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Abstract: Driving safety is a top priority for autonomous vehicles. Orthogonal1

to prior work handling accident-prone traffic events by algorithm designs at the2

policy level, we present a general iterative learning framework called Closed-loop3

Adversarial Training (CAT) for safe end-to-end driving. CAT aims to continu-4

ously improve safety performance by training the driving agent on safety-critical5

scenarios that are dynamically generated over time. A novel resampling technique6

is developed to turn normal real-world driving scenarios into safety-critical ones7

through probabilistic factorization, where the adversarial traffic flow is cast as the8

product of standard motion prediction sub-problems. Consequently, CAT is able9

to utilize pre-trained motion forecasting models to launch more effective physi-10

cal attacks with significantly less computational cost compared to existing safety-11

critical scenario generation methods. We incorporate CAT into the MetaDrive12

simulator and validate our approach on hundreds of driving scenarios imported13

from real-world driving datasets. Experimental results demonstrate that CAT can14

generate effective safety-critical scenarios countering the agent being trained. Af-15

ter training, the agent can achieve superior driving safety in both normal and ad-16

versarial traffic scenarios on the hold-out test set. The demo video is available in17

the supplementary materials.18

Keywords: Safety-Critical Scenario Generation, Adversarial Training, End-to-19

End Driving20

1 Introduction21

While end-to-end driving has achieved promising performance in urban piloting [1] and track rac-22

ing [2], safely handling accident-prone traffic events is still one of the crucial capabilities for both23

human driving and autonomous driving (AD). It is important to ensure AI driving safety in risky sit-24

uations before real-world deployment [3]. However, it is insufficient to train or evaluate the safe end-25

to-end driving agents on safety-critical scenarios only collected from real-world traffic datasets [4, 5]26

since such events of interest are extremely rare [6, 7].27

Prior work improves the driving agent against safety-critical scenarios through rule-based reason-28

ing [8], motion verification [9], constrained reinforcement learning [10], etc. Orthogonal to the29

elaborate algorithm designs at the policy level, recent studies obtain robust driving policies at the30

environmental level by creating accident-prone scenarios as augmented training samples [11, 12].31

Nevertheless, the learned policy may easily overfit a fixed set of safety-critical events but fail to han-32

dle unknown hazards. The alternative is to dynamically generate challenging scenarios that match33

the current capability of the driving agent in a closed-loop manner. However, the state-of-the-art34

safety-critical scenario generation methods [11, 12, 13] are not yet applicable for that purpose due35

to the following reasons: (i) Scene generalizability: probabilistic graph methods like CausalAF [11]36

require human prior knowledge of each scene graph and thus cannot scale to large and complex37

driving datasets; (ii) Model dependency: kinematics gradient methods like KING [12] relies on the38
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Figure 1: CAT iterates over safety-critical scenario generation and driving policy optimization in a
closed-loop manner. In this example, the safety-critical resampling technique alters the behavior of
the opponent vehicle (blue car) such that it suddenly cut into the lane of the ego vehicle (red car),
enforcing the agent to learn risk-aware driving skills such as deceleration and yielding.

forward simulation of the running policy and the backward propagation based on the vehicle kine-39

matics, which might not be accessible in the model-free end-to-end driving; (iii) Time efficiency:40

autoregression-based generation methods like STRIVE [13] take minutes to optimize the adversar-41

ial traffic per scenario, which is time prohibitive for large-scale training with millions of episodes.42

In this paper, we present the Closed-loop Adversarial Training (CAT) framework for safe end-to-end43

driving. As shown in Fig. 1, CAT imports driving scenarios from real-world driving logs and then44

generates safety-critical counterparts as adversarial training environments tailored to the current45

driving policy. The agent continuously learns to address emerging challenges and improves risk46

awareness in closed-loop training. Given that CAT directly launches physical attacks against the47

estimated ego trajectory, the proposed framework is thus agnostic to the policy used by the agent48

and is compatible with a wide range of end-to-end learning approaches, including reinforcement49

learning (RL) [14], imitation learning (IL) [15], human-in-the-loop feedback (HF) [16], etc.50

One crucial component of the proposed framework is a novel factorized safety-critical resampling51

technique that efficiently turns normal driving scenarios into safety-critical ones during training.52

