Evaluating Cognitive Maps and Planning in Large
Language Models with CogEval
(Supplementary Materials)

Ida Momennejad®* Hosein Hasanbeig* Felipe Vieira Frujeri* Hiteshi Sharma
Microsoft Research Microsoft Research Microsoft Microsoft
New York, NY New York, NY Redmond, WA Redmond, WA
idamo hosein.hasanbeig felipe.frujeri hiteshi.sharma
Robert Ness Nebojsa Jojic Hamid Palangi Jonathan Larson
Microsoft Research Microsoft Research Microsoft Research Microsoft Research
Redmond, WA Redmond, WA Redmond, WA Redmond, WA
robertness jojic hpalangi jolarso

@microsoft.com

1 Supplementary Experiment 1: Systematic graph explorations

To systematically evaluate GPT-4’s planning or graph traversal failure modes, we created a three-block
community graph structures where each block contains five vertices. Using this approach, we vary
the connection density within each community block and ask GPT-4 to perform reasoning tasks over
each permutation of the graph structure as block density is varied. For the graph community block
model, example graphs are shown in Figure [T| with the community graphs starting as simple line
graphs on the left - representing the sparsest level of connectivity. We then create a new edge within
each block for each iteration of the experiment until each community block forms a clique structure
as seen on the right of Figure[I] To measure performance, the LLM is asked to assign partitions
for each vertex such as to maximize each graph’s modularity. Modularity is chosen as the task as it
requires a non-trivial understanding of the graph beyond the local network of any single vertex in
order to detect the boundaries between communities. The LLM’s vertex assignment is then compared
to the vertex assignments obtained from a Leiden [[11] modularity maximization process. The results
are compared using Adjusted Rand Index (ARI), which gives a similarity score between the actual
modularity-maximized partitioning scheme and the observed partitioning that the LLM returned. ARI
scores closer to zero represent poor performance by the LLM and ARI scores reaching 1.0 represent
performance matching Leiden. This is performed for temperatures 0.05, 0.5, 0.95 and TopP 0.05, 0.5,
0.95. Each configured test is executed thirty times through the GPT-4 chat completion APL

*Equal contribution

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Systematic exploration of three interconnected community blocks with varying density

[}
° o0 @ e o @
o® par 0® P °? o %o @O %5
co ° . ® e g0° O, %o @@ OO ©
®e o: s -] . o @ @ @ 1o} OO -0
° o0 oo oo ®e o @ ® - ®
% oo ® o0 ®9 o o °
® @0 © @ _f Py @’
@ i e]
@]
Line Graphs Full Clique
for each for each
block block

Figure 1: Systematic investigation of line graphs to full-clique structures. Each graph is composed
of three blocks, where each block is its own sub-graph structure with five interconnected vertices
on which we vary the edge density. Each block has a bridge node linked to other blocks’ bridge
nodes. The left graph displays the sparsest density with a line graph for each block, while the right
graph shows the densest blocks with each forming a fully interconnected clique. Vertex partition
assignments are color-coded via Leiden modularity maximization.

1.1 Supplementary Experiment 1 Evaluation: Evaluating the systematic effect of graph
structure

Figure[7| shows the result of systematic evaluation over the community based graph structures using
GPT-4. The y-axis measures how well the LLM performed (higher is better) and the x-axis measures
the density of each of the community block structure. Outlier points are added directly to each plot
and each panel shows how performance varies with temperature. These findings suggest that the LLM
performs more poorly in the sparse community structures, but better as the edge density increases.
Additionally, a higher temperature results in poorer performance with higher variance. These results
may appear in contrast to the results shown in Experiment 1, where LLMs show apparent success in
local traversal of a small graph. However, as the task changed from local traversal (Experiment 1)
towards optimization and reasoning of a non-local graph structure (Supplementary Experiment), we
observe the LLMs fail when the structures are sparse. This points to the LLM’s struggle to reason
over local neighborhood and community structures, and is consistent with failure on community
graphs as demonstrated in Experiment 1. Moreover, these findings show how the LLMs’ behavior is
not consistent over community structures vs. simple traversals, varying across overall sparsity. This
is in line with the hypothesis that LLMs lack functional understanding of underlying structures of the
problems, which may contribute to their failure in multi-step planning.

