A Proofs Proof of Proposition 1. For all $x, y \in \mathbb{R}^D$, it holds $u(x) - u(y) \le ||u(x) - u(y)||_2 \le ||x - y||_2$ since u is 1-Lipschitz. Let π^* be an OT plan. We compute $$\mathbb{W}_1(\mathbb{P}, \mathbb{Q}) = \int_{\mathbb{R}^D \times \mathbb{R}^D} \|x - y\|_2 d\pi^*(x, y) \ge \int_{\mathbb{R}^D \times \mathbb{R}^D} (u(x) - u(y)) d\pi^*(x, y) = (14)$$ $$\int u(x)d\mathbb{P}(x) - \int u(x)d\mathbb{Q}(y) = \int_{\mathbb{R}^D \times \mathbb{R}^D} (u(x) - u(y))d\pi(x,y) = \int_{\mathbb{R}^D \times \mathbb{R}^D} ||x - y||_2 d\pi(x,y), \quad (15)$$ where in line (15), we use the fact that $u(x) - u(y) = ||x - y||_2$ holds π -almost surely for all $x, y \in \mathbb{R}^D$. As a result, the transport cost of π is not greater than the OT cost and π is an OT plan. Thus, (14) is an equality, and u attains the maximum in (5), i.e., it is an optimal dual potential. \square Proof of Proposition 2. Since $\mathcal{S} \subset \mathbb{R}^D$ is a compact set, there exists a finite $\frac{\epsilon}{2}$ -coverage, i.e., a set of points $a_n \in \mathbb{R}^D$ $(n=1,2,\ldots,N)$ such that for all x there exists n(x) with $\|x-a_{n(x)}\|_2 \leq \frac{1}{2}\epsilon$. We put $b_n = f^*(a_n)$ and consider the MinFunnel u (11) with parameters $\{a_n,b_n\}_{n=1}^N$. Now we pick any $x \in \mathcal{S}$ and show that $|u(x) - f^*(x)| \le \epsilon$. First, we note that $$u(x) = \min_{n} \{ \|x - a_n\|_2 + b_n \} \le \|x - a_{n(x)}\|_2 + b_n \le \frac{1}{2}\epsilon + f^*(a_{n(x)}) \le \frac{1}{2}\epsilon + f^*(x) + \|f^*(a_{n(x)}) - f^*(x)\|_2 \le \frac{1}{2}\epsilon + f^*(x) + \|a_{n(x)} - x\|_2 = f^*(x) + \epsilon,$$ (16) where we use the fact that f^* is 1-Lipschitz continuous. Now we note that for every n it holds: $$f^*(x) \le f^*(a_n) + \|x - a_n\|_2 = b_n + \|x - a_n\|_2. \tag{17}$$ By taking min over all n in (17), we get that $f^*(x) \le u(x)$ for all x. By combining this fact with (16), we see that $u(x) \in [f^*(x), f^*(x) + \epsilon]$ for all $x \in \mathcal{S}$, i.e., $\sup_{x \in \mathcal{S}} |f^*(x) - u(x)| \le \epsilon$. Proposition 2 yields that MinFunnels (11) can approximate any 1-Lipschitz optimal potential f^* in (5) in supremum norm. Be careful as this does necessarily guarantee that for f^* -ray monotone map $T^*: \mathbb{R}^D \to \mathbb{R}^D$, there exists a MinFunnel u (approximating f^*) for which one may construct u-ray monotone map T approximating T^* . We do not know if this holds for MinFunnel functions. However, this is indifferent for us as we do not aim to approximate a specific OT map T^* but construct a random one (§3.3). *Proof of Proposition 3.* We split the proof into 4 parts. <u>Part 1</u> [Uniqueness of m.] We show that $\arg\min_n \{u_n(x)\}$ contains only one index, i.e., m is uniquely defined. Assume the contrary, i.e., that there exist $m \neq m'$ such that at x we have $$u(x) = u_m(x) = ||x - a_m||_2 + b_m = u_{m'}(x) = ||x - a_{m'}||_2 + b_{m'} = \min_{n} \{u_n(x)\}.$$ Since u is 1-Lipschitz, we have $u(a_m) \geq u(x) - \|x - a_m\|_2 = u_m(x) - \|x - a_m\|_2 = b_m$. On the other hand, $u(a_m) = \min_n \{u_n(a_m)\} \leq u_m(a_m) = \|a_m - a_m\| + b_m = b_m$. We combine these two inequalities and obtain $u(a_m) = u_m(a_m) = b_m$. This means that $$u(x) - u(a_m) = u_m(x) - u_m(a_m) = ||x - a_m||_2.$$ (18) Consequently, u is affine on the segment $[a_m,x]$, see [47, Lemma 3.5]. Analogously, we get that $u(a_{m'})=u_{m'}(a_{m'})=b_{m'}$ and u is affine on the segment $[a_{m'},x]$. By the assumption of the proposition, u is diffirentiable at x. As a result, we obtain $\nabla u(x)=\frac{x-a_m}{\|x-a_m\|_2}=\frac{x-a_{m'}}{\|x-a_{m'}\|_2}$. This yields that vectors $x-a_{m'}$ and $x-a_m$ are collinear, i.e., $a_{m'}\in[x,a_m]$ or $a_m\in[x,a_{m'}]$. Without loss of generality, we consider the first case. We have $u(a_{m'})=b_{m'}=\|a_{m'}-a_m\|_2+b_m$. This is a contradiction since $\|a_{m'}-a_m\|_2\neq |b_m-b_{m'}|$ by the assumption of the proposition. We conclude that $\arg\min_{x}\{u_n(x)\}$ contains only one index m. In particular, we see that x is not an intersection point of funnels u_n . Also, x is not a center a_m as a funnel is not differentiable at its center. Part 2 [Direction of ray(x).] Since u is 1-Lipschitz, we have $u(a_m) \ge u(x) - \|a_m - x\|_2 = u_m(x) - \|a_m - x\|_2 = b_m$. On the other hand, $u(a_m) = \min_n \{u_n(a_m)\} \le u_m(a_m) = \|a_m - a_m\|_2 + b_m$. Thus, $u(a_m) = u_m(a_m) = b_m$, equation (18) holds, u is affine on $[x, a_m]$ and $\nabla u(x) = \nabla u_m(x) = \frac{x - a_m}{\|x - a_m\|_2}$. Thus, the direction of a transport ray of x is given by $v \stackrel{def}{=} \nabla u(x) = \frac{x - a_m}{\|x - a_m\|_2}$. By the definition of a transport ray (§3.1), we conclude that $[a_m, x] \subset \text{ray}(x)$. Part 3 [Lower endpoint of ray(x).] We prove that a_m is the lower endpoint. Assume that there exists $x_0 \neq a_m$ such that $a_m \in [x_0, x]$ and $u(x_0) + \|a_m - x_0\|_2 = u(a_m) = u_m(a_m) = b_m$. Consider any $m' \in \arg\min_n \{u_n(x_0)\}$, i.e., $u(x_0) = u_{m'}(x_0) = \|x_0 - a_{m'}\|_2 + b_{m'}$. Note that $m \neq m'$ since $$u(x_0) = u(a_m) - \underbrace{\|x_0 - a_m\|_2}_{>0} < u(a_m) = u_m(a_m) = \min_{x' \in \mathbb{R}^D} u_m(x').$$ We are going to prove that $a_m \in [a_{m'},x]$. Again, we note that due to 1-Lipschitz continuity of u, we have $u(a_{m'}) \geq u(x_0) - \|x_0 - a_{m'}\|^2 = u_{m'}(x_0) - \|x_0 - a_{m'}\|^2 = b_{m'}$. On the other hand, $u(a_{m'}) = \min_{n} \{u_n(a_n)\} \leq u_{m'}(a_{m'}) = b_{m'}$. Thus, $u(a_{m'}) = u_{m'}(a_{m'}) = b_{m'}$. We have $$u(x_0) - u(a_{m'}) = u_{m'}(x_0) - u_{m'}(a_{m'}) = ||x_0 - a_{m'}||_2.$$ We also know that $u(a_m)-u(x_0)=u_m(a_m)-u_m(x_0)=\|a_m-x_0\|_2$. By summing these equalities, we get $u(a_m)-u(a_{m'})=\|a_m-a_{m'}\|_2$. On the other hand, the same quantity equals $b_m-b_{m'}$. Thus, $\|a_m-a_{m'}\|_2=|b_m-b_{m'}|$, which is a contradiction to the assumption of the proposition. <u>Part 4</u> [Upper endpoint of ray(x).] The upper endpoint is a point x + rv such that r is the maximal non-negative value for which u(x + rv) = u(x) + r. Note that x + rv is the point where $u_m = u_n$ for some $n \neq m$. If there is no intersection, the ray is infinite and $r = +\infty$. Let us find where u_m equals u_n ($m \neq n$) on the ray $x + r_nv$ ($r_n > 0$). We need to find $r_n > 0$ by solving $$u_m(x+r_nv) = u_m(x) + r_n = u_n(x+r_nv) = ||r_nv + x - a_n||_2 + b_n,$$ or, equivalently, $$u_m(x) + (r_n - b_n) = ||r_n v + x - a_n||_2.$$ (19) The left side must be non-negative, i.e., $r_n \ge b_n - u_m(x)$. We take the square of both sides: $$u_m^2(x) + (r_n - b_n)^2 + 2(r_n - b_n)u_m(x) = ||x - a_n||_2^2 + r_n^2 + 2r\langle x - a_n, v \rangle.$$ This is a linear equation in r_n as r_n^2 terms vanish. We derive $$r_n \cdot [(u_m(x) - b_n) - \langle v, x - a_n \rangle] = \frac{1}{2} [||a_n - x||_2^2 - |u_m(x) - b_n|^2].$$ (20) Consider the case when the right side is $\underline{\mathbf{zero}}$, i.e., $\|a_n - x\|_2 = |u_m(x) - b_n|$. We know that $u_m(x) = u(x) < u_n(x) = \|x - a_n\|_2 + b_n$. Thus, $\|a_n - x\|_2 = b_n - u_m(x)$, and (20) equals $$r_n \cdot [-\|x - a_n\|_2 - \langle v, x - a_n \rangle] = 0.$$ (21) Recall that $\|v\|_2 = 1$. Thus, (21) may have a positive solution r_n only when $x = a_n$ or $(x \neq a_n) \wedge (v = -\frac{x - a_n}{\|x - a_n\|_2})$. In the **first** case, $u_n(x) = u_n(a_n) = b_n = u_m(x)$ which contradicts to $u_m(x) \neq u_n(x)$. Thus, this case is not possible. In the **second** case, (19) equals $$||r_n - ||x - a_n||_2 = |1 - \frac{r_n}{||x - a_n||_2}| \cdot ||x - a_n||_2.$$ Thus, all $r_n \ge ||a_n - x||_2 = b_n - u_m(x)$ are the solutions. We pick $r_n = ||a_n - x||_2$ and see that $$u_m(x) + r_n = u_m(x + r_n v) = u_n(x + r_n v) = ||r_n v + x - a_n||_2 + b_n = b_n,$$ i.e., the expression equals the lowest value b_n of u_n . Thus, $x + r_n v = a_n$, i.e., it is the center of the funnel u_n . In particular, $x \in [a_m, a_n]$. We also derive that $$u_m(x) + r_n = u_m(x) + ||x - a_n||_2 = u_n(a_n) = b_n.$$ Recall that $u_m(x) = \|x-a_m\|_2 + b_m$. Thus, $\|x-a_m\|_2 + b_m + \|x-a_n\|_2 = b_n$. Since $x \in [a_m, a_n]$, we conclude that $\|a_n - a_m\|_2 + b_m = b_n$. This provides $\|a_n - a_m\|_2 = |b_n - b_m|$ which is a contradiction to the assumptions of the proposition. Thus, the second case is also not possible. If the right side of (20) is **non-zero**, we derive $$r_n = \frac{1}{2} \left[\|a_n - x\|_2^2 - |u(x) - b_n|^2 \right] / \left[\left(u(x) - b_n \right) - \langle v, x - a_n \rangle \right]. \tag{22}$$ When the denominator is zero, we put $r_n = +\infty$, i.e., funnels u_m, u_n do not intersect in any $x + r_n v$. To conclude, the intersection with u_n does not happen when $r_n < b_n - u_m(x)$. Otherwise, the intersection happens at a point $x + r_n v$, where r_n is defined by (22) and equals $+\infty$ if denominator/numerator is zero (no intersection). The upper endpoint of $\operatorname{ray}(x)$ is given by x + rv with $r = \min r_n$ (the first intersection), where the \min is taken over r_n such that $r_n \geq b_n - u_m(x)$. \square *Proof of Proposition 4.* We compute \mathbb{W}_1 by substituting f^* to (5): $$\mathbb{W}_{1}(\mathbb{P}, \mathbb{Q}) = \int f^{*}(x)d\mathbb{P}(x) - \int f^{*}(y)d\mathbb{Q}(y) = \int f^{*}(x)d\mathbb{P}(x) - \int f^{*}(T(x))d\mathbb{P}(x) = (23)$$ $$\int \left[f^*(x) - f^*(T(x)) \right] d\mathbb{P}(x) \le \int \|x - T(x)\|_2 d\mathbb{P}(x) = \mathbb{W}_1(\mathbb{P}, \mathbb{Q}), \quad (24)$$ where in line (23), we use the change of variables for y=T(x) and equality $T\sharp \mathbb{P}=\mathbb{Q}$. In line (24), we use the fact that f^* is 1-Lipschitz. From lines (23) and (24), we conclude that $f^*(x)-f^*\big(T(x)\big)=\|x-T(x)\|_2$ holds \mathbb{P} -almost surely, T is f^* -ray monotone and (24) is the equality. Recall that we have $T(x)\neq x$ by the assumption.
