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In this supplementary material, we provide additional details regarding our methodology and a more
comprehensive description of the dataset used in our experiments.

A SUPPLEMENTARY INFORMATION

A.1 PRELIMINARIES: TRANSFORMER.

In each Transformer layer, an attention mechanism enables interaction between inputs at varying
positions, followed by a position-wise fully connected network applied independently to each posi-
tion. Specifically, the attention mechanism involves projecting an intermediate representation into
three components—query Q ∈ RN×dk , key K ∈ RN×dk , and value V ∈ RN×dv—using three separate
position-wise linear layers. These representations are then used to calculate the output as:

Attention(Q,K,V ) = softmax(
QKT

√
dk
)V, (S.1)

of which the memory complexity is O(n2). To reduce the computational inefficiency, Galerkin-
type attention was proposed by (Cao, 2021) to remove Softmax attention with linear complexity. It
defines as follows:

Attentiong(Q,K,V ) =
Q(K̃T Ṽ )

d
, (S.2)

in which ⋅̃ denotes layer normalisation, as described in (Lei Ba et al., 2016). The Galerkin-type at-
tention mechanism involves two matrix product operations, resulting in a computational complexity
of O(nd2). This reduces the sequence length dependency to only O(n).

A.2 NETWORK ARCHITECTURE.

As depicted in Figure 1 from the main paper, the data processing pipeline in our Mamba Neural
Operator (MNO) is composed of three key stages: Bi-Directional Scan Expand, S6/Cross S6 Block,
and Bi-Directional Scan Merge. When solving PDEs over a fixed grid, the input data can be struc-
tured as grid-based data, similar to an image. In the first stage, Bi-Directional Scan Expand, the
MNO unfolds the input data into sequences by traversing the grid along two distinct paths. These
sequences, representing input patches, are processed independently in the next step. The second
stage, S6/Cross S6 Block, involves processing each patch sequence using either an S6 or Cross S6
block, depending on the model variation being employed. For instance, in the enhanced version of
Mamba, the GNOT model utilises a Cross S6 block followed by an S6 block for further refinement.
Finally, in the Bi-Directional Scan Merge stage, the processed sequences are reshaped and merged
back together to generate the output map, completing the data forwarding process. This structured
approach allows the MNO to efficiently handle grid-based input data, enabling scalable solutions for
PDEs.

A.3 DEFINITION OF CROSS S6.

Let x and x′ be two independent input vectors. Each input is processed through two independent
linear transformation, resulting in corresponding parameter sets (B,C,∆) for x and (B′,C ′,∆′)
for x′. Specifically, these transformations are defined as:
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B,C,∆ = Linearx(x),

B′,C ′,∆′ = Linearx′(x′),
(S.3)

where Linearx and Linearx′ are the respective linear layers applied to x and x′.

Next, the parameters (B̃, C̃, ∆̃) are computed by combining the updated values from both inputs
according to the following equations:

B̃ = B + qB′,

C̃ = C + qC ′,

∆̃ =∆ + q∆′,

(S.4)

where q is a scalar ratio controlling the contribution of the second input x′ to the combined output.
Once we have these updated parameters, we apply the State Space Model (SSM) to compute the
final output y.

B FURTHER IMPLEMENTATION DETAILS

Darcy Flow. The two-dimensional Darcy Flow equation defines as follows:

{
−∇ ⋅ (a(x, y)∇u(x, y)) = f(x, y), for (x, y) ∈ Ω,
u(x, y) = 0, for (x, y) ∈ ∂Ω,

(S.5)

where a(x, y) is the diffusion coefficient, u(x, y) is the solution respectively, and Ω = (0,1)2 is
a square domain. In Darcy Flow, the force term f(x, y) is set to be a hyperparameter β, which
influences the scale of the solution u(x, y). Experiments were performed on the steady-state solution
of the 2D Darcy Flow over a uniform square domain. The goal is to approximate the solution
operator S defined by:

S ∶ a↦ u, for (x, y) ∈ Ω, (S.6)

with a(x, y) and u(x, y) as previously defined. Similar as PDEBench (Takamoto et al., 2022) pro-
tocol, we used only β = 1.0 and we divided the training and testing ratio into 9:1 which contains
9,000 samples for training and 1,000 samples for testing.

Shallow Water. We conducted experiments on the two-dimensional Shallow Water equations,
which are effective for modeling free-surface flow problems. The equations are formulated as fol-
lows:

∂th + ∂x(hu) + ∂y(hv) = 0,

∂t(hu) + ∂x (u
2h + 1

2
grh

2) = −grh∂xb,

∂t(hv) + ∂y (v
2h + 1

2
grh

2) = −grh∂yb,

(S.7)

where u = u(x, y, t) and v = v(x, y, t) represent the velocities in the horizontal and vertical direc-
tions, respectively, and h = h(x, y, t) denotes the water depth. The term b = b(x, y) stands for the
spatially varying bathymetry, and gr is the gravitational acceleration.