In order to better understand failure modes, this experiment systematically evaluates the observed
poor performance of GPT-4 on community graphs on gradually more dense community graphs.

1.2 Supplementary Experiment 1: Evaluating the systematic effect of graph structure as
TopP is varied

Below are the graphs for each TopP configuration:Systematic graph explorations and the variance of
TopP

1.3 Supplementary Experiment 1: Prompt templates

Figure [6]shows the prompt templates that were used in this supplementary experiment.

2 Supplementary Experiment 2: Evaluating the effect of Chain of Though
(CoT) instructed prompts

LLM evaluation is usually performed within the in-context learning framework [1, 8], where the
input to the LLM is the text of the problem to be solved, preceded with several examples of related
problems and their solutions, possibly worked out step-by-step. The rationale is that a single problem
may be ambiguously stated (as far as the LLM is concerned), and a few examples, possibly with
explanations, may be all that is needed to disambiguate the intent. However, the choice and even the

Temperature = 0.95

*
L]
. ’

Temperature = 0.05 Temperature = 0.5

N . - [o
=, 0.8 ’]
o o .
o
S5 06 e — 1
Q
© 8
< 044 1
’ —t —t
L]
0.2 T T T T T T T T T T T T T T T T T T
04 05 06 07 08 09 04 05 06 07 08 09 04 05 06 07 08 09

x axis: The graph’s block density

Figure 2: Supplementary Experiment 1 results. Systematic investigation of line graphs to full-clique
structures. y-axis: accuracy of the LLM as measured using the Adjusted Rand Index (ARI) between
a maximal modularity partitioning from the LLM as compared to observed maximal modularity
via Leiden. An ARI of 1.0 indicates the LLM matched Leiden. x-axis: the density of each block,
0.4 represents a line graph of the five vertices and 1.0 represents a fully connected clique structure.

Temperature: 0.05, 0.5, 0.95,TopP: 0.95.

Temperature = 0.05

Temperature = 0.5

Temperature = 0.95

N L .] i o
0.8 - .
=
3 — B —
g
3 0.6 —_—— - e - ———
£
o o
0.4 1 .
¢ ¢ g ¢
04 05 06 07 08 09 04 05 06 07 08 09 04 05 06 07 08 09

Block Density

Block Density

Block Density

Figure 3: Results of systematic investigation of line graphs to full-clique structures. TopP = 0.05.

order of examples impacts the performance [[7]], as does the incorporation of auxiliary knowledge,
(10, [15. O], particularly in the form of Chain-of-Thought (CoT) reasoning [[14, 2112 6, 4] 3.

While CoT prompting is not a rigorously defined concept, a prompt with a small number of worked
out examples, serving as an instance of few-shot learning, may qualify as a CoT prompt and has
been shown to improve performance considerably on cognitive tasks (e.g., Theory of Mind [8]]).
However, such a prompt can be so regimented that they effectively turn an LLM into a Turing Machine
executing a given algorithm the way a computer would [3]].In this view, careful CoT prompts could
have a significant effect both on the performance and on our interpretation of how it is achieved.
Temperature = 0.95

Temperature = 0.05 Temperature = 0.5

0.6 4

Accuracy

0.4

L)

[]

LT Lt N

’ L]

T
0.4

T T T T
05 06 07 08
Block Density

0.9

0.4

T T T
05 06 07 08

Block Density

0.9

T T T
06 07 08 09

Block Density

T T
04 05

Figure 4: Results of systematic investigation of line graphs to full-clique structures. TopP = 0.5.