Consequently (§3.1), f^* is affine on a segment [x,T(x)] which is contained in some transport ray of f^* . If f^* is diffirentiable at x, then it necessarily holds $$\nabla f^*(x) = \frac{x - T(x)}{\|x - T(x)\|_2}. (25)$$ Since $\mathbb P$ is absolutely continuous, the set of points x where $\nabla f^*(x)$ does not exist is $\mathbb P$ -neblibigle. Therefore, (25) holds $\mathbb P$ -almost surely. By conducting the same analysis for u, we derive that $\nabla u(x)$ also equals (25). Therefore, $\nabla u(x) = \nabla f^*(x)$ holds $\mathbb P$ -almost surely. \square ### **B** Implementation Details In this section, we provide the details of the training of the OT solvers that we consider. The PyTorch source code to create the benchmark pairs and evaluate existing solvers is publicly available at https://github.com/justkolesov/Wasserstein1Benchmark # **B.1** Neural Networks **High-dimensional pairs.** We use multi-layer perceptrons (MLP) for potentials f_{θ} and g_{ω} (where applicable) with ReLU activations and the following hidden layer sizes: $$[\max(2D, 128), \max(2D, 128), \max(D, 128)].$$ (26) Here D is the dimension of the ambient space. In $[\mathbf{SN}]^4$, we apply spectral normalization to weights of the linear layers by using the power iteration method. In $[\mathbf{SO}]^5$, we use FullSort activations instead of ReLU. Besides, we enforce ortho-normality on weight matrices by using geotorch.orthogonal.⁶ In maximin $[\mathbf{MM}]$, $[\mathbf{MM:R}]$, mover T_{θ} (or H_{ω}) is a ReLU MLP with the same layer sizes as (26). **Images pairs.** The potential f_{θ} (or g_{ω}) has DCGAN⁷ architecture without the batch normalization. In $[\mathbf{SN}]$, we apply spectral normalization to weights of the linear layers by using the power iteration method. In maximin $[\mathbf{MM}]$, $[\mathbf{MM:R}]$, mover T_{θ} (or H_{ω}) has UNet⁸ architecture. Note that we remove the last \tanh layer which is used in DCGAN as it directly contradicts the Kantorovich's duality formula (5). The potential f should not be bounded. For example, $\mathbb{P} = \mathrm{Uniform}([-a,0])$ and $\mathbb{Q} = \mathrm{Uniform}([0,a])$, the optimal potential is u(x) = -x. It can not be learned by a net whose outputs are limited to (-1,1) when |a| > 1. In practice, we found that DCGAN with the output \tanh really fails to learn anything meaningful on our benchmark $(\cos \approx 0)$. ⁴github.com/christiancosgrove/pytorch-spectral-normalization-gan ⁵github.com/cemanil/LNets ⁶github.com/Lezcano/geotorch ⁷pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html $^{^8}$ github.com/milesial/Pytorch-UNet #### **B.2** Optimization In all the cases, we use **Adam** optimizer [21] with $lr = 2 \cdot 10^{-4}$ and $\beta_1 = 0$, $\beta_2 = 0.9$. Working in high dimensions, we set the batch size to 1024. In the images case, the batch size is 32. Doing preliminary experiments, we noted that even when the *train* loss (which the solver optimizes) converges, the *test* metrics, e.g., cosine similarity, still may continue improving. Thus, we optimize the methods until their *test* cos metric converges as well. The details are summarized in Table 2. Specifically for dimension D=2, we increase the number of iterations for each solver 5 times. | SOLVER | HIGH-DIMENSIONAL PAIRS | IMAGES PAIRS | |------------|---------------------------------------|---------------------------------------| | [WC] | 5000 iters, c = 0.04 | 5000 iters, c = 0.04 | | [GP] | 40000 iters, $\lambda_{GP} = 10$ | 20000 iters, $\lambda_{GP} = 10$ | | [LP] | 40000 iters, $\lambda_{LP} = 10$ | 20000 iters, $\lambda_{LP} = 10$ | | [SN] | 5000 iters, 5 power iterations [35] | 5000 iters, 5 power iterations | | [SO] | 15000 iters, full sort | N/A | | LS | 10000 iters, \mathcal{L}^2 reg., | 10000 iters, \mathcal{L}^2 reg., | | LLS | $\epsilon = 0.01 [48, Eq. 7]$ | $\epsilon = 0.01$ | | [MM:B] | 15000 iters | 20000 iters | | [MM:Bv2] | 15000 iters | 20000 iters | | MM] | 15000 iters, 12 steps of H_{ω} | 10000 iters, 12 steps of H_{ω} | | [INIINI | per 1 step of f_{θ} . | per 1 step of f_{θ} . | | MM:R] | 15000 iters, 12 steps of T_{θ} | 10000 iters, 12 steps of T_{θ} | | [141141.1] | per 1 step of g_{ω} . | per 1 step of g_{ω} . | Table 2: Hyperparameters of the OT solvers. # **C** Metrics For all the experiments, we report the metric values obtained after a single random restart. We do not report the results of multiple random restarts. We found that they mostly provide the same observations which do not affect the general trends of performance reported in our paper. In $\lceil \mathbf{DOT} \rfloor$, we compute all the metrics by using 2^{12} random samples $X \sim \mathbb{P}, Y \sim \mathbb{Q}$. In most neural solvers, we estimate $\mathbb{W}_1(\mathbb{P}, \mathbb{Q})$ by using $$\mathbb{W}_1(\mathbb{P}, \mathbb{Q}) \approx \frac{1}{|X|} \sum_{x \in X} f_{\theta}(x) - \frac{1}{|Y|} \sum_{y \in Y} f_{\theta}(y),$$ Figure 8: Cos and \mathcal{L}^2 show the angle and distance between $\nabla \hat{f}$ and ∇f^* in $\mathcal{L}^2(\mathbb{P})$. where $X \sim \mathbb{P}$, $Y \sim \mathbb{Q}$ are random batches of size 2^{13} . For simplicity, we omit the regularization terms, e.g., the gradient penalty, lipschitz penalty, etc. In $\lceil \mathbf{LS} \rfloor$ and $\lceil \mathbf{MM:R} \rfloor$, we use $$\mathbb{W}_1(\mathbb{P},\mathbb{Q}) \approx \frac{1}{|X|} \sum_{x \in X} f_\theta(x) - \frac{1}{|Y|} \sum_{y \in Y} g_\omega(y), \qquad \mathbb{W}_1(\mathbb{P},\mathbb{Q}) \approx -\frac{1}{|X|} \sum_{x \in X} g_\omega(x) + \frac{1}{|Y|} \sum_{y \in Y} g_\omega(y).$$ The results for high-dimensional and images pairs are given below. **Technical remark**. Doing preliminary experiments in small dimension D=2, we noted that most methods learn reasonable surfaces of the potentials (Figure 7) but struggle to provide high metrics, see, e.g., Table 9. The cause of this is a *numerical error*, see below. By the construction of our benchmark, we get $y \sim \mathbb{Q}$ by moving $x \sim \mathbb{P}$ (the uniform distribution on hypercube \mathcal{S}) along its $\operatorname{ray}(x) = [x_0, x_1]$ closer to the center $x_0 = a_n$ of the funnel u_m (Proposition 3). We apply the function $t \mapsto t^p$ along the ray (12). In small dimensions, centers a_n of funnels are sufficiently dense in the hypercube \mathcal{S} . As a result, points $x \sim \mathbb{P}$ with high probability are located next to centers of funnels, i.e., $\|x - x_0\|_2$ is small. In turn, $t = \|x - x_0\|_2 / \|x_0 - x_1\|_2$ is also small and $t^p \approx 0$ (p > 1), i.e., $y = T(x) \approx x_0$. Due to the numerical error of handling small numbers, T(x) may output a point which is close to x_0 (the funnel center) but lies **not** on the ray $[x_0, x_1]$ or simply the point x_0 itself. This makes the evaluation of $\nabla u(y)$ problematic. In the first case, it may differ from $\nabla u(x)$ as y fell out of the ray (x). In the second case, u is not even differentiable at $x_0 = a_n$. The issue vanishes in higher dimensional pairs $(D \ge 4)$ since the probability of a point $x \in \mathcal{S}$ to be close to the center of some funnel tends to zero. To fix the issue for D = 2, one may put smaller p and generate new benchmark pairs. We use p = 8 in all high-dimensional pairs for consistency. | N\Solver | [WC] | [GP] | [LP] | [SN] | [LS] | [MM:B] | [MM:Bv2] | [MM] | [MM:R] | [DOT] | True | |----------|------|------|------|------|------|--------|----------|-------|--------|-------|------| | 1 | 0.25 | 0.94 | 0.94 | 0.36 | 0.60 | 0.59 | 0.50 | 0.11 | 0.95 | 0.78 | 1.00 | | 16 | 0.33 | 0.92 | 0.92 | 0.35 | 0.36 | 0.38 | 0.09 | 0. 