
7 Appendix381

7.1 Proof of Identity 1382

We wish to derive the following identity from the main text:383

Identity 1. Let E1 and E2 be two energy-based models that respectively define distributions π1 and
π2 according to Equation 4. Then,

DJ (π1(·|s)∥π2(·|s)) = Ea∼π1(·|s) [E2(s, a)− E1(s, a)] + Ea∼π2(·|s) [E1(s, a)− E2(s, a)] .

Proof. The proof follows from applying the definition of Jeffreys divergence to EBMs:384

DJ (π1(·|s)∥π2(·|s)) ≜ DKL (π1(·|s)∥π2(·|s)) +DKL (π2(·|s)∥π1(·|s))

≜ Ea∼π1(·|s)

[
log

π1(a|s)
π2(a|s)

]
+ Ea∼π2(·|s)

[
log

π2(a|s)
π1(a|s)

]
= Ea∼π1(·|s) [E2(s, a)− E1(s, a)]− logZ1(s) + logZ2(s)

+ Ea∼π2(·|s) [E1(s, a)− E2(s, a)]− logZ2(s) + logZ1(s)

= Ea∼π1(·|s) [E2(s, a)− E1(s, a)] + Ea∼π2(·|s) [E1(s, a)− E2(s, a)] .

385

7.2 Additional Details on Implicit Models386

Implicit BC trains an energy-based model Eθ on samples {si, ai} collected from the expert poli-387

cies πH . After generating a set of counter-examples {ãji} for each si, Implicit BC minimizes the388

following InfoNCE [46] loss function:389

L =

N∑
i=1

− log p̂θ(ai|si, {ãji}), p̂θ(ai|si, {ãji}) :=
e−Eθ(si,ai)

e−Eθ(si,ai) +
∑

j e
−Eθ(si,ã

j
i)
. (5)

This loss is equivalent to the negative log likelihood of the training data, where the partition func-390

tion Z(s) is estimated with the counter-examples. Florence et al. [16] propose three techniques for391

generating these counter-examples {ãji} and performing inference over the learned model Eθ; we392

choose gradient-based Langevin sampling [47] with an additional gradient penalty loss for train-393

ing in this work as Florence et al. [16] demonstrate that it scales with action dimensionality better394

than the alternate methods. This is a Markov Chain Monte Carlo (MCMC) method with stochastic395

gradient Langevin dynamics. More details are available in Appendix B.3 of Florence et al. [16].396

We use the following hyperparameters for implicit model training and inference:

Hyperparameter Value
learning rate 0.0005
learning rate decay 0.99
learning rate decay steps 100
train counter examples 8
langevin iterations 100
langevin learning rate init. 0.1
langevin learning rate final 1e-5
langevin polynomial decay power 2
inference counter examples 512

Table 3: Implicit model hyperparameters.

397

12

Figure 5: The two scripted heterogeneous supervisors for the FrankaCubeStack Isaac Gym environment pick
different faces of the cube for the same cube pose.

7.3 Additional Experimental Details398

7.3.1 IFL Benchmark Hyperparameters399

Implementations of Implicit Interactive Fleet Learning and baselines are available in the code sup-400

plement and are configured to run with the same hyperparameters we used in the experiments. To401

compute the uncertainty thresholds û for Explicit IFL and IIFL (see Section 8.3.1 in [13] for defini-402

tion), we run Explicit BC and Implicit BC respectively with N = 100 robots for T = 1000 timesteps403

and choose the 99th percentile value among all 100×1000 uncertainty values. The FrankaCubeStack404

environment sets these thresholds to zero since there are no constraint violations (i.e., this sorts robot405

priority by uncertainty alone). See Table 4 for these values, state and action space dimensionality,406

and other hyperparameters. The batch size is 512 and all algorithms pretrain the policy for N/2407

gradient steps, where N is the number of data points in the 10 offline task demonstrations. Finally,408

as in prior work [13], the Random IIFL baseline is given a human action budget that approximately409

equals the average amount of human supervision solicited by IIFL. See the code for more details.410

Environment |S| |A| Explicit û Implicit û
BallBalance 24 3 0.1179 0.1206
Ant 60 8 0.0304 0.9062
Anymal 48 12 0.0703 2.2845
FrankaCubeStack 19 7 0.0 0.0

Table 4: Simulation environment hyperparameters.