Specifically, we cast the safety-critical traffic generation as the risk-conditioned Bayesian probability53

maximization and decompose it into the multiplication of standard motion forecasting sub-problems.54

Thus, we can utilize off-the-shelf motion forecasting models [17, 18] as the learned prior to generate55

adversarial scenarios with high fidelity, diversity, and efficiency. Compared to previous safety-56

critical traffic generation methods, the proposed technique obtains a higher attack success rate while57

significantly reducing the computational cost, making the CAT framework effective and efficient for58

end-to-end training.59

To demonstrate the efficacy of our approach, we incorporate the proposed CAT framework into the60

MetaDrive simulator [19] and compose adversarial traffic environments from a hundred complex61

driving scenarios in a closed-loop manner to train RL-based driving agents without any ad hoc62

safety designs. Experimental results show that CAT brings realistic and challenging physical attacks63

during training, and the resulting agent obtains superior driving safety in both normal and adversarial64

traffic scenarios on the hold-out test set. The contributions of this paper are summarized as follows:65

i) We present the closed-loop adversarial training framework for end-to-end safe driving, which66

is agnostic to the policy learning method and the policy function design.67

ii) We propose an efficient safety-critical scenario generation technique tailored to end-to-end68

policy learning, which balances attack success rate and computation cost by resampling the69

learned traffic prior.70

iii) We incorporate our approach into the MetaDrive simulator and demonstrate it generates effec-71

tive adversarial samples during training and substantially improves driving safety in complex72

testing scenarios imported from the real world.73
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2 Related Work74

Adversarial Training for Autonomous Driving. Deep neural networks (DNNs), pervasively used75

in learning-based AD systems, are found vulnerable to adversarial attacks [20, 21]. Recent stud-76

ies tend to manipulate the physical environment to generate realistic yet adversarial observation77

sequences from LiDAR inputs [22], camera inputs [23], and other physical-world-resilient ob-78

jectives [24]. Compared to the above work focusing on perception, adversarial training for AD79

decision-making is much less explored. Ma et al. [25] first investigate the adversarial RL on an80

autonomous driving scenario. Wachi [26] employ the multi-agent DDPG algorithm [27] to enforce81

the competition between player and non-player vehicles. In addition to algorithmic level designs, a82

more natural but less explored approach is to iteratively propose challenging scenarios during train-83

ing [28]. There is a line of works on evolving training environments in RL [29, 30]. However,84

existing approaches are evaluated only in simplified environments like bipedal walker and heuristi-85

cally modify the terrain or static barriers, which is not meaningful for AD tasks. In this work, we86

focus on generating realistic and safety-critical traffic scenarios to facilitate closed-loop adversarial87

training for end-to-end driving.88

Safety-critical Traffic Scenario Generation. Safety-critical traffic scenario generation is of great89

value in adaptive stress testing [31] and corner case analysis [32] for the research and development of90

autonomous vehicles. L2C [33] learns to place and trigger a cyclist to collide with the target vehicle91

via RL algorithms, but it is insufficient to model complex vehicle interactions in real-world scenes.92

For robust imitation learning, kinematics gradients [12] and black-box optimization [22] can be used93

to magnify traffic risks. However, it relies on the forward simulation of the running policy and the94

backward propagation based on the vehicle kinematics, which might not be accessible in model-free95

end-to-end driving. CausalAF [11] builds scenario causal graphs to uncover behavior of interest and96

generates additional training samples to improve the robustness of driving policies. Nevertheless,97

the evaluations are limited to three scenarios since it requires human prior knowledge of each scene98

and thus hardly scale to the larger dataset. STRIVE [13] constructs a latent space to constrain99

the traffic prior and searches for the best responsive mapping via gradient-based optimization on100

that dense representation. Despite its impressive results on realistic traffic flows, the autoregression101

on raster maps takes several minutes to optimize the adversarial traffic for each scene, which brings102

about a costly computational burden for periodic policy optimization. We refer to the survey [34] for103

more details. Different from the above literature, we propose a novel adversarial traffic generation104

algorithm for real-world scenarios with an admissible time consumption, making it viable for large-105

scale policy iterations involving millions of episodes.106

3 Closed-loop Adversarial Training Framework107

We present the Closed-loop Adversarial Training (CAT) framework for safe end-to-end driving. As108

shown in Fig. 1, CAT iterates over safety-critical scenario generation and driving policy optimization109

in a closed-loop manner. In this section, we first formulate the closed-loop adversarial training110

as a min-max problem and then introduce the factorization of adversarial traffic and the practical111

implementation of CAT.112

3.1 Problem Formulation113

Although CAT is designed to accommodate a range of driving policies, we focus on RL-based AD in114

this work which is formulated as Markov Decision Process (MDP) [35] in the form of (S,A,R, f).115