46 | 0.91 | 0.55 | 1.00 | Table 3: Cos \uparrow metric values of the OT gradient estimated by OT solvers on our CIFAR-10 IMAGES benchmark pairs (\mathbb{P}, \mathbb{Q}) , dimension D = 3072. Colors indicate the metric value: $\cos > 0.85$, $\cos \in (0.5, 0.85]$, $\cos \in (0.15, 0.5]$, $\cos \le 0.15$. | N\Solver | [WC] | [GP] | [LP] | [SN] | LLS | [MM:B] | [MM:Bv2] | [MM] | [MM:R] | [DOT] | True | |----------|------|------|------|------|------|--------|----------|------|--------|-------|------| | 1 | ≫10 | 1.79 | 1.70 | 2.60 | 0.94 | 1.04 | 1.74 | ≫10 | 0.08 | 0.45 | 0.00 | | 16 | ≫10 | 1.34 | 1.12 | 3.32 | 1.87 | 1.28 | ≫10 | ≫10 | 0.16 | 0.95 | 0.00 | Table 4: $\mathcal{L}^2\downarrow$ metric values of the OT gradient estimated by OT solvers on our CIFAR-10 IMAGES benchmark pairs (\mathbb{P},\mathbb{Q}) , dimension D=3072. Colors indicate the metric value: $\mathcal{L}^2<0.25, \mathcal{L}^2\in[0.25,0.65), \mathcal{L}^2\in[0.65,1.2), \mathcal{L}^2\geq1.2$. | N\Solver | [WC] | [GP] | [LP] | [SN] | [LS] | [MM:B] | [MM:Bv2] | [MM] | [MM:R] | [DOT] | True | |----------|------|-------|-------|-------|-------|--------|----------|-------|--------|-------|-------| | 1 | ≫100 | 66.25 | 66.79 | 20.44 | 17.00 | 15.90 | 35.26 | 35.10 | 24.29 | 31.16 | 29.66 | | 16 | ≫100 | 36.16 | 36.75 | 13.26 | 5.54 | 4.21 | 24.36 | ≫100 | 23.46 | 25.34 | 18.82 | Table 5: \mathbb{W}_1 metric values estimated by OT solvers on our **CIFAR-10 IMAGES** benchmark pairs (\mathbb{P},\mathbb{Q}) , dimension D=3072. Colors indicate the value of the relative deviation of $\widehat{\mathbb{W}}_1$ from \mathbb{W}_1 , i.e., $\det \stackrel{def}{=} 100\% \cdot \frac{|\mathbb{W}_1 - \widehat{\mathbb{W}}_1|}{\mathbb{W}_1}$: $\det < 15\%$, $\det \in [15,30\%)$, $\det \in [30,50)\%$, $\det \ge 50\%$ | N\Solver | [WC] | [GP] | [LP] | [SN] | [LS] | [MM:B] | [MM:Bv2] | [MM] | [MM:R] | [DOT] | True | |----------|------|------|------|------|------|--------|----------|------|--------|-------|------| | 1 | 0.35 | 0.96 | 0.95 | 0.36 | 0.43 | 0.43 | 0.32 | 0.01 | 0.97 | 0.64 | 1.00 | | 16 | 0.48 | 0.92 | 0.92 | 0.42 | 0.11 | 0.14 | 0.01 | 0.20 | 0.92 | 0.25 | 1.00 | Table 6: Cos
\uparrow metric values of the OT gradient estimated by OT solvers on our CELEBA IMAGES benchmark pairs (\mathbb{P}, \mathbb{Q}) , dimension D = 12288. Colors indicate the metric value: $\cos > 0.85$, $\cos \in (0.5, 0.85]$, $\cos \in (0.15, 0.5]$, $\cos \le 0.15$. | N\Solver | [WC] | [GP] | [LP] | [SN] | [LS] | [MM:B] | [MM:Bv2] | [MM] | [MM:R] | [DOT] | True | |----------|------|------|------|-------|------|--------|----------|------|--------|-------|------| | 1 | ≫10 | 7.69 | 7.80 | 55.50 | 2.16 | 1.52 | 3.48 | ≫10 | 0.04 | 0.73 | 0.00 | | 16 | ≫10 | 2.12 | 2.33 | 28.93 | 3.79 | 2.10 | ≫10 | ≫10 | 0.16 | 1.43 | 0.00 | Table 7: $\mathcal{L}^2\downarrow$ metric values of the OT gradient estimated by OT solvers on our **CELEBA IMAGES** benchmark pairs (\mathbb{P},\mathbb{Q}) , dimension D=12288. Colors indicate the metric value: $\mathcal{L}^2<0.25, \mathcal{L}^2\in[0.25,0.65), \mathcal{L}^2\in[0.65,1.2), \mathcal{L}^2\geq 1.2$. | N\Solver | [WC] | [GP] | [LP] | [SN] | LLS | [MM:B] | [MM:Bv2] | [MM] | [MM:R] | [DOT] | True | |----------|------|--------|--------|--------|-------|--------|----------|------|--------|-------|-------| | 1 | ≫100 | 212.07 | 211.62 | 178.77 | 33.22 | 15.17 | 86.06 | ≫100 | 37.92 | 66.03 | 58.24 | | 16 | ≫100 | 64.38 | 66.01 | 78.77 | 3.15 | 2.60 | 51.05 | ≫100 | 41.24 | 53.54 | 29.78 | Table 8: \mathbb{W}_1 metric values estimated by OT solvers on our **CELEBA IMAGES** benchmark pairs (\mathbb{P},\mathbb{Q}) , dimension D=12288. Colors indicate the value of the relative deviation of $\widehat{\mathbb{W}}_1$ from \mathbb{W}_1 , i.e., $\det \stackrel{def}{=} 100\% \cdot \frac{|\mathbb{W}_1 - \widehat{\mathbb{W}}_1|}{\mathbb{W}_1}$: $\det < 15\%$, $\det \in [15,30\%)$, $\det \in [30,50)\%$, $\det \ge 50\%$ | DIN | 1 4 | 16 | | 256 | DIM | 1 4 | 16 | (4 | 256 | |--|--|--|---|--|---|---|--|---|---| | D\N | 4 | 16 | 64 | 256 | D\N | 4 | 16 | 64 | 256 | | 2 | 0.07 | 0.07 | 0.07 | 0.01 | 2 | 0.84 | 0.68 | 0.35 | 0.19 | | 4 | 0.27 | 0.09 | 0.09 | 0.04 | 4 | 0.95 | 0.86 | 0.67 | 0.37 | | 8 | 0.34 | 0.21 | 0.12 | 0.1 | 8 | 0.96
0.96 | 0.92 | 0.82 | 0.59 | | 16
32 | 0.33 | 0.24 | 0.15
0.18 | 0.16 | 16
32 | 0.90 | 0.91 | 0.78 | 0.61 | | 64 | 0.39 | 0.2 | 0.13 | 0.17 | 64 | 0.93 | 0.9 | 0.73 | 0.53 | | 128 | 0.39 | 0.21 | 0.13 | 0.14 | 128 | 0.92 | 0.73 | 0.64 | 0.56 | | 120 | | | | 0.11 | 120 | 0.92 | 0.0 | 0.04 | 0.50 | | | (| (a) [WC | | | | | (b) [GP | 1 | | | D\N | 4 | 16 | 64 | 256 | D\N | 4 | 16 | 64 | 256 | | 2 | 0.82 | 0.81 | 0.68 | 0.49 | 2 | 0.21 | 0.16 | 0.07 | 0.04 | | 4 | 0.95 | 0.9 | 0.82 | 0.66 | 4 | 0.36 | 0.24 | 0.15 | 0.1 | | 8 | 0.96 | 0.92 | 0.83 | 0.68 | 8 | 0.35 | 0.26 | 0.19 | 0.13 | | 16 | 0.96 | 0.92 | 0.78 | 0.6 | 16 | 0.35 | 0.25 | 0.16 | 0.18 | | 32 | 0.95 | 0.9 | 0.73 | 0.55 | 32 | 0.42 | 0.22 | 0.14 | 0.14 | | 64
128 | 0.92 | 0.76 | 0.6 | 0.53 | 64 | 0.43 | 0.22 | 0.12 | 0.11 | | 120 | 0.93 | 0.75 | 0.62 | 0.56 | 128 | 0.37 | 0.23 | 0.14 | 0.09 | | | | (c) LP |] | | | | (d) [SN |] | | | D\N | 4 | 16 | 64 | 256 | D\N | 4 | 16 | 64 | 256 | | 2 | 0.77 | 0.69 | 0.66 | 0.55 | 2 | 0.56 | 0.44 | 0.11 | 0.05 | | 4 | 0.91 | 0.73 | 0.5 | 0.31 | 4 | 0.7 | 0.38 | 0.12 | 0.0 | | 8 | 0.89 | 0.75 | 0.47 | 0.26 | 8 | 0.36 | 0.19 | -0.07 | -0.13 | | 16 | 0.97 | 0.85 | 0.57 | 0.4 | 16 | -0.16 | -0.23 | -0.24 | -0.24 | | 32
64 | 0.98 | 0.94 | 0.74 | 0.53 | 32 | -0.36 | -0.42 | -0.42
-0.47 | -0.38
-0.45 | | 128 | 0.96 | 0.95 | 0.83 | 0.66 | 64
128 | -0.54
-0.53 | -0.48
-0.55 | -0.47 | -0.43 | | 120 | 0.93 | 0.92 | 0.04 | 0.01 | 120 | -0.55 | -0.55 | -0.55 | -0.51 | | | | (e) SO |] | | | | (f) $\lfloor LS \rfloor$ | | | | | | \ | 1 | | | | (1) [25 | ı | | | D\N | 4 | 16 | 64 | 256 | D\N | 4 | 16 | 64 | 256 | | 2 | 4 0.86 | 16
0.83 | 64 0.65 | 0.42 | 2 | 0.85 | 16
0.8 | 0.63 | 0.48 | | 2 4 | 4
0.86
0.91 | 16
0.83
0.87 | 64
0.65
0.75 | 0.42
0.52 | 2 | 0.85 | 16
0.8
0.9 | 64 0.63 0.78 | 0.48
0.55 | |
2
4
8 | 0.86
0.91
0.75 | 16
0.83
0.87
0.7 | 0.65
0.75
0.52 | 0.42
0.52
0.26 | 2
4
8 | 0.85
0.96
0.94 | 16
0.8
0.9
0.87 | 0.63
0.78
0.69 | 0.48
0.55
0.5 | | 2
4
8
16 | 4
0.86
0.91
0.75
0.23 | 16
0.83
0.87
0.7
0.09 | 0.65
0.75
0.52
-0.03 | 0.42
0.52
0.26
-0.18 | 2
4
8
16 | 0.85
0.96
0.94
0.83 | 16
0.8
0.9
0.87
0.69 | 0.63
0.78
0.69
0.58 | 0.48
0.55
0.5
0.46 | | 2
4
8
16
32 | 0.86
0.91
0.75
0.23
-0.27 | 16
0.83
0.87
0.7
0.09
-0.37 | 64
0.65
0.75
0.52
-0.03
-0.4 | 0.42
0.52
0.26
-0.18
-0.38 | 2
4
8
16
32 | 0.85
0.96
0.94
0.83
0.56 | 16
0.8
0.9
0.87
0.69
0.61 | 0.63
0.78
0.69
0.58
0.52 | 0.48
0.55
0.5
0.46
0.42 | | 2
4
8
16
32
64 | 4
0.86
0.91
0.75
0.23
-0.27
-0.53 | 16
0.83
0.87
0.7
0.09
-0.37
-0.49 | 64
0.65
0.75
0.52
-0.03
-0.4
-0.48 | 0.42
0.52
0.26
-0.18
-0.38
-0.47 | 2
4
8
16
32
64 | 0.85
0.96
0.94
0.83
0.56
0.54 | 16
0.8
0.9
0.87
0.69
0.61
0.6 | 0.63
0.78
0.69
0.58
0.52
0.51 | 0.48
0.55
0.5
0.46
0.42
0.46 | | 2
4
8
16
32 | 4
0.86
0.91
0.75
0.23
-0.27
-0.53
-0.57 | 16
0.83
0.87
0.7
0.09
-0.37
-0.49
-0.57 | 64
0.65
0.75
0.52
-0.03
-0.4
-0.48
-0.55 | 0.42
0.52
0.26
-0.18
-0.38 | 2
4
8
16
32 | 0.85
0.96
0.94
0.83
0.56
0.54 | 16
0.8
0.9
0.87
0.69
0.61
0.6
0.47 | 0.63
0.78
0.69
0.58
0.52
0.51
0.47 | 0.48
0.55
0.5
0.46
0.42 | | 2
4
8
16
32
64 | 4
0.86
0.91
0.75
0.23
-0.27
-0.53
-0.57 | 16
0.83
0.87
0.7
0.09
-0.37
-0.49 | 64
0.65
0.75
0.52
-0.03
-0.4
-0.48
-0.55 | 0.42
0.52
0.26
-0.18
-0.38
-0.47 | 2
4
8
16
32
64 | 0.85
0.96
0.94
0.83
0.56
0.54 | 16
0.8
0.9
0.87
0.69
0.61
0.6 | 0.63
0.78
0.69
0.58
0.52
0.51
0.47 | 0.48
0.55
0.5
0.46
0.42
0.46 | | 2
4
8
16
32
64
128 | 4
0.86
0.91
0.75
0.23
-0.27
-0.53
-0.57
(g | 16
0.83
0.87
0.7
0.09
-0.37
-0.49
-0.57
) [MM: | 64
0.65
0.75
0.52
-0.03
-0.4
-0.48
-0.55
B | 0.42
0.52
0.26
-0.18
-0.38
-0.47
-0.54 | 2
4
8
16
32
64
128 | 0.85
0.96
0.94
0.83
0.56
0.54
0.5
(h) | 16
0.8
0.9
0.87
0.69
0.61
0.6
0.47
MM:E | 0.63
0.78
0.69
0.58
0.52
0.51
0.47
3v2] | 0.48
0.55
0.5
0.46
0.42
0.46
0.45 | | 2
4
8
16
32
64
128 | 4
0.86
0.91
0.75
0.23
-0.27
-0.53
-0.57
(g | 16
0.83
0.87
0.7
0.09
-0.37
-0.49
-0.57
) [MM: | 64 0.65 0.75 0.52 -0.03 -0.4 -0.48 -0.55 B 64 0.58 | 0.42
0.52
0.26
-0.18
-0.38
-0.47
-0.54 | 2
4
8
16
32
64
128 | 0.85
0.96
0.94
0.83
0.56
0.54
0.5
(h) | 16
0.8
0.9
0.87
0.69
0.61
0.6
0.47
[MM:E | 0.63