7.3.2 FrankaCubeStack Environment411

The scripted supervisor for FrankaCubeStack is defined in human action() of412

env/isaacgym/franka cube stack.py in the code supplement. Using known pose infor-413

mation and Cartesian space control, the supervisor policy does the following, where Cube A is to be414

stacked on Cube B: (1) move the end effector to a position above Cube A; (2) rotate into a pre-grasp415

pose; (3) descend to Cube A; (4) lift Cube A; (5) translate to a position above Cube B; (6) place416

Cube A on Cube B; and (7) release the gripper. Heterogeneity is concentrated in Step 2: while one417

supervisor rotates to an angle θ that corresponds to a pair of antipodal faces of the cube, the other418

rotates to θ − π
2 to grab the other pair of faces. See Figure 5 for intuition.419

7.3.3 Physical Experiment Protocol420

We largely follow the physical experiment protocol in Hoque et al. [13] but introduce some modifi-421

cations to human supervision. We execute 3 trials of each of 4 algorithms (Explicit BC, Implicit BC,422

13

Explicit IFL, Implicit IFL) on the fleet of 4 robot arms. Each trial lasts 150 timesteps (synchronous423

across the fleet) for a total of 3 × 4 × 4 × 150 = 7200 individual pushing actions. The authors424

provide human teleoperation and hard resets, which differ from prior work due to the continuous425

action space and the square obstacle in the center of the workspace. Teleoperation is done using an426

OpenCV (https://opencv.org/) GUI by clicking on the desired end point of the end-effector in the427

overhead camera view. Hard resets are physical adjustments of the cube to a randomly chosen side428

of the obstacle. IIFL is trained online with updated data at t = 50 and t = 100 while IFL is updated429

at every timestep (with an equivalent total amount of gradient steps) to follow prior work [13].430

The rest of the experiment protocol matches Hoque et al. [13]. The 2 ABB YuMi robots are located431

about 1 km apart; a driver program uses the Secure Shell Protocol (SSH) to connect to a machine that432

is connected to the robot via Ethernet, sending actions and receiving camera observations. Pushing433

actions are executed concurrently by all 4 arms using multiprocessing. We set minimum intervention434

time tT = 3 and hard reset time tR = 5. All policies are initialized with an offline dataset of 3360435

image-action pairs (336 samples collected by the authors with 10× data augmentation). 10× data436

augmentation on the initial offline dataset as well as the online data collected during execution437

applies the following transformations:438

• Linear contrast uniformly sampled between 85% and 115%439

• Add values uniformly sampled between -10 and 10 to each pixel value per channel440

• Gamma contrast uniformly sampled between 90% and 110%441

• Gaussian blur with σ uniformly sampled between 0.0 and 0.3442

• Saturation uniformly sampled between 95% and 105%443

• Additive Gaussian noise with σ uniformly sampled between 0 and 1
80 × 255 80 × 255444

7.3.4 Computation Time445

In Table 5 we report the mean and standard deviation of various computation time metrics. All446

timing experiments were performed with N = 100 robots and averaged across T = 100 timesteps447

in the Ant environment on a single NVIDIA Tesla V100 GPU with 32 GB RAM. Training time is448

reported for a single gradient step with a batch size of 512. Note that with default hyperparameters,449

IFL trains an ensemble of 5 (explicit) models and IIFL trains an ensemble of 2 (implicit) models;450

hence, we also report the training time per individual model. IFL inference consists of a single451

forward pass through each of the 5 models, while IIFL inference performs 100 Langevin iterations;452

both of these are vectorized across all 100 robots at once. IFL uncertainty estimation also consists of453

a single forward pass through each of the 5 models while IIFL performs both Langevin iterations and454

2 forward passes through each of the 2 models. While IIFL can provide policy performance benefits455

over IFL, we observe that it comes with a tradeoff of computation time, which may be mitigated with456

parallelization across additional GPUs. Furthermore, while uncertainty estimation is the bottleneck457

in IIFL, it is performed with sub-second latency for the entire fleet. This is significantly faster than458

alternatives such as directly estimating the partition function, which is both less accurate and slower;459

we measure it to take an average of 7.10 seconds per step using annealed importance sampling [48].460

Time IFL IIFL
Training step (s) 0.0385± 0.0205 0.694± 0.207
Training step per model (s) 0.0077± 0.0041 0.347± 0.104
Inference (s) 0.0060± 0.0395 0.494± 0.045
Uncertainty estimation (s) 0.0029± 0.0008 0.988± 0.008

Table 5: Computation times for training, inference, and uncertainty estimation for IFL and IIFL.

14

