layer which is used in DCGAN as it directly contradicts the
Kantorovich’s duality formula (3). The potential f should not be bounded. For example, P =
Uniform([—a,0]) and Q = Uniform([0,a]), the optimal potential is u(z) = —z. It can not be
learned by a net whose outputs are limited to (—1,1) when |a| > 1. In practice, we found that
DCGAN with the output tanh really fails to learn anything meaningful on our benchmark (cos ~ 0).

4github.com/christiancosgrove/pytorch-spectral-normalization-gan
github.com/cemanil/LNets

8github.com/Lezcano/geotorch
Tpytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
8github.com/milesial/Pytorch-UNet
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B.2 Optimization

In all the cases, we use Adam optimizer [21] with Ir = 2 - 107%and 51 =0, B2 = 0.9. Working in
high dimensions, we set the batch size to 1024. In the images case, the batch size is 32.

Doing preliminary experiments, we noted that even when the frain loss (which the solver optimizes)
converges, the test metrics, e.g., cosine similarity, still may continue improving. Thus, we optimize
the methods until their fest cos metric converges as well. The details are summarized in Table [2]
Specifically for dimension D = 2, we increase the number of iterations for each solver 5 times.

SOLVER HIGH-DIMENSIONAL PAIRS IMAGES PAIRS
[WC] 5000 iters, ¢ = 0.04 5000 iters, ¢ = 0.04
GP]| 40000 iters, Agp = 10 20000 iters, Agp = 10
|LP] 40000 iters, Ar.p = 10 20000 iters, Arp = 10
SN 5000 iters, 5 power iterations [35] | 5000 iters, 5 power iterations
SO 15000 iters, full sort N/A
LS| 10000 iters, £7 reg., 10000 iters, £ reg.,
€=0.01 [48, Eq. 7] €=0.01
[MM:B] 15000 iters 20000 iters
[MM:Bv2] 15000 iters 20000 iters
|MM] 15000 iters, 12 steps of H,, 10000 iters, 12 steps of H.,,
per 1 step of fo. per 1 step of fo.
|MM:R] 15000 iters, 12 steps of Ty 10000 iters, 12 steps of Ty
per 1 step of g.,. per 1 step of g.,.
Table 2: Hyperparameters of the OT solvers.
C Metrics

For all the experiments, we report the metric values obtained after a single
random restart. We do not report the results of multiple random restarts.
We found that they mostly provide the same observations which do not
affect the general trends of performance reported in our paper.

In [DOT |, we compute all the metrics by using 2!2 random samples
X ~P,Y ~ Q. In most neural solvers, we estimate W, (P, Q) by using

|X\ Zfe |Y|Zfe

reX yeY

Figure 8: Cos and £?
show the angle and

distance between V f

and Vf* in L2(P).
where X ~ P, Y ~ Q are random batches of size 2'3. For simplicity, we omit the regularization
terms, e.g., the gradient penalty, lipschitz penalty, etc. In [LS| and [MM'RJ we use

W (P,

W (P, Wy (P, Q) ~

|X| Zfo |Z;ng(y)

The results for hlgh—dlmensmnal and images pairs are given below.

|X| Zgw |Y| Zgw

Technical remark. Doing preliminary experiments in small dimension D = 2, we noted that most
methods learn reasonable surfaces of the potentials (Figure[7) but struggle to provide high metrics,
see, e.g., TableE} The cause of this is a numerical error, see below.

By the construction of our benchmark, we get y ~ Q by moving x ~ P (the uniform distribution on
hypercube S) along its ray(x) = [z, 1] closer to the center 29 = a,, of the funnel w,,, (Proposition
[3). We apply the function ¢ — t” along the ray (IZ). In small dimensions, centers a,, of funnels are
sufficiently dense in the hypercube S. As a result, points x ~ P with high probability are located next
to centers of funnels, i.e., ||z — x¢||2 is small. In turn, t = ||z — x]|2/||zo — 1]|2 is also small and
t?P = 0(p > 1),ie.,y =T(x) = xo. Due to the numerical error of handling small numbers, T'(z)
may output a point which is close to x( (the funnel center) but lies not on the ray [z, ] or simply
the point xg itself. This makes the evaluation of Vu(y) problematic. In the first case, it may differ
from Vu(x) as y fell out of the ray(z). In the second case, u is not even differentiable at 2y = a,,.