0.78
0.69
0.58
0.52
0.51
0.47
8v2] | 0.48
0.55
0.5
0.46
0.42
0.46
0.45
256
0.29 | | 2
4
8
16
32
64
128 | 4
0.86
0.91
0.75
0.23
-0.27
-0.53
-0.57
(g | 16
0.83
0.87
0.7
0.09
-0.37
-0.49
-0.57
) [MM:
16
0.75
0.74 | 64 0.65 0.75 0.52 -0.03 -0.4 -0.48 -0.55 B 64 0.58 0.58 0.58 0.58 | 0.42
0.52
0.26
-0.18
-0.38
-0.47
-0.54
256
0.44
0.56 | 2
4
8
16
32
64
128 | 0.85
0.96
0.94
0.83
0.56
0.54
0.5
(h) | 16
0.8
0.9
0.87
0.69
0.61
0.6
0.47
[MM:E] | 64
0.63
0.78
0.69
0.58
0.52
0.51
0.47
8v2]
64
0.46
0.64 | 0.48
0.55
0.5
0.46
0.42
0.46
0.45
256
0.29
0.45 | | 2
4
8
16
32
64
128 | 4
0.86
0.91
0.75
0.23
-0.27
-0.53
-0.57
(g
4
0.8
0.91
0.95 | 16
0.83
0.87
0.7
0.09
-0.37
-0.49
-0.57
) [MM:
16
0.75
0.74
0.74 | 64 0.65 0.75 0.52 -0.03 -0.4 -0.48 -0.55 B 64 0.58 0.58 0.52 | 0.42
0.52
0.26
-0.18
-0.38
-0.47
-0.54
256
0.44
0.56
0.54 | 2
4
8
16
32
64
128 | 0.85
0.96
0.94
0.83
0.56
0.54
0.5
(h) 4
0.68
0.92
0.97 | 16
0.8
0.9
0.87
0.69
0.61
0.6
0.47
[MM:E] 16
0.62
0.8
0.9 | 64
0.63
0.78
0.69
0.58
0.52
0.51
0.47
8v2]
64
0.46
0.64
0.74 | 0.48
0.55
0.5
0.46
0.42
0.46
0.45
256
0.29
0.45
0.56 | | 2
4
8
16
32
64
128 | 4
0.86
0.91
0.75
0.23
-0.27
-0.53
-0.57
(g
4
0.8
0.91
0.95
0.94 | 16
0.83
0.87
0.7
0.09
-0.37
-0.49
-0.57
) [MM:
16
0.75
0.74
0.74
0.83 | 64 0.65 0.75 0.52 -0.03 -0.4 -0.48 -0.55 B 64 0.58 0.58 0.52 0.62 | 0.42
0.52
0.26
-0.18
-0.38
-0.47
-0.54
256
0.44
0.56
0.54
0.44 | 2
4
8
16
32
64
128
D\N
2
4
8
16 | 0.85
0.96
0.94
0.83
0.56
0.54
0.5
(h) 4
0.68
0.92
0.97 | 16
0.8
0.9
0.87
0.69
0.61
0.6
0.47
[MM:E]
16
0.62
0.8
0.9
0.92 | 64 0.63 0.78 0.69 0.58 0.52 0.51 0.47 0.46 0.64 0.74 0.73 0.73 0.78 | 0.48
0.55
0.5
0.46
0.42
0.46
0.45
256
0.29
0.45
0.56
0.53 | | 2
4
8
16
32
64
128 | 4
0.86
0.91
0.75
0.23
-0.27
-0.53
-0.57
(g
4
0.8
0.91
0.95
0.94
0.89 | 16
0.83
0.87
0.7
0.09
-0.37
-0.49
-0.57
) [MM:
16
0.75
0.74
0.74
0.83
0.78 | 64
0.65
0.75
0.52
-0.03
-0.4
-0.48
-0.55
B]
64
0.58
0.58
0.52
0.62
0.58 | 0.42
0.52
0.26
-0.18
-0.38
-0.47
-0.54
256
0.44
0.56
0.54
0.44
0.36 | 2
4
8
16
32
64
128
D\N
2
4
8
16
32 | 0.85
0.96
0.94
0.83
0.56
0.54
0.5
(h)
4
0.68
0.92
0.97
0.96 | 16
0.8
0.9
0.87
0.69
0.61
0.6
0.47
[MM:E]
16
0.62
0.8
0.9
0.92
0.87 | 64
0.63
0.78
0.69
0.58
0.52
0.51
0.47
8v2]
64
0.46
0.64
0.74
0.73
0.73 | 0.48
0.55
0.46
0.42
0.46
0.45
256
0.29
0.45
0.56
0.53
0.47 | | 2
4
8
16
32
64
128
D\N
2
4
8
16
32
64 | 4
0.86
0.91
0.75
0.23
-0.27
-0.53
-0.57
(g
4
0.8
0.91
0.95
0.94
0.89
0.66 | 16
0.83
0.87
0.7
0.09
-0.37
-0.49
-0.57
) [MM:
16
0.75
0.74
0.74
0.83
0.78
0.26 | 64
0.65
0.75
0.52
-0.03
-0.4
-0.48
-0.55
B]
64
0.58
0.58
0.52
0.62
0.46 | 0.42
0.52
0.26
-0.18
-0.38
-0.47
-0.54
256
0.44
0.56
0.54
0.44
0.36
0.46 | 2
4
8
16
32
64
128
D\N
2
4
8
16
32
64 | 0.85
0.96
0.94
0.83
0.56
0.54
0.5
(h)
4
0.68
0.92
0.97
0.96
0.94 | 16
0.8
0.9
0.87
0.69
0.61
0.6
0.47
[MM:E]
16
0.62
0.8
0.9
0.92
0.87
0.54 | 64
0.63
0.78
0.69
0.58
0.52
0.51
0.47
8v2]
64
0.46
0.64
0.74
0.73
0.73
0.64 | 0.48
0.55
0.46
0.42
0.46
0.45
256
0.29
0.45
0.56
0.53
0.47
0.5 | | 2
4
8
16
32
64
128 | 4
0.86
0.91
0.75
0.23
-0.27
-0.53
-0.57
(g
4
0.8
0.91
0.95
0.94
0.89
0.66
0.49 | 16
0.83
0.87
0.7
0.09
-0.37
-0.49
-0.57
) [MM:
16
0.75
0.74
0.74
0.83
0.78
0.26
0.61 | 64
0.65
0.75
0.52
-0.03
-0.4
-0.48
-0.55
B]
64
0.58
0.58
0.52
0.62
0.46
0.24 | 0.42
0.52
0.26
-0.18
-0.38
-0.47
-0.54
256
0.44
0.56
0.54
0.44
0.36 | 2
4
8
16
32
64
128
D\N
2
4
8
16
32 |
0.85
0.96
0.94
0.83
0.56
0.54
0.5
(h)
4
0.68
0.92
0.97
0.96
0.94
0.68 | 16
0.8
0.9
0.87
0.69
0.61
0.6
0.47
MM:E
16
0.62
0.8
0.9
0.92
0.87
0.54
0.51 | 64
0.63
0.78
0.69
0.58
0.52
0.51
0.47
8v2]
64
0.46
0.64
0.74
0.73
0.73
0.64
0.39 | 0.48
0.55
0.46
0.42
0.46
0.45
256
0.29
0.45
0.56
0.53
0.47 | | 2
4
8
16
32
64
128
D\N
2
4
8
16
32
64 | 4
0.86
0.91
0.75
0.23
-0.27
-0.53
-0.57
(g
4
0.8
0.91
0.95
0.94
0.89
0.66
0.49 | 16
0.83
0.87
0.7
0.09
-0.37
-0.49
-0.57
) [MM:
16
0.75
0.74
0.74
0.83
0.78
0.26 | 64
0.65
0.75
0.52
-0.03
-0.4
-0.48
-0.55
B]
64
0.58
0.58
0.52
0.62
0.46
0.24 | 0.42
0.52
0.26
-0.18
-0.38
-0.47
-0.54
256
0.44
0.56
0.54
0.44
0.36
0.46 | 2
4
8
16
32
64
128
D\N
2
4
8
16
32
64 | 0.85
0.96
0.94
0.83
0.56
0.54
0.5
(h)
4
0.68
0.92
0.97
0.96
0.94
0.68 | 16
0.8
0.9
0.87
0.69
0.61
0.6
0.47
[MM:E] 16
0.62
0.8
0.9
0.92
0.87
0.54
0.51
(MM:E) | 64
0.63
0.78
0.69
0.58
0.52
0.51
0.47
8v2]
64
0.46
0.64
0.74
0.73
0.73
0.64
0.39 | 0.48
0.55
0.46
0.42
0.46
0.45
256
0.29
0.45
0.56
0.53
0.47
0.5 | | 2 4 8 16 32 64 128 | 4
0.86
0.91
0.75
0.23
-0.27
-0.53
-0.57
(g
4
0.8
0.91
0.95
0.94
0.89
0.66
0.49 | 16
0.83
0.87
0.7
0.09
-0.37
-0.49
-0.57
) [MM:
16
0.75
0.74
0.74
0.83
0.78
0.26
0.61 | 64
0.65
0.75
0.52
-0.03
-0.4
-0.48
-0.55
B]
64
0.58
0.58
0.52
0.62
0.62
0.46
0.24 | 0.42
0.52
0.26
-0.18
-0.38
-0.47
-0.54
0.44
0.56
0.54
0.44
0.36
0.46
0.53 | D\N D\N D\N D\N D\N D\N | 0.85
0.96
0.94
0.83
0.56
0.54
0.5
(h)
4
0.68
0.92
0.97
0.96
0.94
0.68
0.51 | 16
0.8
0.9
0.87
0.69
0.61
0.6
0.47
[MM:E]
16
0.62
0.8
0.9
0.92
0.87
0.92
0.87
0.92
0.87
0.69
0.61
0.60
0.61
0.60
0.61
0.60
0.61
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0.60
0 | 64
0.63
0.78
0.69
0.58
0.52
0.51
0.47
8v2]
64
0.74
0.73
0.73
0.64
0.39
R] | 0.48
0.55
0.46
0.42
0.46
0.45
256
0.29
0.45
0.56
0.53
0.47
0.5
0.31 | | 2 4 8 16 32 64 128 | 4 0.86 0.91 0.75 0.23 -0.27 -0.53 -0.57 (g 0.8 0.91 0.95 0.94 0.89 0.66 0.49 0.86 | 16
0.83
0.87
0.7
0.09
-0.37
-0.49
-0.57
) [MM:
16
0.75
0.74
0.74
0.83
0.78
0.26
0.61
i) [MM | 64
0.65
0.75
0.52
-0.03
-0.4
-0.48
-0.55
B]
64
0.58
0.58
0.52
0.62
0.62
0.46
0.24 | 0.42
0.52
0.26
-0.18
-0.38
-0.47
-0.54
0.44
0.56
0.54
0.44
0.36
0.46
0.53 | 2
4
8
16
32
64
128
D\N
2
4
8
16
32
64
128 | 0.85
0.96
0.94
0.83
0.56
0.54
0.5
(h)
4
0.68
0.92
0.97
0.96
0.94
0.68
0.51 | 16 0.8 0.9 0.87 0.69 0.61 0.6 0.47 MM:E 16 0.62 0.8 0.9 0.54 0.51 0.51 0 [MM: | 64
0.63
0.78
0.69
0.58
0.52
0.51
0.47
8v2]
64
0.74
0.73
0.73
0.64
0.39
R] | 0.48
0.55
0.46
0.42
0.46
0.45
256
0.29
0.45
0.56
0.53
0.47
0.5
0.31 | | 2 4 8 16 32 64 128 | 4 0.86 0.91 0.75 0.23 -0.27 -0.53 -0.57 (g 0.89 0.66 0.49 0.88 0.84 | 16
0.83
0.87
0.7
0.09
-0.37
-0.49
-0.57
) [MM:
16
0.75
0.74
0.74
0.83
0.78
0.26
0.61
i) [MM | 64
0.65
0.75
0.52
-0.03
-0.4
-0.48
-0.55
B]
64
0.58
0.58
0.52
0.62
0.62
0.24 | 0.42
0.52
0.26
-0.18
-0.38
-0.47
-0.54
256
0.54
0.44
0.36
0.46
0.53
0.46
0.52
0.47 | 2 4 8 16 32 64 128 D\N 2 64 128 D\N 2 2 4 128 D\N 2 4 4 4 4 4 4 6 6 6 6 | 0.85
0.96
0.94
0.83
0.56
0.54
0.5
(h)
4
0.68
0.92
0.97
0.96
0.94
0.68
0.51
(j | 16 0.8 0.9 0.87 0.69 0.61 0.6 0.47 MM:E 16 0.62 0.8 0.9 0.54 0.51 0.51 0 [MM: | 64
0.63
0.78
0.69
0.58
0.52
0.51
0.47
8v2]
64
0.74
0.73
0.73
0.64
0.39
R] | 0.48
0.55
0.46
0.42
0.46
0.45
256
0.29
0.45
0.56
0.53
0.47
0.5
0.31 | | 2 4 8 16 32 64 128 | 4 0.86 0.91 0.75 0.23 -0.27 -0.53 -0.57 (g 0.89 0.66 0.49 0.88 0.84 0.56 | 16
0.83
0.87
0.7
0.09
-0.37
-0.49
-0.57
) [MM:
16
0.75
0.74
0.74
0.83
0.78
0.26
0.61
i) [MM | 64
0.65
0.75
0.52
-0.03
-0.4
-0.48
-0.55
B]
64
0.58
0.58
0.52
0.62
0.24
 | 0.42
0.52
0.26
-0.18
-0.38
-0.47
-0.54
0.56
0.54
0.44
0.36
0.46
0.53
0.46
0.52
0.47
0.2 | 2
4
8
16
32
64
128
D\N
2
4
8
16
32
64
128 | 0.85 0.96 0.94 0.83 0.56 0.54 0.5 (h) 4 0.68 0.92 0.97 0.96 0.94 0.68 0.51 (j | 16 0.8 0.9 0.87 0.69 0.61 0.6 0.47 MM:E 16 0.62 0.8 0.9 0.54 0.51 0.51 0 [MM: | 64
0.63
0.78
0.69
0.58
0.52
0.51
0.47
8v2]
64
0.74
0.73
0.73
0.64
0.39
R] | 0.48
0.55
0.46
0.42
0.46
0.45
256
0.29
0.45
0.56
0.53
0.47
0.5
0.31
256
1.00
1.00 | | 2 4 8 16 32 64 128 | 4 0.86 0.91 0.75 0.23 -0.27 -0.53 -0.57 (g 0.89 0.66 0.49 0.86 0.84 0.56 0.18 | 16
0.83
0.87
0.7
0.09
-0.37
-0.49
-0.57
) [MM:
16
0.75
0.74
0.83
0.78
0.26
0.61
i) [MM | 64
0.65
0.75
0.52
-0.03
-0.4
-0.48
-0.55
B]
64
0.58
0.58
0.52
0.62
0.24
 | 0.42
0.52
0.26
-0.18
-0.38
-0.47
-0.54
0.56
0.54
0.44
0.36
0.46
0.53
0.46
0.52
0.47
0.2 | 2 4 8 16 32 64 128 D\N 2 4 8 16 32 64 128 | 0.85 0.96 0.94 0.83 0.56 0.54 0.5 (h) 4 0.68 0.92 0.97 0.96 0.94 0.68 0.51 (j | 16 0.8 0.9 0.87 0.69 0.61 0.6 0.47 MM:E 16 0.62 0.8 0.9 0.54 0.51 0.51 0 [MM: 1.00
1.00 1.0 | 64 0.63 0.78 0.69 0.58 0.52 0.51 0.47 | 0.48
0.55
0.46
0.42
0.46
0.45
256
0.29
0.45
0.56
0.53
0.47
0.5
0.31
256
1.00
1.00