The dataset simulates a 2D radial dam-break scenario within a square domain Ω = [−2.5,2.5]2 over
the time interval t ∈ [0,1]. The initial condition is defined by:

h(t = 0, x, y) = {
2.0, if

√
x2 + y2 < r,

1.0, if
√
x2 + y2 ≥ r,

(S.8)

where the radius r is randomly drawn from a distribution D(0.3,0.7).

Our objective is to approximate the solution operator S, defined as:
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S ∶ h∣t∈[0,t′] ↦ h∣t∈(t′,T ], (x, y) ∈ Ω, (S.9)

with t′ = 0.009 s and T = 1.000 s. Here, h = h(x, y, t) represents the water depth over time.

Each sample in the dataset is discretized on a spatial grid of 1282 points and a temporal grid of 101
time steps. The first 10 time steps are used as input to the model, while the remaining 91 time steps
serve as the target output. Following the protocol established by PDEBench (Takamoto et al., 2022),
the dataset consists of 900 samples for training and 100 samples for testing.

Diffusion Reaction. The Diffusion Reaction equations are expressed as:

∂tu =Du∂xxu +Du∂yyu +Ru,

∂tv =Dv∂xxv +Dv∂yyv +Rv,
(S.10)

where the activator and inhibitor are represented by the functions u = u(x, y, t) and v = v(x, y, t).
In addition, these two variables are non-linearly coupled variables. These functions describe the
interaction between the activator and inhibitor in the system. Du = 1 × 10

−3 and Dv = 5 × 10
−3 are

the diffusion coefficients for the activator and inhibitor, respectively.

The reaction terms for the activator and inhibitor are then defined as follows:

Ru(u, v) = u − u
3
− k − v, Rv(u, v) = u − v, (S.11)

with k = 5 × 10−3. The simulation is performed over the domain Ω = [−1,1]2 with the time interval
t ∈ [0,5]. The solution operator S is defined as:

S ∶ {u, v}t∈[0,t′] ↦ {u, v}t∈(t′,T ], (x, y) ∈ Ω, (S.12)

where t′ = 0.045 s and T = 5.000 s, and the spatial domain is Ω = [−1,1]2. Here, u = u(x, y, t) and
v = v(x, y, t) represent the activator and inhibitor, respectively. In this dataset, we follow the same
discretization scheme similar to the Shallow Water equation, where each sample is downsampled to
a spatial resolution of 1282 and a temporal resolution of 101 time steps (with 10 for input and rest
of the 91 for target). Similar as the PDEBench protocol (Takamoto et al., 2022), the dataset includes
900 samples for training and 100 samples for testing.

C EXTENDED VISUAL RESULTS

This section extends the visual results presented in the main paper, providing a deeper comparison
of the predictive performance and error distribution across different models. The supplementary
figures illustrate the impact of incorporating Mamba on prediction accuracy and spatial coherence,
further validating its advantages over traditional Transformer-based approaches.

Figure S.1 presents the prediction and error maps for the Galerkin Transformer (G.T.) and OFormer
across three configurations: Galerkin attention, standard softmax attention, and Mamba (MNO).
The results show that Mamba consistently achieves lower prediction errors, especially in regions
with high variability, highlighting its ability to capture complex dynamics with greater precision
compared to other configurations.

Figure S.2 and Figure S.3 provide visualised predictions over time for the Shallow Water and Dif-
fusion Reaction datasets, respectively, using the original Galerkin Transformer and its Mamba-
enhanced version. For the Shallow Water dataset, the Mamba-integrated model better preserves fine
details and the circular wavefronts as time progresses, reflecting its superior capability to maintain
spatial coherence. Similarly, in the Diffusion Reaction dataset, Mamba reduces the spread of error
and better approximates the reference solution, demonstrating improved stability and generalisation
in long-term simulations.

Overall, these visualisations clearly indicate that incorporating Mamba significantly enhances pre-
dictive accuracy and robustness, making it a superior choice for capturing intricate spatial-temporal
patterns in complex PDE systems.
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Figure S.1: Results of prediction map and error map of the Galerkin Transformer and OFormer
across three versions: Galerkin attention, Softmax attention, and Mamba.

Figure S.2: Visualised prediction on Shallow Water dataset using Galerkin Transformer (G.T.)
across the original and Mamba version.

Figure S.3: Visualised prediction on Diffusion Reaction dataset using Galerkin Transformer (G.T.)
across the original and Mamba version.
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Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine
learning. Advances in Neural Information Processing Systems, 35:1596–1611, 2022. 2, 3

5


	Supplementary Information
	Preliminaries: Transformer.
	Network Architecture.
	Definition of Cross S6.

	Further Implementation Details
	Extended Visual Results