S and A denote the state and action spaces, respectively. The reward function R = d−αc wherein d116

is the displacement toward the destination and c is a boolean indicating collision with other objects.117

α is a hyper-parameter for the reward shaping. f is the transition function to describe the dynamics118

of the traffic scenario. The goal is to maximize the expected return J(π) = Eτ∼π

[∑T
t=0 R(st, at)

]
119

the driving policy π receives within the time horizon T , where τ ∼ π is short handed for at ∼120

π(·|st), st+1 ∼ f(·|st, at).121
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When importing a real-world traffic scenario, CAT manipulates original traffic trajectories to mag-122

nify the possibility of traffic collisions with the agent itself (E[c] ↑). Consequently, the modified123

adversarial traffic dynamics sAdv
t+1 ∼ fAdv(·|st, at) naturally hinders total rewards the agent receives124

(E[ΣR] ↓). CAT aims to enhance the robustness of the learning agent via the following adversarial125

optimization:126

max
π

min
fAdv

J(π, fAdv). (1)

3.2 Factorized Safety-Critical Resampling127

The fundamental problem is to construct fAdv by generating compliant future traffic trajectories128

that are prone to collisions with the agent’s rollout. To formalize the traffic collisions, we denote129

the vehicle controlled by the learning agent as the ego vehicle (EV) and other vehicles as opponent130

vehicles (OVs) and represent a traffic scenario as a tuple (M,SEV
1:T ,S

OV
1:T ) with duration T time131

steps. Here, the High-Definition (HD) road map M consists of road shapes, traffic signs, traffic132

lights, etc. SEV
1:t denotes the past states of the EV. SOV

1:t is an N -element array [SOV1
1:t , ..., SOVN

1:t ],133

wherein each element stands for the past states of the corresponding OV. For simplicity, we denote134

X = (M,SEV
1:t ,S

OV
1:t) as the information cutoff by step t and Y EV = SEV

t:T , Y OV = SOV
t:T are the135

future trajectories of EV and OVs starting from t, respectively. Y EV is conditioned on the RL agent136

π. The cutoff step t is fixed. We define a binary random variable Coll = {True, False} to denote137

whether Y EV collides with Y OV. Consequently, the optimization of fadv can be cast as trajectory138

posterior probability maximization under the condition of any collision:139

min
fAdv

J(π, fAdv)⇔ max
Y OV

P(Y OV|Coll = True,X). (2)

Considering that the opponent vehicle must launch effective attacks based on the potential ego be-140

havior while the agent’s future action sequence is also responsive and even defensive to the malicious141

traffic flow, the opponents’ trajectories Y OV and the ego vehicle’s trajectory Y EV are not indepen-142

dent. Therefore, it only makes sense to model Y OV and Y EV simultaneously and estimate the joint143

traffic distribution of safety-critical scenarios:144

P(Y EV,Y OV|Coll = True,X). (3)

Under some mild assumptions in Theorem 1, we can factorize Eq. (3) with the Bayesian formula.145

Theorem 1. Suppose that the EV’s reaction depends on the future traffic unidirectionally, then we146

have P(Y EV,Y OV|Coll = True,X) ∝ P(Y OV|X)P(Y EV|Y OV, X)P(Coll = True|Y EV,Y OV).147

Proof. See the Appendix.148

Note that the safety-critical scenario generation objective of CAT, namely minfAdv J(π), is to mag-149

nify the probability of traffic collisions with the agent as possible. Thus, after the factorization, we150

can search the best responsive ∗Y OV through the marginal distribution given as:151

max
Y OV

P(Y OV|Coll = True,X)

= max
Y OV

∑
Y EV

P(Y EV,Y OV|Coll = True,X)

= max
Y OV

P(Y OV|X)︸ ︷︷ ︸
1st Term

∑
Y EV

P(Y EV|Y OV, X)︸ ︷︷ ︸
2nd Term

P(Coll = True|Y EV,Y OV)︸ ︷︷ ︸
3rd Term

.