Temperature = 0.05 Temperature = 0.5 Temperature = 0.85

1.0+ — — T + ——— -T- — —
L4
+
0.8 q L] L]
= —
U
E .
g 0.6 — —
+
0.4 1
. —— ——
L
0.2 T T T T T T T T T T T T T T T T T T
04 05 06 07 08 09 04 05 06 07 08 09 04 05 06 07 08 09
Block Density Block Density Block Density

Figure 5: Results of systematic investigation of line graphs to full-clique structures. TopP = 0.95.

prompt_id, calculation, prompt_template,prompt, token_count, response
prompt_01,modularity, "Given the following comma delimited edge list of source and Larget nodes in a graph, assign each node a cluster as to maximize the
modularity of the graph. Provide Lhe resulls in JSON formal wilh Lhe key representing Lhe node and Lthe value representing Lhe communily.

Example:
Source, Target
1,2

1
1,
2,
2

Figure 6: Prompt template for maximizing modularity

Shortest Path

1.0 Cluster Count 1.0 Shortest Path 1.0 1 Cluster Away
) I Temperature=0) I Temperature=0) I Temperature=0
I Temperature=0.5 I Temperature=0.5 I Temperature=0.5
0.8 B Temperature=1 0.8 B Temperature=1 0.8 B Temperature=1
(V]
)
1]
& 0.6 0.6 0.6
0
(0]
Y
b1 0.4 0.4 0.4
=]
0
0.2+ 0.2 0.2+
o 0.0 = 0.0 I h ol |
Original +BFS +DFS Original +BFS +DFS Original +BFS +DFS

Figure 7: Experiment 2 results. (Bottom) BFS and DFS instructions marginally enhance perfor-
mance on community graphs. In the Cluster counting task (graph D) adding BFS or DFS is beneficial
at temperatures 0 and 0.5 but less at 1. For finding shortest paths within a cluster, BES or DFS help
with BFS being effective at temperature 0. However, for finding the shortest path 1-cluster away, only
BFS at temperature 0.5 yields slight improvements.

Here wetried breadth first and depth first instructions as follows:

2.1 BFS (Breadth First Search) instruction:

“Think carefully before you respond. You can try using Breadth-first search (BFS), it is a graph
traversal algorithm that visits all the vertices of a graph in breadth-first order, starting from a given
source vertex. In BFS, vertices are visited in layers, where the vertices at distance 1 from the source
vertex are visited first, followed by the vertices at distance 2, and so on. BFS uses a queue data
structure to keep track of the vertices to be visited, and it ensures that no vertex is visited more than
once. BFS is useful for finding the shortest path between two vertices in an unweighted graph, or for
exploring all the vertices in a graph.”

2.2 DFS (Depth First Search) instruction:

“Think carefully before you respond. You can try using Depth-first search (DFS), it is a graph traversal
algorithm that visits all the vertices of a graph in depth-first order, starting from a given source vertex.
In DFS, the algorithm traverses as far as possible along each branch before backtracking. DFS uses a
stack data structure to keep track of the vertices to be visited, and it ensures that all vertices connected
to a visited vertex are explored before backtracking. DFS is useful for finding cycles in a graph, for
exploring all the vertices in a graph, or for finding a path between two vertices. However, unlike BFS,
DFS does not guarantee that the shortest path is found.”

We explored how the simple instructions impact LLM performance for different temperatures to
investigate if the effectiveness of a given prompt can be impacted by the level of uncertainty caused
by the temperature parameter. We find that while in some cases the performance improves, the effects
are not consistent nor monotonic. This is an interesting phenomenon that needs further investigation
to be better understood.

2.3 Supplementary Experiment 2: CoT prompts used for BFS and DFS

We have used quite general and simple description of graph traversal algorithms in the prompt to
measure how much the LLM can leverage the information in the prompt. The prompts that we have
used for BFS and DFS are as follows and they are directly appended to the existing prompt for each
task.