1.00 | | 2 4 8 16 32 64 128 | 4
0.86
0.91
0.75
0.23
-0.27
-0.53
-0.57
(g
4
0.8
0.91
0.95
0.94
0.89
0.66
0.49 | 16
0.83
0.87
0.7
0.09
-0.37
-0.49
-0.57
) [MM:
16
0.75
0.74
0.74
0.83
0.78
0.26
0.61
i) [MM | 64
0.65
0.75
0.52
-0.03
-0.4
-0.48
-0.55
B]
64
0.58
0.58
0.52
0.62
0.24
64
0.72
0.66
0.33
0.06
-0.15 | 0.42
0.52
0.26
-0.18
-0.38
-0.47
-0.54
0.44
0.56
0.54
0.44
0.36
0.46
0.53
0.47
0.52
0.47
0.2 | 2
4
8
16
32
64
128
D\N
2
4
8
16
32
64
128 | 0.85 0.96 0.94 0.83 0.56 0.54 0.5 (h) 4 0.68 0.92 0.97 0.96 0.94 0.68 0.51 (j | 16 0.8 0.9 0.87 0.69 0.61 0.6 0.47 MM:E 16 0.62 0.87 0.54 0.51 0.5 | 64 0.63 0.78 0.69 0.58 0.52 0.51 0.47 | 0.48
0.55
0.46
0.42
0.46
0.45
0.29
0.45
0.56
0.53
0.47
0.5
0.31
256
1.00
1.00
1.00
1.00 | | 2 4 8 16 32 64 128 | 4 0.86 0.91 0.75 0.23 -0.27 -0.53 -0.57 (g 0.86 0.91 0.95 0.94 0.89 0.66 0.49 0.86 0.84 0.56 0.18 -0.09 -0.28 | 16
0.83
0.87
0.7
0.09
-0.37
-0.49
-0.57
) [MM:
16
0.75
0.74
0.74
0.83
0.78
0.26
0.84
0.77
0.47
0.12
-0.13
-0.26 | 64
0.65
0.75
0.52
-0.03
-0.4
-0.48
-0.55
B]
64
0.58
0.58
0.52
0.62
0.24
64
0.72
0.66
0.33
0.06
-0.15
-0.26 | 0.42
0.52
0.26
-0.18
-0.38
-0.47
-0.54
0.44
0.56
0.54
0.44
0.36
0.46
0.53
0.47
0.2
0.0
-0.15
-0.26 | 2
4
8
16
32
64
128
D\N
2
4
8
16
32
64
128 | 0.85 0.96 0.94 0.83 0.56 0.54 0.5 (h) 4 0.68 0.92 0.97 0.96 0.94 0.68 0.51 (j | 16 0.8 0.9 0.87 0.69 0.61 0.6 0.47 MM:E 16 0.62 0.8 0.9 0.54 0.51 | 64 0.63 0.78 0.69 0.58 0.52 0.51 0.47 | 0.48
0.55
0.46
0.42
0.46
0.45
256
0.29
0.45
0.56
0.53
0.47
0.5
0.31
256
1.00
1.00
1.00
1.00
1.00 | | 2 4 8 16 32 64 128 | 4
0.86
0.91
0.75
0.23
-0.27
-0.53
-0.57
(g
4
0.8
0.91
0.95
0.94
0.89
0.66
0.49
4
0.86
0.84
0.56
0.18
-0.09
-0.28
-0.35 | 16
0.83
0.87
0.7
0.09
-0.37
-0.49
-0.57
) [MM:
16
0.75
0.74
0.74
0.83
0.78
0.26
0.61
i) [MM | 64
0.65
0.75
0.52
-0.03
-0.4
-0.48
-0.55
B
0.58
0.58
0.52
0.62
0.58
0.46
0.24
0.72
0.66
0.33
0.06
-0.15
-0.26
-0.35 | 0.42
0.52
0.26
-0.18
-0.38
-0.47
-0.54
0.44
0.56
0.54
0.44
0.36
0.46
0.53
0.47
0.52
0.47
0.2 | 2
4
8
16
32
64
128
D\N
2
4
8
16
32
64
128 | 0.85 0.96 0.94 0.83 0.56 0.54 0.5 (h) 4 0.68 0.92 0.97 0.96 0.94 0.68 0.51 (j | 16 0.8 0.9 0.87 0.69 0.61 0.6 0.47 MM:E 16 0.62 0.87 0.54 0.51 0.5 | 64
0.63
0.78
0.69
0.58
0.52
0.51
0.47
8v2]
64
0.74
0.73
0.64
0.73
0.73
0.64
1.00
1.00
1.00
1.00
1.00 | 0.48
0.55
0.46
0.42
0.46
0.45
0.29
0.45
0.56
0.53
0.47
0.5
0.31
256
1.00
1.00
1.00
1.00 | Table 9: Cos↑ metric values of the OT gradient estimated by OT solvers on our **HIGH-DIMENSIONAL** benchmark pairs (\mathbb{P},\mathbb{Q}) . Colors indicate the metric value: $\cos > 0.85, \cos \in (0.5,0.85], \cos \in (0.15,0.5], \cos \le 0.15$. | D\N | 4 | 16 | 64 | 256 | | D\N | 4 | 16 | 64 | 256 | |--
--|---|--|--|--------------------------------------|---|--|---|---|---| | 2 | 0.85 | 0.89 | 0.85 | 0.82 | 1 | 2 | 0.09 | 0.45 | 1.08 | 1.4 | | 4 | 1.14 | 1.09 | 1.15 | 1.08 | 1 | 4 | 0.09 | 0.24 | 0.6 | 1.21 | | 8 | 2.02 | 2.44 | 1.98 | 1.59 | 1 | 8 | 0.09 | 0.18 | 0.41 | 0.82 | | 16 | 6.9 | 9.5 | 3.42 | 1.77 | 1 [| 16 | 0.09 | 0.2 | 0.46 | 0.83 | | 32 | 12.35 | 10.05 | 4.42 | 2.45 | 1 [| 32 | 0.11 | 0.24 | 0.58 | 0.92 | | 64 | 26.25 | 22.06 | 12.8 | 5.35 | | 64 | 0.18 | 0.53 | 0.82 | 0.96 | | 128 | 556.6 | 568.87 | 346.4 | 175.97 | | 128 | 0.17 | 0.44 | 0.74 | 0.89 | | | | (a) WC | | | | | (| (b) [GP |] | | | D\ | | 16 | 64 | 256 | | D\N | 4 | 16 | 64 | 256 | | 2 | | | 0.34 | 0.63 | | 2 | 0.74 | 0.84 | 0.82 | 0.79 | | 4 | - 1 | | 0.3 | 0.54 | | 4 | 0.85 | 0.93 | 1.02 | 0.99 | | 8 | | | 0.35 | 0.62 | | 8 | 1.08 | 1.16 | 1.11 | 1.1 | | 32 | | | 0.46
0.56 | 0.79 | <u> </u> | 16 | 1.23 | 1.35 | 1.32 | 1.12 | | 64 | | | | 0.92 | - | 32
64 | 1.16 | 1.54 | 1.54
1.61 | 1.27 | | 12 | | | 0.83 | 0.98 | - | 128 | 1.13 | 1.56
1.53 | 1.01 | 1.39 | | 12 | 0.1 | (c) LP | | 0.7 | | 120 | | (d) SN | | 1.57 | | Di | N 4 | | | 256 | _ T | D\N ₁ | 4 | | | 256 | | D\
2 | | 16
1 0.32 | 0.45 | 256
0.56 | L | D\N
2 | 0.51 | 16
0.69 | 64 0.81 | 0.79 | | 4 | | | 0.43 | 0.87 | - | 4 | 0.51 | 0.82 | 0.81 | 1.0 | | 8 | | | 0.83 | 1.26 | | 8 | 0.83 | 0.98 | 1.12 | 1.15 | | 10 | | | 0.77 | 1.09 | | 16 | 1.28 | 1.37 | 1.39 | 1.41 | | 32 | | | 0.5 | 0.87 | | 32 | 1.61 | 1.68 | 1.69 | 1.64 | | 64 | | | 0.31 | 0.68 | | 64 | 1.93 | 1.87 | 1.87 | 1.86 | | 12 | | | 0.73 | 0.77 | | 128 | 2.1 | 2.12 | 2.1 | 2.07 | | | ' | (e) [SO |] | | | | | (f) [LS] | | | | | | | | | | | | | | | | D١ | | 16 | 64 | 256 | D\I | | 4 | 16 | 64 | 256 | | 2 | 0.0 | 7 0.14 | 0.4 | 0.62 | 2 | | 0.08 | 0.14 | 0.51 | 0.82 | | 2 | 0.0 | 7 0.14
5 0.23 | 0.4 | 0.62
0.71 | 4 | | 0.08 | 0.14
0.17 | 0.51
0.44 | 0.82
1.18 | | 2
4
8 | 0.0 | 7 0.14
5 0.23
4 0.52 | 0.4
0.44
0.72 | 0.62
0.71
0.94 | 2
4
8 | | 0.08
0.06
0.28 | 0.14
0.17
0.47 | 0.51
0.44
1.01 | 0.82
1.18
2.56 | | 2
4
8
10 | 0.0
0.1
0.4
0.9 | 7 0.14
5 0.23
4 0.52
6 1.05 | 0.4
0.44
0.72
1.12 | 0.62
0.71
0.94
1.19 | 2
4
8
16 | 5 | 0.08
0.06
0.28
2.18 | 0.14
0.17
0.47
2.24 | 0.51
0.44
1.01
2.84 | 0.82
1.18
2.56
4.78 | | 2
4
8
10
32 | 0.0
0.1
0.4
6 0.9
2 1.4 | 7 0.14
5 0.23
4 0.52
6 1.05
4 1.48 | 0.4
0.44
0.72
1.12
1.51 | 0.62
0.71
0.94
1.19
1.51 | 2
4
8
16
32 | 5 | 0.08
0.06
0.28
2.18
11.0 | 0.14
0.17
0.47
2.24
6.05 | 0.51
0.44
1.01
2.84
6.45 | 0.82
1.18
2.56
4.78
9.52 | | 2
4
8
10
32
64 | 0.0
0.1
0.4
6 0.9
2 1.4
1.8 | 7 0.14
5 0.23
4 0.52
6 1.05
4 1.48
1 1.77 | 0.4
0.44
0.72
1.12
1.51
1.78 | 0.62
0.71
0.94
1.19
1.51
1.77 | 2
4
8
16
32
64 | 5
2
1 | 0.08
0.06
0.28
2.18
11.0
23.54 | 0.14
0.17
0.47
2.24
6.05
13.24 | 0.51
0.44
1.01
2.84
6.45
12.27 | 0.82
1.18
2.56
4.78
9.52
14.97 | | 2
4
8
10
32 | 0.0
0.1
0.4
6 0.9
2 1.4
1.8 | 7 0.14
5 0.23
4 0.52
6 1.05
4 1.48
1 1.77
0 2.02 | 0.4
0.44
0.72
1.12
1.51
1.78
2.0 | 0.62
0.71
0.94
1.19
1.51 | 2
4
8
16
32 | 5
2
1 | 0.08
0.06
0.28
2.18
11.0
23.54
95.33 | 0.14
0.17
0.47
2.24
6.05
13.24
56.65 | 0.51
0.44
1.01
2.84
6.45
12.27
19.0 | 0.82
1.18
2.56
4.78
9.52
14.97 | | 2
4
8
10
32
64
12 | 0.0
0.1
0.2
6 0.9
2 1.4
1 1.8
8 2.6 | 7 0.14
5 0.23
4 0.52
6 1.05
4 1.48
1 1.77
0 2.02
(g) [MM: | 0.4
0.44
0.72
1.12
1.51
1.78
2.0 | 0.62
0.71
0.94
1.19
1.51
1.77
1.98 | 2
4
8
16
32
64
12 | 5
2
4
8 | 0.08
0.06
0.28
2.18
11.0
23.54
95.33 | 0.14
0.17
0.47
2.24
6.05
13.24
56.65 | 0.51
0.44
1.01
2.84
6.45
12.27
19.0 | 0.82
1.18
2.56
4.78
9.52
14.97
25.47 | | 2
4
8
10
32
64
12 | 0.0
0.1
0.4
6 0.9
2 1.4
1 1.8
8 2.0 | 7 0.14
5 0.23
4 0.52
6 1.05
4 1.48
1 1.77
0 2.02
(g) [MM: | 0.4
0.44
0.72
1.12
1.51
1.78
2.0
B] | 0.62
0.71
0.94
1.19
1.51
1.77
1.98 | 2
4
8
16
32
64
12 | 5
2
1 | 0.08
0.06
0.28
2.18
11.0
23.54
95.33
(h) | 0.14
0.17
0.47
2.24
6.05
13.24
56.65
LMM:B | 0.51
0.44
1.01
2.84
6.45
12.27
19.0
(v2) | 0.82
1.18
2.56
4.78
9.52
14.97
25.47 | | 2
4
8
10
32
64
12 | 0.0
0.1
0.2
0.4
0.4
1.8
4
1.29 | 7 0.14
5 0.23
4 0.52
6 1.05
4 1.48
1 1.77
0 2.02
(g) [MM: | 0.4
0.44
0.72
1.12
1.51
1.78
2.0
2.0
64
1.76 | 0.62
0.71
0.94
1.19
1.51
1.77
1.98 | 2
4
8
16
32
64
12 | 5
2
4
8 | 0.08
0.06
0.28
2.18
11.0
23.54
95.33
(h) | 0.14
0.17
0.47
2.24
6.05
13.24
56.65
[MM:B | 0.51
0.44
1.01
2.84
6.45
12.27
19.0
8v2] | 0.82
1.18
2.56
4.78
9.52
14.97
25.47 | | 2
4
8
10
33
64
12 | 0.0
0.1
0.4
6 0.9
2 1.4
1 1.8
8 2.0 | 7 0.14
5 0.23
4 0.52
6 1.05
4 1.48
1 1.77
0 2.02
(g) [MM: | 0.4
0.44
0.72
1.12
1.51
1.78
2.0
B] | 0.62
0.71
0.94
1.19
1.51
1.77
1.98 | 2
4
8
16
32
64
12 | 5
2
1
8
9
1
2 | 0.08
0.06
0.28
2.18
11.0
23.54
95.33
(h) | 0.14
0.17
0.47
2.24
6.05
13.24
56.65
LMM:B | 0.51
0.44
1.01
2.84
6.45
12.27
19.0
(v2) | 0.82
1.18
2.56
4.78
9.52
14.97
25.47 | | 2 4 8 10 33 64 12 D\N 2 4 | 0.00 0.11 0.45 0.45 0.95 0.99 1.63 0.40 1.29 1.63 | 7 0.14
5 0.23
4 0.52
6 1.05
4 1.48
1 1.77
0 2.02
(g) [MM:
16
1.94
1.78 | 0.4
0.44
0.72
1.12
1.51
1.78
2.0
2.0
64
1.76
9.27 | 0.62
0.71
0.94
1.19
1.51
1.77
1.98 | 2
4
8
16
32
64
12 | 5 2 4 2 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 0.08
0.06
0.28
2.18
11.0
23.54
95.33
(h)
4
0.53
0.14 |
0.14
0.17
0.47
2.24
6.05
13.24
56.65
[MM:B | 0.51
0.44
1.01
2.84
6.45
12.27
19.0
(v2)
64
0.9
0.71 | 0.82
1.18
2.56
4.78
9.52
14.97
25.47
256
1.21
1.08 | | 2
4
8
10
33
64
12
D\N
2
4
8 | 0.00 0.11 0.25 0.29 1.44 1.88 2.00 4 1.29 1.63 1.28 | 7 0.14