(4)

It is beneficial to perform the above safety-critical traffic probability factorization since each term in152

Eq. (4) features a specific meaning and is tractable to handle. Each term is interpreted as follows:153

i) Traffic prior. The 1st term is the standard motion prediction problem in which we can lever-154

age arbitrary probabilistic traffic models [17, 36, 37, 38] to portray the multi-modal trajectory155

distribution. Taking the pre-trained model as the traffic prior enables the attack plausibility in156

complex scenarios without human specifications.157
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Figure 2: Illustration of Factorized Safety-Critical Resampling. (A) We initialize 1s traffic history
with the dense map representation. (B) We then predict the traffic prior as well as the agent’s
reaction. (C) The most accident-prone trajectory of the opponent vehicle is selected. (D) The
generated scene is thus expected to be safety-critical.

ii) Ego estimation. The 2nd term denotes the interactive ego trajectory yielding to the current state158

and upcoming traffic flow. The transition can be deterministic if the world model is learned or159

accessible under model-based settings [12]. As for the inference of real-world-compliant traffic160

flows, we can employ an interactive motion predictor [18] conditioned on known surrounding161

vehicles’ trajectories to better reflects the ego compliance under risky interactions.162

iii) Collision likelihood. The 3rd term reflects the likelihood of a collision in the compositional163

future, which can be treated as a typical binary classifier to fit [39].164

As shown in Fig. 2, it is possible to approach the near-optimal adversarial trajectory via numerical165

optimization after each term is calculated.166

3.3 Implementation Details167

We summarize the overall implementation of the CAT framework for safe end-to-end driving in168

Algorithm 1. Recalling the training objective of CAT in Eq. (1), we need to perform iterative opti-169

mization of policy learning and adversarial environment generation synchronously in a closed loop.170

The policy optimization can be achieved by arbitrary end-to-end driving policy learning approaches,171

and we employ a vanilla RL algorithm.172

Below, we focus on the adversarial environment generation, where we utilize the proposed factorized173

safety-critical resampling in Eq. (4). Note that we make a simplification in CAT by enforcing a single174

rival to launch the attack in each generated scene while simply maneuvering the other vehicles175

to avoid self-collisions. This is reasonable since most traffic accidents are caused by two traffic176

participants rather than involving multiple vehicles.177

We first predict the traffic prior P(Y OV|X) using a pre-trained probabilistic traffic forecasting model178

G. Considering the strong performance and the ease of sampling, we adopt DenseTNT [17], an179

anchor-free goal-based motion predictor, in this work. Specifically, we propose M possible can-180

didates {(Y OV
i , POV

i )}Mi=1 in parallel. The component Y OV
i,k in the k-th time step consists of the181

predicted position and yaw of the opponent vehicle. The probability of the trajectory POV
i coincides182

with the probability of the corresponding destination goal.183

We then tackle the ego estimation term P(Y EV|Y OV, X). Considering the non-stationary policy184

during training, we notice that the ego behavior does not necessarily match the logged behavior in185

the dataset. Consequently, directly utilizing the pre-trained traffic estimator derived from natural186

traffic flows [18] to provide ego trajectory probability has a severe bias. Alternatively, we record the187

latest N rollouts of EV in each scenario formed as {(Y EV
j , P EV

j )}Nj=1 and recompute the likelihood188

of visited state sequences deduced by the current policy π: P EV
j,k+1 = P EV

j,k · π(ak|sk).189

At last, we empirically estimate the collision likelihood P(Coll|Y EV, Y OV). Given the specific190

compositional future of Y EV
j and Y OV

i , we compute the minimal distance between their bounding191

boxes in the following steps and set the collision likelihood as PColl
i,j = αk if the closest gap is 0192

at timestep k. Here, α ∈ (0, 1] is a heuristic decay factor to reflect the uncertainty of traffic models193

with the increasing prediction horizon.194
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Algorithm 1: Closed-loop Adversarial Training (CAT) for Safe End-to-End Driving.
Input: Initial driving policy π, Learning algorithm T , Traffic Motion Predictor G
Output: Robust driving policy π∗

1 Initialize the scenario pool D = {X1, X2, ...X|D|} from real-world datasets.
2 while π is not converged do
3 Randomly sample normal traffic X from the scenario pool D
4 {(Y OV

i , POV
i )}Mi=1 ∼ G(X) // Compute the traffic prior.