* BFS: "Think carefully before you respond. You can try using Breadth-first search (BFS), it
is a graph traversal algorithm that visits all the vertices of a graph in breadth-first order,
starting from a given source vertex. In BFS, vertices are visited in layers, where the vertices
at distance 1 from the source vertex are visited first, followed by the vertices at distance 2,
and so on. BFS uses a queue data structure to keep track of the vertices to be visited, and
it ensures that no vertex is visited more than once. BFS is useful for finding the shortest
path between two vertices in an unweighted graph, or for exploring all the vertices in a
graph.lendofprompt!"

DFS: "Think carefully before you respond. You can try using Depth-first search (DFS), it is
a graph traversal algorithm that visits all the vertices of a graph in depth-first order, starting
from a given source vertex. In DFS, the algorithm traverses as far as possible along each
branch before backtracking. DFS uses a stack data structure to keep track of the vertices to
be visited, and it ensures that all vertices connected to a visited vertex are explored before
backtracking. DFS is useful for finding cycles in a graph, for exploring all the vertices in
a graph, or for finding a path between two vertices. However, unlike BF'S, DFS does not
guarantee that the shortest path is found.\endofprompt!"

3 Brief descriptions of the task conditions applied to varying graphs and
domains

Table 1: Brief descriptions of the task conditions applied to varying graphs and domains

Condition Description Group
valuePath The optimal solution is to find the optimal policy, or shortest path, which yields the highest reward
1stepPath The optimal solution is a 1-hop policy, i.e., goal is adjacent to the starting state
2stepPath The optimal solution is a 2-step policy Traversal
3stepPath The optimal solution is a 3-step policy
nstepPath The optimal solution is an n-step policy, where max n is the diameter of the graph (longest shortest path)
rewardReval Upon a local change in the reward structure, the goal has changed and the optimal solution requires finding a new path RewReval
policyReval Upon a local change in the reward structure, the optimal solution requires finding a new policy ewReva
transReval Upon a local change in the transition structure, the goal is the same but the optimal solution requires finding a new policy :
transRevalStochastic Upon a local change in the transition structure, the goal is the same but the optimal solution requires finding a new policy TransReval
in a stochastic environment
nonteleShortcut Upon a change in the graph structure, the optimal solution requires finding a shortcut
nonteleShortcutCoT Upon a change in the graph structure, the optimal solution requires finding a shortcut, an additional CoT prompt is given
teleShortcut Upon a local change in the transition structure, the optimal solution requires finding a shortcut using a teleportation portal » Shortcut
teleShortcutCoT Upon a local change in the graph or transition structure, the optimal solution requires finding a shortcut using
a teleportation portal, an additional CoT prompt is given
nonteleDetour Upon a change in the graph structure, the optimal solution requires finding a detour
teleDetour Upon a local change in the transition structure, the optimal solution requires finding a detour using a teleportation step Detour

4 Summary of high-level statistical analysis

We chose a logistic regression to model the number of items the LLM answers correctly in a given
dialog out of a total number of possible correct answers. We aggregated the results into an analysis
of deviance table (the generalized linear model equivalent of Analysis of Variance or ANOVA),
which highlights the contributions of each factor and their interactions to performance, along with
significance statistics.

In the presented study, the "score" of a dialog is the number of correct answers provided by the LLM
out of a total number of correct answers possible for that dialog. We modeled the score using a
logistic regression approach; the score follows a binomial distribution with a probability parameter
determined by the three categorical variables (graph structure, condition, and domain) as well as
model and temperature. We our regression model included second and third-order interaction terms
between levels of these three terms.

Our initial strategy was to assume that for a particular combination of the three factors (graph
structure, condition, and domain), the conjunction of model and temperature could be likened to
a ’subject’ in a repeated measures analysis. With the inability to set a seed in these LLMs, we
posited that each repeated measurement for the engine and temperature variables could be akin to a
repeated replicate measure in a longitudinal or panel study, where there would be "within-subject
variation" across replicates. We introduced a nested random effect (temperature nested within model)
to the linear component of a linear regression model. Note that we did not have an equal number of
replicates across each combination of graph structure, condition, domain, model, and temperature
(the minimum number of replicates for a combination was 1, the maximum was 30, and the mean
was 7.1). However, the logistic regression approach is robust to replicate imbalance.