5 0.23
4 0.52
6 1.05
4 1.48
1 1.77
0 2.02
(g) [MM:
16
1.94
1.78
1.12 | 0.4
0.44
0.72
1.12
1.51
1.78
2.0
B 64
1.76
9.27
17.12 | 0.62
0.71
0.94
1.19
1.51
1.77
1.98
256
1.71
5.15
10.74
7.97
5.37 | 2
4
8
16
32
64
12 | D\N 2 4 8 | 0.08
0.06
0.28
2.18
11.0
23.54
95.33
(h)
4
0.53
0.14
0.06 | 0.14
0.17
0.47
2.24
6.05
13.24
56.65
[MM:B | 0.51
0.44
1.01
2.84
6.45
12.27
19.0
(v2)
64
0.9
0.71
0.52 | 0.82
1.18
2.56
4.78
9.52
14.97
25.47
256
1.21
1.08
0.9 | | 2 4 8 10 32 64 16 32 64 | 0.00 0.11 0.00 0.10 0.10 0.10 0.10 0.10 | 7 0.14
5 0.23
4 0.52
6 1.05
4 1.48
1 1.77
0 2.02
(g) [MM:
16 1.94
1.78
1.12
0.64
0.7
26.94 | 0.4
0.44
0.72
1.12
1.51
1.78
2.0
B
64
1.76
9.27
17.12
1.92 | 0.62
0.71
0.94
1.19
1.51
1.77
1.98
256
1.71
5.15
10.74
7.97 | 2
4
8
16
32
64
12 | D\N 2 4 8 16 32 64 | 0.08
0.06
0.28
2.18
11.0
23.54
95.33
(h)
4
0.53
0.14
0.06
0.07
0.13
0.63 | 0.14
0.17
0.47
2.24
6.05
13.24
56.65
[MM:B
0.61
0.38
0.19
0.16
0.25
0.92 | 0.51
0.44
1.01
2.84
6.45
12.27
19.0
ev2]
64
0.9
0.71
0.52
0.53
0.72 | 0.82
1.18
2.56
4.78
9.52
14.97
25.47
256
1.21
1.08
0.9
0.93
1.06
1.0 | | 2 4 8 10 32 10 N 2 4 8 16 32 32 32 32 32 32 32 3 | 0.00
 0.11 0.45 0.27 0.27 | 7 0.14
5 0.23
4 0.52
6 1.05
4 1.48
1 1.77
0 2.02
(g) [MM:
1.94
1.78
1.12
0.64
0.7
26.94
0.91 | 0.4
0.44
0.72
1.12
1.51
1.78
2.0
B
64
1.76
9.27
17.12
1.92
2.54
3.07
4.7 | 0.62
0.71
0.94
1.19
1.51
1.77
1.98
256
1.71
5.15
10.74
7.97
5.37 | 2
4
8
16
32
64
12 | D\N 2 4 8 16 32 | 0.08
0.06
0.28
2.18
11.0
23.54
95.33
(h)
4
0.53
0.14
0.06
0.07
0.13 | 0.14
0.17
0.47
2.24
6.05
13.24
56.65
[MM:B
16
0.61
0.38
0.19
0.16
0.25 | 0.51
0.44
1.01
2.84
6.45
12.27
19.0
ev2]
64
0.9
0.71
0.52
0.53
0.53 | 0.82
1.18
2.56
4.78
9.52
14.97
25.47
256
1.21
1.08
0.9
0.93
1.06 | | 2 4 8 10 32 64 16 32 64 | 0.00
 0.11 0.40 | 7 0.14
5 0.23
4 0.52
6 1.05
4 1.48
1 1.77
0 2.02
(g) [MM:
16 1.94
1.78
1.12
0.64
0.7
26.94 | 0.4
0.44
0.72
1.12
1.51
1.78
2.0
B
64
1.76
9.27
17.12
1.92
2.54
3.07
4.7 | 0.62
0.71
0.94
1.19
1.51
1.77
1.98
256
1.71
5.15
10.74
7.97
5.37
1.75 | 2
4
8
16
32
64
12 | D\N 2 4 8 16 32 64 | 0.08
0.06
0.28
2.18
11.0
23.54
95.33
(h)
4
0.53
0.14
0.06
0.07
0.13
0.98 | 0.14
0.17
0.47
2.24
6.05
13.24
56.65
[MM:B
0.61
0.38
0.19
0.16
0.25
0.92 | 0.51
0.44
1.01
2.84
6.45
12.27
19.0
64
0.9
0.71
0.52
0.53
0.72
1.22 | 0.82
1.18
2.56
4.78
9.52
14.97
25.47
256
1.21
1.08
0.9
0.93
1.06
1.0 | | 2 4 8 16 32 64 128 D\ | 0.0
 0.1
 0.4
 0.4
 1.8
 2.1
 4
 1.29
 1.63
 1.28
 0.19
 0.27
 1.18
 2.16 | 7 0.14
5 0.23
4 0.52
6 1.05
4 1.48
1 1.77
0 2.02
(g) [MM:
1.94
1.78
1.12
0.64
0.7
26.94
0.91
(i) [MM | 0.4
0.44
0.72
1.12
1.51
1.78
2.0
B
64
1.76
9.27
17.12
1.92
2.54
3.07
4.7 | 0.62
0.71
0.94
1.19
1.51
1.77
1.98
256
1.71
5.15
10.74
7.97
5.37
1.75
0.73 | 2
4
8
16
32
64
12: | D\N 2 4 8 16 32 64 1128 | 0.08
0.06
0.28
2.18
11.0
23.54
95.33
(h)
4
0.53
0.14
0.06
0.07
0.13
0.63
0.98
(j) | 0.14
0.17
0.47
2.24
6.05
13.24
56.65
[MM:B]
0.61
0.38
0.19
0.16
0.25
0.99
0.99
0.MM:J | 0.51
0.44
1.01
2.84
6.45
12.27
19.0
64
0.9
0.71
0.52
0.53
0.72
1.22
R | 0.82
1.18
2.56
4.78
9.52
14.97
25.47
256
1.21
1.08
0.9
0.93
1.06
1.38 | | 2 4 8 16 12 12 12 12 12 12 12 | 0.00 0.11 0.27 0.18 0.19 0.27 0.18 0.19 0.27 0.18 0.19 0.27 0.18 0.19 0.27 | 7 0.14
5 0.23
4 0.52
6 1.05
4 1.48
1 1.77
0 2.02
(g) [MM:
1.94
1.78
1.12
0.64
0.7
26.94
0.91
(i) [MM | 0.4
0.44
0.72
1.12
1.51
1.78
2.0
2.0
2.0
2.1
3.07
4.7
1.12
1.92
2.54
3.07
4.7 | 0.62
0.71
0.94
1.19
1.51
1.77
1.98
256
1.71
5.15
10.74
7.97
5.37
1.75
0.73 | 2
4
8
16
32
64
12: | D\N 2 4 8 16 32 644 1128 D\N 2 | 0.08
0.06
0.28
2.18
11.0
23.54
95.33
(h)
4
0.53
0.14
0.06
0.07
0.13
0.63
0.98
(j) | 0.14
0.17
0.47
2.24
6.05
13.24
56.65
MM:B
0.61
0.38
0.19
0.16
0.25
0.99
0.99
0.99
0.99 | 0.51
0.44
1.01
2.84
6.45
12.27
19.0
64
0.9
0.71
0.52
0.53
0.72
1.22
R | 0.82
1.18
2.56
4.78
9.52
14.97
25.47
256
1.21
1.08
0.9
0.93
1.06
1.38 | | 2 4 8 16 12 12 12 12 12 12 12 | 0.0
 0.1
 0.4
 0.5
 0.9
 2 1.4
 1.8
 8 2.0
 4 1.29
 1.63
 1.28
 0.19
 0.27
 1.18
 2.16 | 7 0.14
5 0.23
4 0.52
6 1.05
4 1.48
1 1.77
0 2.02
(g) [MM:
1.94
1.78
1.12
0.64
0.7
26.94
0.91
(i) [MM | 0.4
0.44
0.72
1.12
1.51
1.78
2.0
B
64
1.76
9.27
17.12
1.92
2.54
3.07
4.7 |
0.62
0.71
0.94
1.19
1.51
1.77
1.98
256
1.71
5.15
10.74
7.97
5.37
1.75
0.73 | 2
4
8
16
32
64
12: | D\N 2 4 8 16 32 64 1128 D\N 2 4 | 0.08
0.06
0.28
2.18
11.0
23.54
95.33
(h)
4
0.06
0.07
0.13
0.63
0.98
(j) | 0.14
0.17
0.47
2.24
6.05
13.24
56.65
[MM:B]
0.61
0.38
0.19
0.16
0.25
0.92
0.99
0.MM:J | 0.51
0.44
1.01
2.84
6.45
12.27
19.0
64
0.9
0.71
0.52
0.53
0.72
1.22
R | 0.82
1.18
2.56
4.78
9.52
14.97
25.47
256
1.21
1.08
0.9
0.93
1.06
1.3
1.38 | | 2 4 8 16 12 12 12 12 12 12 12 | 0.00 0.11 0.12 0.13 0.14 0.14 0.15 0.19 0.16 0.18 0.19 0.16 | 7 0.14
5 0.23
4 0.52
6 1.05
4 1.48
1 1.77
0 2.02
(g) [MM:
1.94
1.78
1.12
0.64
0.7
26.94
0.91
(i) [MM
16
6 0.22
3 0.44
8 1.05 | 0.4
0.44
0.72
1.12
1.51
1.78
2.0
2.0
2.1
64
1.76
9.27
17.12
1.92
2.54
3.07
4.7 | 0.62
0.71
0.94
1.19
1.51
1.77
1.98
256
1.71
5.15
10.74
7.97
5.37
1.75
0.73
256
0.69
1.02
1.59 | 2
4
8
16
32
64
12: | D\N 2 4 8 16 32 644 1128 D\N 2 4 8 | 0.08
0.06
0.28
2.18
11.0
23.54
95.33
(h)
4
0.53
0.14
0.06
0.07
0.13
0.63
0.98
(j) | 0.14
0.17
0.47
2.24
6.05
13.24
56.65
MM:B
0.61
0.38
0.19
0.16
0.25
0.99
0.99
MM:D | 0.51
0.44
1.01
2.84
6.45
12.27
19.0
64
0.9
0.71
0.52
0.53
0.72
1.22
R
64
0.00
0.00
0.00 | 0.82
1.18
2.56
4.78
9.52
14.97
25.47
256
1.21
1.08
0.9
0.93
1.06
1.38
256
0.00
0.00
0.00 | | D\N 2 4 8 16 32 64 128 D\ 2 4 8 16 32 64 128 D\ 2 4 8 16 10 10 10 10 10 10 10 | 0.0
 0.1
 0.4
 0.4
 1.8
 2.1
 4
 1.29
 1.63
 1.28
 0.19
 0.27
 1.18
 2.16
 0.1
 0.1
 0.3
 0.8
 0.8
 0.9 | 7 0.14 5 0.23 4 0.52 6 1.05 4 1.48 1 1.77 0 2.02 (g) [MM: 1.94 1.78 1.12 0.64 0.7 26.94 0.91 (i) [MM 16 6 0.22 3 0.44 8 1.05 7 1.77 | 0.4
 0.44
 0.72
 1.12
 1.51
 1.78
 2.0
 B
 64
 1.76
 9.27
 17.12
 1.92
 2.54
 3.07
 4.7
 0.38
 0.67
 1.31
 1.9 | 0.62
0.71
0.94
1.19
1.51
1.77
1.98
256
1.71
5.15
10.74
7.97
5.37
1.75
0.73
256
0.69
1.02
1.59
1.99 | 2
4
8
16
32
64
12: | D\N 2 4 8 16 D\N 2 4 8 16 | 0.08
0.06
0.28
2.18
11.0
23.54
95.33
(h)
4
0.06
0.07
0.13
0.63
0.98
(j)
4
0.00
0.00
0.00
0.00 | 0.14
0.17
0.47
2.24
6.05
13.24
56.65
[MM:B]
0.61
0.38
0.19
0.16
0.25
0.99
0.99
0.99
0.00
0.00
0.00
0.00 | 0.51
0.44
1.01
2.84
6.45
12.27
19.0
64
0.9
0.71
0.52
0.53
0.72
1.22
R
64
0.00
0.00
0.00 | 256
1.08
2.56
4.78
9.52
14.97
25.47
25.47
256
1.21
1.08
0.9
0.93
1.06
1.3
1.38 | | D\N 2 4 8 16 32 64 128 D\ 2 4 8 16 32 64 128 D\ 3 3 3 3 3 3 3 3 3 | 0.00 0.11 0.29 1.63 1.28 0.19 0.27 1.18 0.16 | 7 0.14 5 0.23 4 0.52 6 1.05 4 1.48 1 1.77 0 2.02 (g) [MM: 1.94 1.78 1.12 0.64 0.7 26.94 0.91 (i) [MM 16 6 0.22 3 0.44 8 1.05 7 1.77 7 2.27 | 0.4
0.44
0.72
1.12
1.51
1.78
2.0
B
64
1.76
9.27
17.12
1.92
2.54
3.07
4.7 | 0.62
0.71
0.94
1.19
1.51
1.77
1.98
256
1.71
5.15
10.74
7.97
5.37
1.75
0.73
256
0.69
1.02
1.59
1.99
2.3 | 2
4
8
16
32
64
12: | D\N 2 4 8 16 32 D\N 2 4 8 16 33 2 | 0.08
0.06
0.28
2.18
11.0
23.54
95.33
(h)
4
0.06
0.07
0.13
0.63
0.98
(j)
4
0.00
0.00
0.00
0.00 | 0.14
0.17
0.47
2.24
6.05
13.24
56.65
MM:B
0.61
0.38
0.19
0.16
0.25
0.99
0.99
(MM:D
16
0.00
0.00
0.00
0.00
0.00 | 0.51
0.44
1.01
2.84
6.45
12.27
19.0
64
0.9
0.71
0.52
0.53
0.72
1.22
R
64
0.00
0.00
0.00
0.00 | 256
1.08
2.56
4.78
9.52
14.97
25.47
25.47
256
1.21
1.08
0.9
0.93
1.06
1.38
256
0.00
0.00
0.00
0.00 | | D\N 2 4 8 16 32 64 128 D\ 2 4 8 16 32 64 128 D\ 3 6 6 6 6 6 6 6 6 6 | 0.00 0.11 0.00 | 7 0.14 5 0.23 4 0.52 6 1.05 4 1.48 1 1.77 0 2.02 (g) [MM: 1.94 1.78 1.12 0.64 0.7 26.94 0.91 (i) [MM 16 6 0.22 3 0.44 8 1.05 7 1.77 7 2.27 6 2.53 | 0.4
0.44
0.72
1.12
1.51
1.78
2.0
B
64
1.76
9.27
17.12
1.92
2.54
3.07
4.7
(1)
64
0.38
0.67
1.31
1.99
2.3
2.53 | 0.62
0.71
0.94
1.19
1.51
1.77
1.98
256
1.71
5.15
10.74
7.97
5.37
1.75
0.73
256
0.69
1.02
1.59
1.99
2.3
2.53 | 2
4
8
16
32
64
12: | D\N 2 4 8 16 32 64 8 16 32 64 | 0.08
0.06
0.28
2.18
11.0
23.54
95.33
(h)
4
0.06
0.07
0.13
0.63
0.98
(j)
4
0.00
0.00
0.00
0.00
0.00 | 0.14
0.17
0.47
2.24
6.05
13.24
56.65
MM:B
0.61
0.38
0.19
0.16
0.25
0.99
0.99
0.00
0.00
0.00
0.00
0.00
0.00 | 0.51
0.44
1.01
2.84
6.45
12.27
19.0
64
0.9
0.71