The issue vanishes in higher dimensional pairs (D > 4) since the probability of a point x € S to be
close to the center of some funnel tends to zero. To fix the issue for D = 2, one may put smaller p
and generate new benchmark pairs. We use p = 8 in all high-dimensional pairs for consistency.
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N\Solver | [WC] | [GP] | [LP] | [SN] | [LS] | [MM:B] | [MM:Bv2] | [MM] | [MM:R] | [DOT] | True
T 094 | 094 0.11 0.5 1.00
16 092 | 092 0.09 001 1.00

Table 3: Cos? metric values of the OT gradient estimated by OT solvers on our CIFAR-10 IMAGES
benchmark pairs (P, Q), dimension D = 3072. Colors indicate the metric value:

cos > (.85, cos € , COS € ,cos < 0.15.
N\Solver | [WC] | [GP] | [LP] | [SN] | [LS] | [MM:B] | [MM:Bv2] | [MM] | [MM:R] | [DOT] | True
I >10 .79 1.70 2.60 174 >10 0.08 0.00
16 >10 134 332 187 128 >10 >10 0.16 0.00

Table 4: £2 | metric values of the OT gradient estimated by OT solvers on our CIFAR-10 IMAGES
benchmark pairs (P, Q), dimension D = 3072. Colors indicate the metric value:

L£? <025, L2 € L e L L3> 1.2,
N\Solver | [WC] |GP] |LP] [SN] |LS] |[MM:B| |MM:Bv2] MM [MM:R] |DOT] True
1 >100 66.25 66.79 31.16 29.66
16 >100 36.16 36.75 5.54 421 >100 18.82

Table 5: W metric values estimated by OT solvers on our CIFAR-10 IMAGES benchmark pairs
(P, Q), dimension D = 3072. Colors indicate the value of the relative deviation of W; from W1, i.e.,

def

dev = 100% - W: dev < 15%, dev € ,dev € ,dev > 50%
N\Solver | [WC] |GP] |LP] [SN] [LS] |[MM:B| |MM:Bv2] MM [MM:R] |[DOT]| | True
T 096 | 095 0.01 0.97 T.00
16 092 | 092 0.11 0.14 0.01 0.2 1.00

Table 6: Cos T metric values of the OT gradient estimated by OT solvers on our CELEBA IMAGES
benchmark pairs (P, Q), dimension D = 12288. Colors indicate the metric value:

cos > (.85, cos € , COS € ,cos < 0.15.
N\Solver | [WC] |GP] |LP] [SN] [LS] |[MM:B| |MM:Bv2] MM |[MM:R] |[DOT]| | True
1 >10 7.69 780 | 5550 | 2.16 152 348 >10 0.04 0.00
16 =10 212 233 | 2893 | 3.79 2.10 >10 >10 0.16 143 0.00

Table 7: £2 | metric values of the OT gradient estimated by OT solvers on our CELEBA IMAGES
benchmark pairs (P, Q), dimension D = 12288. Colors indicate the metric value:

L£2<0.25 L% € , L2 € L L2 >1.9.
N\Solver | [WC] | [GP] [LP] [SNT [ [LS] | [MM:B] | [MM:Bv2] | [MM] | [MM:R] | [DOT] | True
I 100 | 212.07 | 211.62 | 178.77 5.17 100 66.03 | 5824
16 100 | 6438 | 6601 | 78.77 | 3.5 2.60 51.05 100 5354 | 29.78
Table 8: W, metric values estimated by OT solvers on our CELEBA IMAGES benchmark pairs