5 for i in 1, 2, ...,M do
6 for j in 1, 2, ..., N do
7 PColl

ij = αk · I[BBox(Y EV
j,k ) ∩ BBox(Y OV

i,k ) ̸= ∅| ∃k]

8 P (Y OV
i |Coll,X) = POV

i

∑N
j=1 P

EV
j PColl

ij // Compute the posterior probability.

9 ∗Y OV = argmaxY OV
i

P (Y OV
i |Coll,X) // Select the best response.

10 obs = simulator.reset(X,∗ Y OV) // Compose the adversarial environment.

11 for t in 1, 2, 3..., |T | do
12 act ∼ π(·|obs)
13 obs = simulator.step(act) // Policy execution.

14 Y EV
1:t = Y EV

1:t−1 ⊕ Y EV
t

15 P EV
1:t = P EV

1:t−1 · π(act|obs)
16 π ← T (π) // Policy optimization.

17 {(Y EV
i , P EV

i )}Ni=1 = {(Y EV
i , P EV

i )}Ni=2 ⊕ (Y EV, P EV) // Update ego rollout queue.

4 Experiments195

4.1 Experiment Setup196

We import 100 real-world traffic scenarios involving complex vehicle interactions from the Waymo197

Open Motion Dataset (WOMD) [4] as the raw data. Each scene in WOMD contains a traffic par-198

ticipant labeled as Object of Interest, which is also designated as the opponent vehicle (OV) in our199

experiments. All the experiments are conducted in MetaDrive [19], an open-source and lightweight200

AD simulator. The detailed hyper-parameter settings can be referred to the Appendix. Here, we201

point out some pivotal parameters. Each scene lasts 9s, in which we take the first 1s traffic history202

as X and manipulate the following 8s to generate the adversarial trajectory Y OV. We set M = 32203

as the number of OV trajectory candidates, N = 5 as the length of ego rollout queue during training204

and α = 0.99 to penalize the uncertainty of motion forecasting.205

4.2 Evaluation of Safety-critical Traffic Generation in CAT206

The factorized safety-critical resampling is the crucial component of CAT to generate adversar-207

ial training environments. We provide qualitative and quantitative comparisons with the following208

baselines: (A) Raw Data: Replaying the recorded real-world traffic. (B) M2I (adv) [18]: The in-209

teractive traffic motion prediction is similar to our factorized formulation and thus can be modified210

as an adversarial scenario generator. (C) STRIVE [13]: The state-of-the-art safety-critical scenario211

generation methods performing gradient-based optimization on the latent code.212

Qualitative analysis. In Fig. 3, we present 9 different types of safety-critical scenarios that CAT213

generates from raw scenes, according to the pre-crashed traffic categorized by the National Highway214

Traffic Safety Administration (NHTSA). It can be concluded that CAT is able to generate adversarial215

traffic given arbitrary real-world raw scenes. Meanwhile, the generated trajectories are in line with216

human driver behavior, even though we don’t specify prior knowledge of that scene. In Fig. 4, we217

compare the generated adversarial traffic of the four methods on the same intersection. In the raw218

scene, the leading vehicle turns preferentially and does not cross the path of the ego vehicle. The219

opponent attempts to collide with the agent at the intersection through the safety-critical generation.220

However, M2I (adv) has a bias in estimating the reaction of the ego vehicle, which does not cause the221

expected accident. STRIVE finds the solution to enforce a crash, but it is still cumbersome to tweak222

the multinomial loss function to balance the goal of colliding as soon as possible and reasonable223
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(1) Right Turn (2) Left Turn (3) U-Turn

(4) Rear-End (5) Emergent Brake (6) Lane Change

(7) Cross Paths (8) Run-Off-Road (9) Opposite Direction
Figure 3: Qualitative results on the diversity of safety-critical scenarios generated by CAT. In each
subfigure, the left and right are the raw scene and the adversarial counterpart. The ego and adversar-
ial trajectories are highlighted with red and blue arrows, respectively.