0.52
0.53
0.72
1.22
R
64
0.00
0.00
0.00
0.00
0.00 |
256
1.08
2.56
4.78
9.52
14.97
25.47
25.47
256
1.21
1.08
0.9
0.93
1.06
1.38
256
0.00
0.00
0.00
0.00
0.00 | | D\N 2 4 8 16 32 64 128 D\ 2 4 8 16 32 64 128 D\ 3 3 3 3 3 3 3 3 3 | 0.00 0.11 0.00 | 7 0.14 5 0.23 4 0.52 6 1.05 4 1.48 1 1.77 0 2.02 (g) [MM: 1.94 1.78 1.12 0.64 0.7 26.94 0.91 (i) [MM 16 6 0.22 3 0.44 8 1.05 7 1.77 7 2.27 6 2.53 | 0.4
0.44
0.72
1.12
1.51
1.78
2.0
B
64
1.76
9.27
17.12
1.92
2.54
3.07
4.7
(1)
64
0.38
0.67
1.31
1.99
2.3
2.53
2.7 | 0.62
0.71
0.94
1.19
1.51
1.77
1.98
256
1.71
5.15
10.74
7.97
5.37
1.75
0.73
256
0.69
1.02
1.59
1.99
2.3 | 2
4
8
16
32
64
12: | D\N 2 4 8 16 32 D\N 2 4 8 16 33 2 | 0.08
0.06
0.28
2.18
11.0
23.54
95.33
(h)
4
0.53
0.14
0.06
0.07
0.13
0.63
0.98
(j)
4
0.00
0.00
0.00
0.00
0.00 | 0.14
0.17
0.47
2.24
6.05
13.24
56.65
MM:B
0.61
0.38
0.19
0.16
0.25
0.99
0.99
(MM:D
16
0.00
0.00
0.00
0.00
0.00 | 0.51 0.44 1.01 2.84 6.45 12.27 19.0 64 0.9 0.71 0.52 0.53 0.72 1.22 R 64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 | 256
1.08
2.56
4.78
9.52
14.97
25.47
25.47
256
1.21
1.08
0.9
0.93
1.06
1.38
256
0.00
0.00
0.00
0.00 | Table 10: $\mathcal{L}^2\downarrow$ metric values of the OT gradient estimated by OT solvers on our **HIGH-DIMENSIONAL** benchmark pairs (\mathbb{P},\mathbb{Q}) . Colors indicate the metric value: $\mathcal{L}^2<0.25, \mathcal{L}^2\in[0.25,0.65), \mathcal{L}^2\in[0.65,1.2), \mathcal{L}^2\geq 1.2.$ | D\N | 4 | 16 | 64 | 256 | D\N | 4 | 16 | 64 | 256 | |--------------------------------------|--|--|--|---|--|--|---|--|--| | 2 | 0.03 | 0.04 | -0.01 | -0.01 | 2 | 0.86 | 0.42 | 0.13 | 0.04 | | 4 | 0.41 | 0.19 | 0.06 | 0.02 | 4 | 1.45 | 1.06 | 0.58 | 0.22 | | 8 | 1.11 | 0.6 | 0.21 | 0.09 | 8 | 2.0 | 1.7 | 1.16 | 0.71 | | 16 | 1.72 | 1.59 | 0.52 | 0.29 | 16 | 2.07 | 1.81 | 1.36 | 0.91 | | 32 | 2.85 | 1.0 | 0.52 | 0.3 | 32 | 1.98 | 1.71 | 1.19 | 0.87 | | 64 | 3.31 | 1.31 | 0.7 | 0.36 | 64 | 1.38 | 1.09 | 0.81 | 0.67 | | 128 | 9.44 | 5.91 | 2.8 | 1.09 | 128 | 1.14 | 0.92 | 0.71 | 0.6 | | | (| (a) WC | | | | (| (b) [GP |] | | | D\N | 4 | 16 | 64 | 256 | D\N | 4 | 16 | 64 | 256 | | 2 | 0.89 | 0.48 | 0.22 | 0.1 | 2 | 0.15 | 0.08 | 0.0 | 0.0 | | 4 | 1.48 | 1.06 | 0.69 | 0.39 | 4 | 0.44 | 0.18 | 0.08 | 0.02 | | 8 | 1.98 | 1.66 | 1.18 | 0.78 | 8 | 0.59 | 0.34 | 0.18 | 0.08 | | 16 | 2.12 | 1.81 | 1.35 | 0.91 | 16 | 0.63 | 0.46 | 0.19 | 0.14 | | 32 | 1.92 | 1.61 | 1.18 | 0.8 | 32 | 0.73 | 0.29 | 0.19 | 0.12 | | 64
128 | 1.46 | 1.15
0.87 | 0.83 | 0.69 | 64
128 | 0.65 | 0.32 0.29 | 0.15 | 0.12 | | 120 | _ | | | 0.04 | 120 | | | | 0.1 | | | | (c) LP |] | | | | (d) LSN |] | | | D\N | 4 | 16 | 64 | 256 | D\N | 4 | 16 | 64 | 256 | | 2 | 0.76 | 0.28 | 0.09 | 0.04 | 2 | 0.43 | 0.09 | 0.0 | 0.0 | | 4 | 1.27 | 0.56 | 0.26 | 0.09 | 4 | 0.45 | 0.15 | 0.01 | -0.01 | | 8 | 1.68 | 1.04 | 0.54 | 0.29 | 8 | 0.24 | 0.07 | -0.06 | -0.06 | | 16 | 1.89 | 1.46 | 0.85 | 0.55 | 16 | -0.16 | -0.2 | -0.2 | -0.18 | | 32 | 1.78 | 1.52 | 1.06 | 0.73 | 32 | -0.36 | -0.37 | -0.35 | -0.29 | | 64 | 1.43 | 1.37 | 1.08 | 0.8 | 64 | -0.43 | -0.37 | -0.35 | -0.32 | | 128 | 1.05 | 0.98 | 0.69 | 0.65 | 128 | -0.38 | -0.36 | -0.34 | -0.32 | | | | (e) SO |] | | | | (f) LS | | | | | | | | | | | | | | | D\N | 4 | 16 | 64 | 256 | D\N | 4 | 16 | 64 | 256 | | 2 | 0.79 | 0.44 | 0.19 | 0.06 | 2 | 0.8 | 0.47 | 0.21 | 0.12 | | 4 | 0.79
1.08 | 0.44 | 0.19 | 0.06
0.11 | 2 | 0.8 | 0.47
1.01 | 0.21
0.74 | 0.12 | | 2
4
8 | 0.79
1.08
0.74 | 0.44
0.67
0.52 | 0.19
0.35
0.21 | 0.06
0.11
0.05 | 2
4
8 | 0.8
1.42
2.09 | 0.47
1.01
1.82 | 0.21
0.74
1.46 | 0.12
0.52
1.21 | | 2
4
8
16 | 0.79
1.08
0.74
0.11 | 0.44
0.67
0.52
0.0 | 0.19
0.35
0.21
-0.05 | 0.06
0.11
0.05
-0.1 | 2
4
8
16 | 0.8
1.42
2.09
2.86 | 0.47
1.01
1.82
2.54 | 0.21
0.74
1.46
2.14 | 0.12
0.52
1.21
1.68 | | 2
4
8
16
32 | 0.79
1.08
0.74
0.11
-0.23 | 0.44
0.67
0.52
0.0
-0.27 | 0.19
0.35
0.21
-0.05
-0.26 | 0.06
0.11
0.05
-0.1
-0.24 | 2
4
8
16
32 | 0.8
1.42
2.09
2.86
4.05 | 0.47
1.01
1.82
2.54
3.16 | 0.21
0.74
1.46
2.14
2.37 | 0.12
0.52
1.21
1.68
2.03 | | 2
4
8
16
32
64 | 0.79
1.08
0.74
0.11
-0.23
-0.39 | 0.44
0.67
0.52
0.0
-0.27
-0.35 | 0.19
0.35
0.21
-0.05
-0.26
-0.33 | 0.06
0.11
0.05
-0.1
-0.24
-0.32 | 2
4
8
16
32
64 | 0.8
1.42
2.09
2.86
4.05
4.6 | 0.47
1.01
1.82
2.54
3.16
3.58 | 0.21
0.74
1.46
2.14
2.37
2.71 | 0.12
0.52
1.21
1.68
2.03
2.61 | | 2
4
8
16
32 | 0.79
1.08
0.74
0.11
-0.23
-0.39
-0.38 | 0.44
0.67
0.52
0.0
-0.27
-0.35
-0.37 | 0.19
0.35
0.21
-0.05
-0.26
-0.33
-0.35 | 0.06
0.11
0.05
-0.1
-0.24 | 2
4
8
16
32 | 0.8
1.42
2.09
2.86
4.05
4.6
7.2 | 0.47
1.01
1.82
2.54
3.16
3.58
3.91 | 0.21
0.74
1.46
2.14
2.37
2.71
2.37 | 0.12
0.52
1.21
1.68
2.03 | | 2
4
8
16
32
64
128 | 0.79
1.08
0.74
0.11
-0.23
-0.39
-0.38 | 0.44
0.67
0.52
0.0
-0.27
-0.35
-0.37 | 0.19
0.35
0.21
-0.05
-0.26
-0.33
-0.35 | 0.06
0.11
0.05
-0.1
-0.24
-0.32
-0.33 | 2
4
8
16
32
64
128 | 0.8
1.42
2.09
2.86
4.05
4.6
7.2 | 0.47
1.01
1.82
2.54
3.16
3.58
3.91 | 0.21
0.74
1.46
2.14
2.37
2.71
2.37
3v2 | 0.12
0.52
1.21
1.68
2.03
2.61
2.56 | | 2
4
8
16
32
64
128 | 0.79
1.08
0.74
0.11
-0.23
-0.39
-0.38 | 0.44
0.67
0.52
0.0
-0.27
-0.35
-0.37
() [MM: | 0.19
0.35
0.21
-0.05
-0.26
-0.33
-0.35
8B] | 0.06
0.11
0.05
-0.1
-0.24
-0.32
-0.33 | 2
4
8
16
32
64
128 |
0.8
1.42
2.09
2.86
4.05
4.6
7.2
(h) | 0.47
1.01
1.82
2.54
3.16
3.58
3.91
MM:B | 0.21
0.74
1.46
2.14
2.37
2.71
2.37
8v2] | 0.12
0.52
1.21
1.68
2.03
2.61
2.56 | | 2
4
8
16
32
64
128 | 0.79
1.08
0.74
0.11
-0.23
-0.39
-0.38
(g | 0.44
0.67
0.52
0.0
-0.27
-0.35
-0.37
) [MM: | 0.19
0.35
0.21
-0.05
-0.26
-0.33
-0.35
8B] | 0.06
0.11
0.05
-0.1
-0.24
-0.32
-0.33 | 2
4
8
16
32
64
128 | 0.8
1.42
2.09
2.86
4.05
4.6
7.2
(h) | 0.47
1.01
1.82
2.54
3.16
3.58
3.91
[MM:B | 0.21
0.74
1.46
2.14
2.37
2.71
2.37
3v2 | 0.12
0.52
1.21
1.68
2.03
2.61
2.56
2.56 | | 2
4
8
16
32
64
128 | 0.79
1.08
0.74
0.11
-0.23
-0.39
-0.38 | 0.44
0.67
0.52
0.0
-0.27
-0.35
-0.37
() [MM: | 0.19
0.35
0.21
-0.05
-0.26
-0.33
-0.35
8B] | 0.06
0.11
0.05
-0.1
-0.24
-0.32
-0.33 | 2
4
8
16
32
64
128 | 0.8
1.42
2.09
2.86
4.05
4.6
7.2
(h) | 0.47
1.01
1.82
2.54
3.16
3.58
3.91
MM:B | 0.21
0.74
1.46
2.14
2.37
2.71
2.37
8v2] | 0.12
0.52
1.21
1.68
2.03
2.61
2.56 | | 2
4
8
16
32
64
128 | 0.79
1.08
0.74
0.11
-0.23
-0.39
-0.38
(g
4
0.83
1.35 | 0.44
0.67
0.52
0.0
-0.27
-0.35
-0.37
() [MM:
16
0.48
1.12 | 0.19
0.35
0.21
-0.05
-0.26
-0.33
-0.35
8B | 0.06
0.11
0.05
-0.1
-0.24
-0.32
-0.33
256
0.15
0.91 | 2
4
8
16
32
64
128 | 0.8
1.42
2.09
2.86
4.05
4.6
7.2
(h)
4 | 0.47
1.01
1.82
2.54
3.16
3.58
3.91
[MM:B | 0.21
0.74
1.46
2.14
2.37
2.71
2.37
3v2]
64
0.28
0.66 | 0.12
0.52
1.21
1.68
2.03
2.61
2.56
0.16
0.43 | | 2
4
8
16
32
64
128 | 0.79
1.08
0.74
0.11
-0.23
-0.39
-0.38
(g
4
0.83
1.35
1.85 | 0.44
0.67
0.52
0.0
-0.27
-0.35
-0.37
() [MM:
16
0.48
1.12
1.58 | 0.19
0.35
0.21
-0.05
-0.26
-0.33
-0.35
8B 64 0.27
1.35
2.75 | 0.06
0.11
0.05
-0.1
-0.24
-0.32
-0.33
256
0.15
0.91
2.1 | 2
4
8
16
32
64
128 | 0.8
1.42
2.09
2.86
4.05
4.6
7.2
(h)
4
0.79
1.37
1.89 | 0.47
1.01
1.82
2.54
3.16
3.58
3.91
[MM:B]
16
0.47
0.99
1.54 | 0.21
0.74
1.46
2.14
2.37
2.71
2.37
8v2]
64
0.28
0.66
1.28 | 0.12
0.52
1.21
1.68
2.03
2.61
2.56
0.16
0.43
1.04 | | 2
4
8
16
32
64
128 | 0.79
1.08
0.74
0.11
-0.23
-0.39
-0.38
(g
4
0.83
1.35
1.85 | 0.44
0.67
0.52
0.0
-0.27
-0.35
-0.37
() [MM:
16
0.48
1.12
1.58
1.76 | 0.19
0.35
0.21
-0.05
-0.26
-0.33
-0.35
64
0.27
1.35
2.75
1.74 | 0.06
0.11
0.05
-0.1
-0.24
-0.32
-0.33
256
0.15
0.91
2.1
1.87
1.35
0.79 | 2
4
8
16
32
64
128
D\N
2
4
8
16
32
64 | 0.8
1.42
2.09
2.86
4.05
4.6
7.2
(h)
4
0.79
1.37
1.89
2.06 | 0.47
1.01
1.82
2.54
3.16
3.58
3.91
[MM:B]
16
0.47
0.99
1.54
1.84 | 0.21
0.74
1.46
2.14
2.37
2.71
2.37
8v2]
64
0.28
0.66
1.28
1.8 | 0.12
0.52
1.21
1.68
2.03
2.61
2.56
0.16
0.43
1.04
1.55 | | 2 4 8 16 32 64 128 | 0.79
1.08
0.74
0.11
-0.23
-0.39
-0.38
(g
4
0.83
1.35
1.85
1.96
1.76 | 0.44
0.67
0.52
0.0
-0.27
-0.35
-0.37
() [MM:
16
0.48
1.12
1.58
1.76
1.69 | 0.19
0.35
0.21
-0.05
-0.26
-0.33
-0.35
B 64
0.27
1.35
2.75
1.74
1.68 | 0.06
0.11
0.05
-0.1
-0.24
-0.32
-0.33
256
0.15
0.91
2.1
1.87
1.35 | 2
4
8
16
32
64
128
D\N
2
4
8
16