We used a two-step fitting process. In the first step, we used elastic net to fit the model using the R
package glmnet. We relied on elastic net’s mix of L1 and L2 regularization to address cases of LLMs
where we collected less data, and to address the multicollinearity introduced by the interaction terms.
The parameter estimates are shown in Table 2] Next, we refit a new model using non-regularized
logistic regression on the predictors with non-zero coefficient estimates in the first model, and used
this model to generate the analysis of variance (deviance) table in Table ??. Deviance is a measure of
goodness of fit; it quantifies the discrepancy between the observed scores and the scores predicted
by the model. Each row in the Chi-squared statistic column quantifies the reduction in deviance by
adding the categorical variables associated with the term in that row, given the variables from the
previous rows are included in the model.

Table 2: Parameter estimates from the regularized logistic regression model. Baselines are condi-
tion:traversal, graph:n7line, domain:ordRooms, LLM:replicate-alpaca-7b, temp:0. NA values indicate
the data was not sufficient to fit the parameters.

factor level estimate odds multiple p value

T (Intercept) (Intercept) 0.85 2.33 <0.001
2 LLM bard -0.41 0.66 0.01
3 LLM cohere-xlarge -2.25 0.11 <0.001
4 LLM gpt-35-turbo -0.40 0.67 <0.001
5 LLM gpt-4-32k 1.25 3.50 <0.001
6 LLM replicate-alpaca-7b -3.57 0.03 <0.001
7 LLM replicate-llama-13b -2.67 0.07 <0.001
8 LLM text-davinci-003 -0.73 0.48 <0.001
9 graph nl3line -1.14 032 <0.001
10 graph n7tree -2.59 0.07 <0.001
11 graph nlSstar -1.47 023 <0.001
12 graph n2lstar -1.78 0.17 <0.001
13 graph nlé6cluster -0.62 0.54 <0.001
14 domain socialTies 0.58 1.78 <0.001
15 domain unordSpatial -1.25 0.29 <0.001
16 temperature 0.5 -0.00 1.00 0.96
17 temperature 1 -0.06 0.95 0.12
18 condition Detour -2.35 0.10 <0.001
19 condition RewReval -2.56 0.08 <0.001
20 condition Shortcut -2.01 0.13 <0.001
21 condition TransReval -2.23 0.11 <0.001
22 model and temp gpt-4-32k.0.5 0.04 1.04 0.52
23 model and temp gpt-4-32k.1 0.05 1.05 0.37
24 graph and domain n7line & ordRooms 2.11 8.27 <0.001
25 graph and domain n7tree & ordRooms 1.01 275 <0.001
26 graph and domain n7line & socialTies 0.77 2.16 <0.001
27 graph and domain n7line & unordSpatial NA NA NA
28 graph and condition n7line & Detour 1.95 7.02 <0.001
29 graph and condition nl3line & RewReval 3.18 2399 <0.001
30 graph and condition nl6cluster & RewReval 1.46 4.30 <0.001
31 graph and condition n7line & Shortcut 1.66 528 <0.001
32 graph and condition nl3line & Traversal 2.06 7.88 <0.001
33 graph and condition nl6cluster & Traversal 0.13 1.14 0.19
34 graph and condition n7line & Traversal 1.32 3.76 <0.001
35 graph and condition n7tree & Traversal 1.97 7.17 <0.001
36 domain and condition socialTies & Shortcut -0.02 0.98 0.90
37 domain and condition ordRooms & Traversal -0.48 0.62 <0.001
38 domain and condition socialTies & Traversal -0.99 0.37 <0.001
39 graph, domain, condition nl6cluster & ordRooms & Detour 0.70 2.02 <0.001
40 graph, domain, condition n7line & ordRooms & Detour 0.50 1.65 0.10