Ego Vehicle Opponent Vehicle Irrelevant Vehicle Traffic Light

(D) CAT

Off the Driveway Effective Attack

(A) Raw (B) M2I (C) STRIVE

No Accident

Figure 4: Qualitative results on the plausibility of safety-critical scenarios generated by CAT. The
attack is regarded as effective only if leading traffic accidents are consistent with real-world events.

driving behavior, like keeping the vehicle in the driveway. By contrast, our factorized safety-critical224

resampling leverages the learned motion prior to regularize the opponent’s trajectory, magnifying225

the traffic risk while preserving its plausibility. More visualization can be found in Appendix.226

Table 1: Comparison of adversarial traffic generation algo-
rithms on 100 scenes.

Methods
Attack Success Rate ↑ Per Scene

Creating Time ↓Replay IDM Pretrained

Raw Data 0% 34% 14% /
M2I (adv) 47% 41% 19% 0.41± 0.03s
STRIVE 85% 82% 66% 153.10± 47.33s

CAT (N = 1) 91% 71% 62% 0.66± 0.09s
CAT (N = 5) 91% 86% 69% 3.34± 0.41s

Quantitative analysis.227

In Table 1, we conduct the com-228

parative study mainly on two met-229

rics. The first metric of interest230

is the attack success rate as the231

driving policies are responsive and232

even defensive to the traffic flow.233

We adopt three kinds of agents234

with fixed policies to validate: (i)235

Replay Agent: Replay the origi-236

nal trajectory of the ego vehicle237

logged in real-world data-set. (ii)238

IDM Agent: A heuristic controller239

well-adopted in AD tasks [40]. (iii) Pre-trained Agent: A pre-trained RL policy on WOMD. We240

find that M2I (adv) is insufficient for ego prediction and attacks less effectively especially against241

low-level policy, which is fatal for end-to-end driving. CAT collects ego rollouts to enhance the con-242

fidence of ego estimation during training (N = 5) and testing (N = 1) which significantly improves243

the attack success rate and is competitive with the SOTA method STRIVE. The second metric of244

interest is the time consumption per scene, which is non-negligible considering the large number of245

scenario iterations during training. We find that STRIVE generally requires 2-3 minutes to process246

a single scene due to its autoregression procedure on the raster map, which means it takes days to247

train the agent in a closed loop involving thousands of episodes. By contrast, our approach best248

balance the attack success rate and computational time compared and enjoys a privileged advantage249

in closed-loop adversarial training for end-to-end driving.250
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Table 2: Performance of end-to-end driving policies with different training pipelines.

Metrics No Adv Heuristic Open-loop Closed-loop

Train Attack Num ↑ 7546± 506 9881± 810 18541± 2172 24997± 2437

Test Crash Rate (Raw) ↓ 19.7%± 1.37% 16.8%± 0.43% 15.1%± 1.45% 11.2%± 2.48%

Test Crash Rate (Adv) ↓ 49.6%± 2.11% 41.4%± 1.73% 29.9%± 2.08% 20.0%± 3.11%

0.2 0.4 0.6 0.8 1.0
Total Interactions 1e6

0

5000

10000

15000

20000

25000

Number of Crash (Training)

0.2 0.4 0.6 0.8 1.0
Total Interactions 1e6

10%

15%

20%

25%

30%

Episode Crash Rate (Testing)

No Adv Replay Open-loop Closed-loop

Figure 5: The learning curves with different training pipelines.

4.3 Evaluation of Closed-loop Adversarial Training in CAT251

We show how CAT improves AI driving safety in accident-prone driving scenarios. We split the252

100 scenes into 70 training and 30 testing scenarios. We train a TD3 [41] driving policy from253

scratch with 4 types of training pipelines: (A) No Adv: Remove the opponent vehicle. (B) Replay:254

Replay the human behaviors stored in the dataset. (C) Open-loop: Use CAT to manipulate the255

opponent trajectory against the log-replayed ego rollout, instead of the ego trajectory of RL agent.256

(D) Closed-loop: Use CAT to generate adversarial scenario dynamically against the learning agent.257