(P, Q), dimension D = 12288. Colors indicate the value of the relative deviation of Wl from W,
,dev > 50%

ie. dev " 100% -

%ﬂ: dev < 15%, dev €

1
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D\N 4 16 64 256 D\N 4 16 64 256
2 0.07 | 0.07 | 0.07 | 0.01 2
4 0.09 | 0.09 | 0.04 4 0.95 | 0.86
8 0.12 0.1 8 0.96 | 0.92
16 0.15 16 0.96 | 091
32 32 0.95 0.9
64 0.13 | 0.14 64 0.92
128 0.14 | 0.11 128 | 0.92

(a) [WC] (b) [GP]

D\N 4 16 64 256 D\N 4 16 64 256
2 2 0.07 | 0.04
4 0.95 0.9 4 0.15 0.1
8 0.96 | 0.92 8 0.13
16 0.96 | 0.92 16
32 0.95 0.9 32 0.14 | 0.14
64 0.92 64 0.12 | 0.11
128 | 0.93 128 0.14 | 0.09

(© |LP] () SN

D\N 4 16 64 256 D\N 4 16 64 256
2 2 0.11 0.05
4 0.91 4 0.12 0.0
8 0.89 8 -0.07 | -0.13
16 0.97 16 -0.16 | -0.23 | -0.24 | -0.24
32 0.98 | 0.94 32 -0.36 | -0.42 | -0.42 | -0.38
64 0.96 | 0.95 64 -0.54 | -0.48 | -0.47 | -0.45
128 | 0.93 | 0.92 128 | -0.53 | -0.55 | -0.53 | -0.51

(e) [SO] () |LS]

D\N 4 16 64 256 D\N 4 16 64 256
2 0.86 2
4 0.91 0.87 4 0.96 0.9
8 8 0.94 | 0.87
16 0.09 | -0.03 | -0.18 16
32 -0.27 | -0.37 -0.4 -0.38 32
64 -0.53 | -0.49 | -048 | -0.47 64
128 | -0.57 | -0.57 | -0.55 | -0.54 128

(2) [MM:B] (h) [MM:Bv2]

D\N 4 16 64 256 D\N 4 16 64 256
2 2
4 0.91 4 0.92
8 0.95 8 0.97 0.9
16 0.94 16 0.96 | 0.92
32 0.89 32 0.94 | 0.87
64 64
128 128

) [MM] (i) [MM:R]

D\N 4 16 64 256 D\N 4 16 64 256
2 0.86 2 1.00 | 1.00 | 1.00 | 1.00
4 4 1.00 | 1.00 | 1.00 | 1.00
8 8 1.00 | 1.00 | 1.00 | 1.00
16 0.12 0.06 0.0 16 1.00 | 1.00 | 1.00 | 1.00
32 -0.09 | -0.13 | -0.15 | -0.15 32 1.00 | 1.00 | 1.00 | 1.00
64 -0.28 | -0.26 | -0.26 | -0.26 64 1.00 | 1.00 | 1.00 | 1.00
128 | -0.35 | -0.36 | -0.35 | -0.34 128 1.00 | 1.00 | 1.00 | 1.00

(k) [DOT] (1) Ground truth

Table 9: Cos 1 metric values of the OT gradient estimated by OT solvers on our
HIGH-DIMENSIONAL benchmark pairs (P, Q). Colors indicate the metric value:
cos > (.85, cos € , COS € ,cos < 0.15.
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D\N 4 16 64 256 D\N 4 16 64 256