41 graph, domain, condition n7tree & ordRooms & Detour 2.39 10.94 <0.001
42 graph, domain, condition nlS5star & socialTies & Detour 1.30 3.69 <0.001
43 graph, domain, condition n2lstar & socialTies & Detour 1.01 273 <0.001
44 graph, domain, condition n7line & socialTies & Detour -1.06 0.35 <0.001
45 graph, domain, condition nl5star & unordSpatial & Detour 1.78 592 <0.001
46 graph, domain, condition n2lstar & unordSpatial & Detour 224 940 <0.001
47 graph, domain, condition nl3line & ordRooms & RewReval -0.57 0.57 0.01
48 graph, domain, condition n7tree & ordRooms & RewReval 2.58 1320 <0.001
49 graph, domain, condition nl3line & socialTies & RewReval -0.20 0.82 0.38
50 graph, domain, condition nl5star & socialTies & RewReval 2.58 13.25 <0.001
51 graph, domain, condition nl6cluster & socialTies & RewReval 0.80 223 <0.001
52 graph, domain, condition nl5star & unordSpatial & RewReval 3.61 36.98 <0.001
53 graph, domain, condition nl6cluster & unordSpatial & RewReval 2.07 7.94 <0.001
54 graph, domain, condition n7line & unordSpatial & RewReval 2.58 1321 <0.001
55 graph, domain, condition n7line & ordRooms & Shortcut -1.76 0.17 <0.001
56 graph, domain, condition n2lstar & socialTies & Shortcut 0.91 248 <0.001
57 graph, domain, condition n7line & socialTies & Shortcut -0.48 0.62 0.06
58 graph, domain, condition n7tree & socialTies & Shortcut 3.59 36.40 <0.001
59 graph, domain, condition nl5star & unordSpatial & Shortcut 1.95 7.05 <0.001
60 graph, domain, condition nl6cluster & unordSpatial & Shortcut 1.28 3.59 <0.001
61 graph, domain, condition nl13line & ordRooms & TransReval 2.31 10.12 <0.001
62 graph, domain, condition nl5star & ordRooms & TransReval 1.04 2.82 <0.001
63 graph, domain, condition n7tree & ordRooms & TransReval 2.84 17.13 <0.001
64 graph, domain, condition n7tree & socialTies & TransReval 3.20 2449 <0.001
65 graph, domain, condition nl13line & unordSpatial & TransReval 3.37 29.19 <0.001
66 graph, domain, condition nl6cluster & unordSpatial & TransReval 1.78 592 <0.001
67 graph, domain, condition n7line & unordSpatial & TransReval 2.65 14.15 <0.001
68 graph, domain, condition nl3line & ordRooms & Traversal 1.70 547 <0.001
69 graph, domain, condition n7line & ordRooms & Traversal -0.67 0.51 0.01
70 graph, domain, condition nl3line & socialTies & Traversal 0.77 2.15 <0.001
71 graph, domain, condition nl6cluster & socialTies & Traversal -0.02 0.98 0.87
72 graph, domain, condition n7line & socialTies & Traversal NA NA NA
73 graph, domain, condition n2Istar & unordSpatial & Traversal 0.65 1.91 <0.001
74 graph, domain, condition n7tree & unordSpatial & Traversal 0.72 2.06 <0.001

5 Experiment 1, statics of results: Repeated measures comparison of
planning across LLMs

We evaluated out-of-the-box emergent or native ability of different LLMs on the cognitive map tasks.
Table 2 shows the statistical analysis highlighting the contributions of each factor to regression model’s
fit of LLM model performance. The magnitude of chi-square test statistics indicate contribution to
overall model fit. Figure 3 compares the performance of all LLMs across all latent graph structures.
Table 3 shows mean and standard error for planning performance across tasks and LLMs.