We evaluate the driving policies trained from different pipelines with three metrics. The first metric258

is the number of effective attacks occurred during adversarial training, describing the total number of259

collision with the surrounding vehicles. We also evaluate the crash rate, the ratio of the episodes that260

the ego vehicle crashes into others, on the hold-out testing scenarios with log-replay traffic (Raw) or261

with CAT generated traffic (Adv).262

As shown in Table 2 and Fig. 5, we find that CAT substantially increases safety-critical events com-263

pared with other baselines during training, showing that CAT can generate challenging collision-264

prone scenarios. On the other hand, the agent trained with CAT demonstrate superior safety perfor-265

mance in testing time.266

5 Conclusion and Discussion267

In this paper, we propose the closed-loop adversarial training (CAT) framework for safe end-to-268

end driving. The crucial component of CAT is an efficient adversarial traffic generation technique.269

Empirical results demonstrate that CAT can provide realistic physical attacks during training and270

enhance AI driving safety in the test time.271

Limitation: Following limitations wait to be addressed in future work: (i) we only consider ad-272

versarial vehicles in this work but the safety-critical behaviors of pedestrians and cyclists are also273

of importance for safe driving and yet to be done, it requires the access to a different motion fore-274

casting model; (ii) Experiment on one hundred scenes cannot cover all the accident-prone situa-275

tions, thus there are other possible failure modes in the resulting agent; (iii) we only investigate276

the RL-based driving policy but the adversarial scenarios should also benefit the human-in-the-loop277

imitation learning [16, 42].278

Transferring to real-world driving: The proposed adversarial training method and the comparison279

with prior methods are evaluated in the simulation of one hundred complex traffic scenarios imported280

from real-world driving dataset [4]. Thus, the evaluation contains realistic and complex vehicle281

interactions and shows promise for transferring to real-world settings.282
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A Proof of Theorem 1403

Theorem. Suppose that the EV’s reaction depends on the future traffic unidirectionally, then we404

have P(Y EV,Y OV|Coll = True,X) ∝ P(Y OV|X)P(Y EV|Y OV, Xt)P(Coll = True|Y EV,Y OV).405

Proof. According to Bayes theorem, we have406

P(Y EV,Y OV|Coll = True,X) ∝ P(Coll = True|Y EV,Y OV, X)P(Y EV,Y OV, X) (A.1)

Since Coll merely depends on Y EV
t:t+l and Y OV

t:t+l, (A.1) is equivalent to407

P(Y EV,Y OV|Coll = True,X) ∝ P(Coll = True|Y EV,Y OV)P(Y EV,Y OV, X) (A.2)

Suppose that the AV’s reaction depends on the future traffic unidirectionally; continuing with Bayes408

theorem, we have409

P(Y EV,Y OV|Coll = True,X)

∝ P(Coll = True|Y EV,Y OV)P(Y EV|Y OV, X)P(Y OV, X)

∝ P(Coll = True|Y EV,Y OV)P(Y EV|Y OV, X)P(Y OV|X)P(X)

(A.3)

Since the past state X is given, we can omit the last item P(X) in (A.3). Therefore, it holds that410

P(Y EV,Y OV|Coll = True,X) ∝ P(Y OV|X)P(Y EV|Y OV, X)P(Coll = True|Y EV,Y OV)
(A.4)

The proof of Theorem 1 is completed.411

B Hyper-parameter Settings412

Table 3: CAT
Hyper-parameter Value

Scenario Horizon T 9s
History Horizon t 1s
# of OV candidates M 32
# of EV candidates N 5
Penalty Factor α 0.99
Policy Training Steps 10E6

Table 4: TD3
Hyper-parameter Value

Discounted Factor γ 0.99
Train Batch Size 256
Critic Learning Rate 3E-4
Actor Learning Rate 3E-4
Policy Delay 2
Target Network τ 0.005

Table 5: DenseTNT and M2I
Hyper-parameter Value

Train Batch size 256
Train Epoches 30
Sub Graph Depth 3
Global Graph Depth 1
NMS Threshold 7.2
Number of Mode 32
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C Qualitative Results of Safety-critical Traffic Generation413

Raw M2I STRIVE CAT
Figure 6: Comparing the different scenario generation methods. M2I and CAT both can determine
the object of interest while STRIVE select the closest vehicle as the opponent. The red car is the
ego vehicle and the blue car is the opponent vehicle.
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Raw CAT
Figure 7: More comparison between the original scenarios in raw datasets and the safety-critical
scenarios generated by our method. The red car is ego vehicle and the blue car is the opponent
vehicle.
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