2 2 0.09 1.4

4 4 0.09 | 0.24 1.21

8 2.02 2.44 1.98 1.59 8 0.09 | 0.18

16 6.9 9.5 3.42 1.77 16 0.09 0.2
32 12.35 10.05 4.42 2.45 32 0.11 | 0.24
64 26.25 22.06 12.8 5.35 64 0.18
128 | 556.6 | 568.87 | 3464 | 17597 128 | 0.17
(a) [WC] (b) [GP]
D\N 4 16 64 256 D\N 4 16 64 256
2 0.17 | 0.15 2
4 0.09 | 0.17 4
8 0.1 0.17 8
16 0.09 | 0.19 16 1.23 | 1.35 | 1.32
32 0.12 | 0.23 32 1.54 | 1.54 | 1.27
64 0.17 64 1.56 | 1.61 1.39
128 | 0.16 128 1.25 | 1.53 1.7 1.57
(© |LP] () SN
D\N 4 16 64 256 D\N 4 16 64 256
2 0.21 2
4 0.13 4
8 0.18 1.26 8
16 0.06 16 1.28 | 1.37 | 1.39 | 1.41
32 0.03 | 0.12 32 1.61 1.68 | 1.69 | 1.64
64 0.08 | 0.11 64 193 | 1.87 | 1.87 | 1.86
128 [ 0.3 | 0.15 128 | 21 | 202 | 21 | 207
(e) [SO] () |LS]
D\N 4 16 64 256 D\N 4 16 604 256
2 0.07 | 0.14 2 0.08 0.14
4 0.15 | 0.23 4 0.06 0.17
8 8 2.56
16 16 2.18 2.24 2.84 4.78
32 1.4 1.48 | 1.51 1.51 32 11.0 6.05 6.45 9.52
64 1.81 1.77 | 1.78 | 1.77 64 23.54 | 1324 | 12.27 | 1497
128 2.0 | 2.02 2.0 1.98 128 | 95.33 | 56.65 19.0 25.47
(2) [MM:B] (h) [MM:Bv2]

D\N 4 16 64 256 D\N 4 16 64 256
2 1.29 1.94 1.76 1.71 2 1.21
4 1.63 1.78 9.27 5.15 4 0.14
8 1.28 17.12 | 10.74 8 0.06 | 0.19
16 0.19 1.92 7.97 16 0.07 | 0.16
32 2.54 5.37 32 0.13 | 0.25
64 26.94 3.07 1.75 64

128 | 2.16 4.7 128 1.22 | 1.38

) [MM] (i) [MM:R]

D\N 4 16 64 256 D\N 4 16 64 256
2 0.16 | 0.22 2 0.00 | 0.00 | 0.00 | 0.00
4 4 0.00 | 0.00 | 0.00 | 0.00
8 1.31 | 1.59 8 0.00 | 0.00 | 0.00 | 0.00
16 1.67 | 1.77 1.9 1.99 16 0.00 | 0.00 | 0.00 | 0.00
32 2.17 | 2.27 2.3 2.3 32 0.00 | 0.00 | 0.00 | 0.00
64 2.56 | 2.53 | 2.53 | 2.53 64 0.00 | 0.00 | 0.00 | 0.00

128 2.7 272 | 2.7 2.68 128 | 0.00 | 0.00 | 0.00 | 0.00

(k) [DOT] (1) Ground truth

Table 10: £2 | metric values of the OT gradient estimated by OT solvers on our
HIGH-DIMENSIONAL benchmark pairs (P, Q). Colors indicate the metric value:
L2 <025 L% € L2 € , L2 > 1.2,
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D\N 4 16 64 256 D\N 4 16 64 256
2 0.03 | 0.04 | -0.01 | -0.01 2 0.86 | 0.42 0.04
4 041 | 0.19 | 0.06 | 0.02 4 1.45 | 1.06 0.22
8 0.6 0.21 0.09 8 2.0 1.7 1.16
16 172 ] 1.59 | 0.52 | 0.29 16 207 | 1.81 | 1.36
32 0.52 0.3 32 1.98 | 1.71
64 | 331 | 1.31 0.36 64 1.38

128 | 9.44 | 591 2.8 1.09 128 | 1.14 | 0.92

(a) |[WC] (b) [GP]