The results in Table 2 indicate that the model engine (x?(11) = 689.36, p < .001.), graph (x?(11) =
7247.30, p < .001.), condition (x?(11) = 1475.03, p < .001.), and domain (x*(11) = 304.06,
p < .001.) each yielded significant chi-squared statistics. This means that not only did different
LLMs performed differently, but each LLM’s performance varied as a result of varying graphs,
domains, and conditions. Conversely, the temperature showed a non-significant chi-squared statistic
(x*(11) = 1.01,p = .6022) and the interaction between the model and temperature was also
non-significant (x2?(11) = 4.65,p = .997). Noteworthy, the interactions among graph-domain,
graph-condition, domain-condition, and graph-domain-condition were all significant (all p’s < .001).
The interactions among graph-domain (x2(11) = 689.36,p < .001), graph-condition (x?(50) =
1392.82, p < .001), domain-condition (x*(39) = 524.48,p < .001), and graph-domain-condition
(x2(108) = 1002.93, p < .001) were all significant.

In summary, while the temperature’ and the interaction of "'model” and "temperature’ do not show
significant effects in Experiment 1 (but show difference in Experiments 2 and 3), all other factors
and their interactions significantly contribute to the variations in the dependent variable. Considering
both individual and interactive effects, this finding shows that LLM performance on cognitive map
and planning tasks was not robust to the graph structure of the problems, the domain, or the task
conditions, and it also varied across models (see Tables 2 and 3 and Figure 3 .

References

[1] Ekin Akyrek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. November 2022.

[2] Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large
language models for interpretable logical reasoning. arXiv preprint arXiv:2205.09712, 2022.

[3] Ana Jojic, Zhen Wang, and Nebojsa Jojic. GPT is becoming a turing machine: Here are some
ways to program it. March 2023.

[4] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. arXiv preprint arXiv:2205.11916, 2022.

[5] Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen.
On the advance of making language models better reasoners. arXiv preprint arXiv:2206.02336,
2022.

[6] Zihan Liu, Mostofa Patwary, Ryan Prenger, Shrimai Prabhumoye, Wei Ping, Mohammad
Shoeybi, and Bryan Catanzaro. Multi-stage prompting for knowledgeable dialogue generation.
In Findings of the Association for Computational Linguistics: ACL 2022, pages 1317-1337,
Dublin, Ireland, May 2022. Association for Computational Linguistics.

[7] Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically
ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 8086—8098, 2022.

[8] Shima Rahimi Moghaddam and Christopher J Honey. Boosting Theory-of-Mind performance
in large language models via prompting. April 2023.

[9] Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin,
David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show
your work: Scratchpads for intermediate computation with language models. arXiv preprint
arXiv:2112.00114,2021.

[10] Vered Shwartz, Peter West, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Unsupervised
commonsense question answering with self-talk. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 4615-4629, Online,
November 2020. Association for Computational Linguistics.

[11] Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. From Louvain to Leiden: guaranteeing
well-connected communities. Scientific Reports, 9(1), March 2019.

[12] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Rationale-
augmented ensembles in language models. arXiv preprint arXiv:2207.00747, 2022.

[13] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Self-
consistency improves chain of thought reasoning in language models. arXiv preprint
arXiv:2203.11171, 2022.

[14] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny
Zhou. Chain of thought prompting elicits reasoning in large language models. arXiv preprint
arXiv:2201.11903, 2022.

[15] Eric Zelikman, Yuhuai Wu, and Noah D Goodman. STaR: Bootstrapping reasoning with
reasoning. arXiv preprint arXiv:2203.14465, 2022.

[16] Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables
complex reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

	Supplementary Experiment 1: Systematic graph explorations
	Supplementary Experiment 1 Evaluation: Evaluating the systematic effect of graph structure
	Supplementary Experiment 1: Evaluating the systematic effect of graph structure as TopP is varied
	Supplementary Experiment 1: Prompt templates

	Supplementary Experiment 2: Evaluating the effect of Chain of Though (CoT) instructed prompts
	BFS (Breadth First Search) instruction:
	DFS (Depth First Search) instruction:
	Supplementary Experiment 2: CoT prompts used for BFS and DFS

	Brief descriptions of the task conditions applied to varying graphs and domains
	Summary of high-level statistical analysis
	Experiment 1, statics of results: Repeated measures comparison of planning across LLMs