32 | 0.8
1.42
2.09
2.86
4.05
4.6
7.2
(h)
4
0.79
1.37
1.89
2.06
2.26 | 0.47
1.01
1.82
2.54
3.16
3.58
3.91
[MM:B
16
0.47
0.99
1.54
1.84
2.01 | 0.21
0.74
1.46
2.14
2.37
2.71
2.37
8v2]
64
0.28
0.66
1.28
1.8
2.22 | 0.12
0.52
1.21
1.68
2.03
2.61
2.56
0.16
0.43
1.04
1.55
1.8 | | 2 4 8 16 32 64 128 | 0.79 1.08 0.74 0.11 -0.23 -0.39 -0.38 (g 0.83 1.35 1.85 1.96 1.76 1.22 0.97 | 0.44
0.67
0.52
0.0
-0.27
-0.35
-0.37
() [MM:
16
0.48
1.12
1.58
1.76
1.69
1.84 | 0.19
0.35
0.21
-0.05
-0.26
-0.33
-0.35
B
64
0.27
1.35
2.75
1.74
1.68
1.17
0.6 | 0.06
0.11
0.05
-0.1
-0.24
-0.32
-0.33
256
0.15
0.91
2.1
1.87
1.35
0.79 | 2
4
8
16
32
64
128
D\N
2
4
8
16
32
64 | 0.8 1.42 2.09 2.86 4.05 4.6 7.2 (h) 4 0.79 1.37 1.89 2.06 2.26 3.32 0.6 | 0.47
1.01
1.82
2.54
3.16
3.58
3.91
[MM:B
16
0.47
0.99
1.54
1.84
2.01
4.35 | 0.21
0.74
1.46
2.14
2.37
2.71
2.37
8v2]
64
0.28
0.66
1.28
1.8
2.22
1.51
0.56 | 0.12
0.52
1.21
1.68
2.03
2.61
2.56
0.16
0.43
1.04
1.55
1.8
1.02 | | 2 4 8 16 32 64 128 | 0.79 1.08 0.74 0.11 -0.23 -0.39 -0.38 (g 0.83 1.35 1.85 1.96 1.76 1.22 0.97 | 0.44
0.67
0.52
0.0
-0.27
-0.35
-0.37
) [MM:
16
0.48
1.12
1.58
1.76
1.69
1.84
0.76
(i) [MM | 0.19 0.35 0.21 -0.05 -0.26 -0.33 -0.35 B 64 0.27 1.35 2.75 1.74 1.68 1.17 0.6 | 0.06
0.11
0.05
-0.1
-0.24
-0.32
-0.33
256
0.15
0.91
2.1
1.87
1.35
0.79
0.33 | D\N D\N D\N D\N D\N D\N | 0.8 1.42 2.09 2.86 4.05 4.6 7.2 (h) 4 0.79 1.37 1.89 2.06 2.26 3.32 0.6 (j) | 0.47
1.01
1.82
2.54
3.16
3.58
3.91
MM:B
16
0.47
0.99
1.54
1.84
2.01
4.35
0.73
MM:B | 0.21
0.74
1.46
2.14
2.37
2.71
2.37
8v2]
64
0.28
0.66
1.28
1.8
2.22
1.51
0.56 | 0.12
0.52
1.21
1.68
2.03
2.61
2.56
0.16
0.43
1.04
1.55
1.8
1.02
0.39 | | 2 4 8 16 32 64 128 | 0.79 1.08 0.74 0.11 -0.23 -0.39 -0.38 (g 0.83 1.35 1.85 1.96 1.76 1.22 0.97 | 0.44
0.67
0.52
0.0
-0.27
-0.35
-0.37
) [MM:
16
0.48
1.12
1.58
1.76
1.69
1.84
0.76
(i) [MM | 0.19 0.35 0.21 -0.05 -0.26 -0.33 -0.35 8B 64 0.27 1.35 2.75 1.74 1.68 1.17 0.6 | 0.06
0.11
0.05
-0.1
-0.24
-0.32
-0.33
256
0.15
0.91
1.87
1.35
0.79
0.33 | D\N 2 4 8 16 32 64 128 D\N 2 4 8 16 32 64 128 | 0.8 1.42 2.09 2.86 4.05 4.6 7.2 (h) 4 0.79 1.37 1.89 2.06 2.26 3.32 0.6 (j) | 0.47
1.01
1.82
2.54
3.16
3.58
3.91
MM:B
0.47
0.99
1.54
1.84
2.01
4.35
0.73
(MM:B) | 0.21
0.74
1.46
2.14
2.37
2.71
2.37
8v2]
64
0.28
0.66
1.28
1.8
2.22
1.51
0.56
R] | 0.12
0.52
1.21
1.68
2.03
2.61
2.56
0.16
0.43
1.04
1.55
1.8
1.02
0.39 | | 2 4 8 16 32 64 128 | 0.79 1.08 0.74 0.11 -0.23 -0.39 -0.38 (g 0.83 1.35 1.85 1.96 1.76 1.22 0.97 | 0.44
0.67
0.52
0.0
-0.27
-0.35
-0.37
) [MM:
1.6
0.48
1.76
1.69
1.84
0.76
(i) [MM | 0.19 0.35 0.21 -0.05 -0.26 -0.33 -0.35 8B 64 0.27 1.35 2.75 1.74 1.68 1.17 0.6 | 0.06
0.11
0.05
-0.1
-0.24
-0.32
-0.33
256
0.15
0.91
1.87
1.35
0.79
0.33 | 2 4 8 16 32 64 128 | 0.8 1.42 2.09 2.86 4.05 4.6 7.2 (h) 4 0.79 1.37 1.89 2.06 2.26 0.6 (j) 4 0.82 1.39 | 0.47
1.01
1.82
2.54
3.16
3.58
3.91
MM:B
16
0.47
0.99
1.54
1.84
2.01
4.35
0.73
MM:B | 0.21
0.74
1.46
2.14
2.37
2.71
2.37
8v2]
64
0.28
0.66
1.28
1.51
0.56
R] | 0.12
0.52
1.21
1.68
2.03
2.61
2.56
0.16
0.43
1.04
1.55
1.8
1.02
0.39
256
0.13
0.49 | | 2 4 8 16 32 64 128 | 0.79 1.08 0.74 0.11 -0.23 -0.39 -0.38 (g 0.83 1.35 1.85 1.96 1.76 1.22 0.97 | 0.44
0.67
0.52
0.0
-0.27
-0.35
-0.37
) [MM:
1.12
1.58
1.76
1.69
1.84
0.76
(i) [MM
16
0.47
1.07
2.19 | 0.19 0.35 0.21 -0.05 -0.26 -0.33 -0.35 0.27 1.35 2.75 1.74 1.68 1.17 0.6 0.24 0.8 1.92 | 0.06
0.11
0.05
-0.1
-0.24
-0.32
-0.33
256
0.15
0.91
1.87
1.35
0.79
0.33
256
0.15
0.64
1.79 | D\N 2 4 128 D\N 2 4 128 D\N 2 4 128 D\N 2 4 4 8 16 4 128 D\N 2 4 8 16 128 D\N 2 4 8 16 16 16 16 16 16 1 | 0.8 1.42 2.09 2.86 4.05 4.6 7.2 (h) 4 0.79 1.37 1.89 2.06 2.26 3.32 0.6 (j) 4 0.82 1.39 1.88 | 0.47
1.01
1.82
2.54
3.16
3.58
3.91
MM:B
0.47
0.99
1.54
1.84
2.01
4.35
0.73
(MM:B | 0.21
0.74
1.46
2.14
2.37
2.71
2.37
8v2]
64
0.28
0.66
1.28
1.51
0.56
R] | 0.12
0.52
1.21
1.68
2.03
2.61
2.56
0.16
0.43
1.04
1.55
1.8
1.02
0.39
256
0.13
0.49
1.01 | | 2 4 8 16 32 64 128 | 0.79 1.08 0.74 0.11 -0.23 -0.39 -0.38 (g 4 0.83 1.35 1.96 1.76 1.22 0.97 | 0.44
0.67
0.52
0.0
-0.27
-0.35
-0.37
) [MM:
1.12
1.58
1.76
1.69
1.84
0.76
(i) [MM
16
0.47
1.07
2.19
4.04 | 0.19 0.35 0.21 -0.05 -0.26 -0.33 -0.35 |
0.06
0.11
0.05
-0.1
-0.24
-0.32
-0.33
256
0.15
0.91
1.35
0.79
0.33
256
0.15
0.64
1.79
3.93 | D\N 2 4 128 D\N 2 4 8 16 16 16 16 16 16 16 | 0.8 1.42 2.09 2.86 4.05 4.6 7.2 (h) 4 0.79 1.37 1.89 2.06 2.26 3.32 0.6 (j) 4 0.82 1.39 1.88 1.94 | 0.47
1.01
1.82
2.54
3.16
3.58
3.91
MM:B
16
0.47
0.99
1.54
1.84
2.01
4.35
0.73
MM:B | 0.21
0.74
1.46
2.14
2.37
2.71
2.37
8v2]
64
0.28
0.66
1.28
1.51
0.56
R]
64
0.23
0.71
1.26
1.55 | 0.12
0.52
1.21
1.68
2.03
2.61
2.56
0.16
0.43
1.04
1.55
1.8
1.02
0.39
256
0.13
0.49
1.01 | | 2 4 8 16 32 64 128 | 0.79 1.08 0.74 0.11 -0.23 -0.39 -0.38 (g 0.83 1.35 1.85 1.96 1.76 1.22 0.97 4 0.82 1.43 2.42 4.13 7.26 | 0.44
0.67
0.52
0.0
-0.27
-0.35
-0.37
) [MM:
1.6
0.48
1.76
1.69
1.84
0.76
(i) [MM
16
0.47
1.07
2.19
4.04
7.23 | 0.19 0.35 0.21 -0.05 -0.26 -0.33 -0.35 0.27 1.35 2.75 1.74 1.68 1.17 0.6 0.24 0.8 1.92 3.98 7.23 | 0.06
0.11
0.05
-0.1
-0.24
-0.32
-0.33
256
0.15
0.91
1.87
1.35
0.79
0.33
256
0.15
0.64
1.79
3.93
7.26 | D\N 2 4 128 D\N 2 4 128 D\N 2 4 128 16 32 4 128 16 32 4 16 32 4 16 32 16 16 16 16 16 16 16 1 | 0.8 1.42 2.09 2.86 4.05 4.6 7.2 (h) 4 0.79 1.37 1.89 2.06 2.26 3.32 0.6 (j) 4 0.82 1.39 1.88 1.94 1.82 | 0.47
1.01
1.82
2.54
3.16
3.58
3.91
MM:B
16
0.47
0.99
1.54
1.84
2.01
4.35
0.73
(MM:B
16
0.47
1.54
1.54
1.67 | 0.21
0.74
1.46
2.14
2.37
2.71
2.37
8v2]
64
0.28
0.66
1.28
1.51
0.56
R]
64
0.23
0.71
1.26
1.55
1.54 | 0.12
0.52
1.21
1.68
2.03
2.61
2.56
0.16
0.43
1.04
1.55
1.8
1.02
0.39
256
0.13
0.49
1.01
1.4 | | 2 4 8 16 32 64 128 | 0.79 1.08 0.74 0.11 -0.23 -0.39 -0.38 (g 4 0.83 1.35 1.85 1.96 1.76 1.22 0.97 4 0.82 1.43 2.42 4.13 7.26 12.01 | 0.44
0.67
0.52
0.0
-0.27
-0.35
-0.37
) [MM:
16
0.48
1.12
1.58
1.76
1.69
1.84
0.76
(i) [MM
16
0.47
1.07
2.19
4.04
7.23
12.05 | 0.19 0.35 0.21 -0.05 -0.26 -0.33 -0.35 | 0.06
0.11
0.05
-0.1
-0.24
-0.32
-0.33
256
0.15
0.91
2.1
1.87
1.35
0.79
0.33
256
0.15
0.64
1.79
3.93
7.26
12.09 | 2 4 8 16 32 64 128 D\N 2 4 8 16 32 64 128 D\N 2 4 8 16 32 64 128 | 0.8 1.42 2.09 2.86 4.05 4.6 7.2 (h) 4 0.79 1.37 1.89 2.06 2.26 3.32 0.6 (j) 4 0.82 1.39 1.88 1.94 1.82 1.41 | 0.47
1.01
1.82
2.54
3.16
3.58
3.91
MM:B
0.47
0.99
1.54
1.84
2.01
4.35
0.73
(MM:B
16
0.47
1.54
1.67
1.59
1.74
1.67
1.36 | 0.21
0.74
1.46
2.14
2.37
2.71
2.37
8v2]
64
0.28
0.66
1.28
1.51
0.56
R]
64
0.23
0.71
1.26
1.55
1.54
1.32 | 0.12
0.52
1.21
1.68
2.03
2.61
2.56
0.16
0.43
1.04
1.55
1.8
1.02
0.39
256
0.13
0.49
1.01
1.41
1.28 | | 2 4 8 16 32 64 128 | 0.79 1.08 0.74 0.11 -0.23 -0.39 -0.38 (g 4 0.83 1.35 1.85 1.96 1.76 1.22 0.97 4 0.82 1.43 2.42 4.13 7.26 12.01 18.88 | 0.44
0.67
0.52
0.0
-0.27
-0.35
-0.37
) [MM:
1.6
0.48
1.76
1.69
1.84
0.76
(i) [MM
16
0.47
1.07
2.19
4.04
7.23 | 0.19 0.35 0.21 -0.05 -0.26 -0.33 -0.35 64 0.27 1.35 2.75 1.74 1.68 1.17 0.6 64 0.24 0.8 1.92 3.98 7.23 12.07 18.92 | 0.06
0.11
0.05
-0.1
-0.24
-0.32
-0.33
256
0.15
0.91
1.87
1.35
0.79
0.33
256
0.15
0.64
1.79
3.93
7.26 | D\N 2 4 128 D\N 2 4 128 D\N 2 4 128 16 32 4 128 16 32 4 16 32 4 16 32 16 16 16 16 16 16 16 1 | 0.8 1.42 2.09 2.86 4.05 4.6 7.2 (h) 4 0.79 1.37 1.89 2.06 2.26 3.32 0.6 (j) 4 0.82 1.39 1.88 1.94 1.82 1.41 1.14 | 0.47
1.01
1.82
2.54
3.16
3.58
3.91
MM:B
16
0.47
0.99
1.54
1.84
2.01
4.35
0.73
(MM:B
16
0.47
1.54
1.54
1.67 | 0.21 0.74 1.46 2.14 2.37 2.71 2.37 3v2 64 0.28 0.66 1.28 1.51 0.56 64 0.23 0.71 1.26 1.55 1.54 1.32 1.04 | 0.12
0.52
1.21
1.68
2.03
2.61
2.56
0.16
0.43
1.04
1.55
1.8
1.02
0.39
256
0.13
0.49
1.01
1.4
1.41 | Table 11: \mathbb{W}_1 values estimated by OT solvers on our **HIGH-DIMENSIONAL** benchmark pairs (\mathbb{P}, \mathbb{Q}) . Colors indicate the value of the relative deviation of $\widehat{\mathbb{W}}_1$ from \mathbb{W}_1 , i.e., dev $\stackrel{def}{=} 100\% \cdot \frac{|\mathbb{W}_1 - \widehat{\mathbb{W}}_1|}{\mathbb{W}_1}$: dev < 15%, dev $\in [15, 30\%)$, dev $\in [30, 50)\%$, dev $\ge 50\%$. # D Transport Rays Figure 9: Truncated transport rays of a random MinFunnel in dimension D=2 with N=16.