D\N 4 16 64 256 D\N 4 16 64 256
2 0.89 | 0.48 | 0.22 2 0.15 | 0.08 | 0.0 0.0
4 1.48 | 1.06 | 0.69 4 044 | 0.18 | 0.08 | 0.02
8 1.98 | 1.66 | 1.18 8 0.59 | 0.34 | 0.18 | 0.08
16 | 2.12 | 1.81 | 1.35 16 | 0.63 | 0.46 | 0.19 | 0.14
32 1.92 | 1.61 32 [ 073 029 | 0.19 | 0.12
64 1.46 64 | 0.65 | 032 | 0.15 | 0.12
128 | 1.14 128 | 0.37 | 0.29 | 0.19 | 0.1

(c) [LP] (d) [SN]

D\N 4 16 64 256 D\N 4 16 64 256
2 0.76 0.09 | 0.04 2 0.09 0.0 0.0
4 1.27 0.26 | 0.09 4 0.45 0.15 0.01 | -0.01
8 1.68 0.54 | 0.29 8 024 | 0.07 | -0.06 | -0.06
16 1.89 0.55 16 | -0.16 | -0.2 -0.2 | -0.18
32 1.78 | 1.52 32 -0.36 | -0.37 | -0.35 | -0.29
64 143 | 1.37 64 -0.43 | -0.37 | -0.35 | -0.32

128 | 1.05 | 0.98 128 | -0.38 | -0.36 | -0.34 | -0.32

(e) [SO] () [LS]

D\N 4 16 64 256 D\N 4 16 64 256
2 0.79 | 0.44 0.06 2 0.8 | 047 | 021 | 0.12
4 0.35 0.11 4 1.42 | 1.01 | 0.74 | 0.52
8 0.74 | 052 | 0.21 0.05 8 2.09 | 1.82
16 0.11 0.0 -0.05 | -0.1 16
32 | -0.23 | -0.27 | -0.26 | -0.24 32 | 405
64 | -039 | -0.35 | -0.33 | -0.32 64 4.6 | 3.58 | 2.71 | 2.61

128 | -0.38 | -0.37 | -0.35 | -0.33 128 7.2 | 391 | 2.37 | 2.56

(2) [MM:B] (h) [MM:Bv2]

D\N 4 16 64 256 D\N 4 16 64 256
2 0.83 | 0.48 2 0.79 | 0.47
4 1.35 | 1.12 4 1.37 1 0.99 | 0.66 | 0.43
8 1.85 | 1.58 | 275 | 2.1 8 1.89 | 1.54 | 1.28 | 1.04
16 1.96 | 1.76 | 1.74 16 206 | 1.84 1.55
32 1.76 | 1.69 | 1.68 | 1.35 32
64 1.22 1.17 64 332 | 435 | 1.51

128 | 0.97 0.33 128 0.39
(i) [MM] () [MM:R]
D\N 4 16 64 256 D\N 4 16 64 256

2 0.82 0.47 0.24 2 0.82 | 0.47 | 0.23 | 0.13

4 1.43 1.07 0.8 4 1.39 1 0.71 | 0.49

8 8 1.88 | 1.59 | 1.26 | 1.01

16 4.13 4.04 3.98 3.93 16 194 | 1.74 | 1.55 | 14

32 7.26 7.23 7.23 7.26 32 1.82 | 1.67 | 1.54 | 1.41

64 12.01 | 12.05 | 12.07 | 12.09 64 141 | 1.36 | 1.32 | 1.28

128 | 18.88 18.9 | 18.92 | 18.93 128 | 1.14 | 1.07 | 1.04 | 1.04

(k) [DOT] (1) Ground truth
Table 11: Wy values estimated by OT solvers on our HIGH-DIMENSIONAL benchmark pairs (P, Q).

c g . .. e . d W
Colors indicate the value of the relative deviation of Wy from Wy, i.e., dev ef 100% - w
dev < 15%, dev € ,dev € ,dev > 50%.
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D Transport Rays

-2 -1 0 1 2

Figure 9: Truncated transport rays of a random MinFunnel in dimension D = 2 with N = 16.
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