
Identifiability in Inverse Reinforcement Learning:
Supplementary Material

A Appendix: Proofs of Results

Proof of Theorem 1. Fix f as in the statement of the theorem. Then (4) characterizes the correspond-
ing value function

V ∗λ (s) = λ log
∑
a∈A

exp

(
1

λ

(
f(s, a) + γ

∑
s′∈S
T (s′|s, a)V ∗λ (s′)

))
= v(s) + λ log

∑
a∈A

π̄(a|s) exp

(
γ

λ

( ∑
s′∈S
T (s′|s, a)(V ∗λ (s′)− v(s′))

))
,

which rearranges to give

exp(g(s)) =
∑
a∈A

π̄(a|s) exp

(
γ
∑
s′∈S
T (s′|s, a)g(s′)

)
(9)

with g(s) = (V ∗λ (s) − v(s))/λ. Applying Jensen’s inequality, we can see that, for s ∈
arg mins∈S g(s),

exp
(

min
s
g(s)

)
= exp

(
g(s)

)
≥ exp

(
γ

∑
a∈A,s′∈S

π̄(a|s)T (s′|s, a)g(s′)

)
.

However, the sum on the right is a weighted average of the values of g, so∑
a∈A,s′∈S

π̄(a|s)T (s′|s, a)g(s′) ≥ min
s
g(s).

Combining these inequalities, along with the fact γ < 1, we conclude that g(s) ≥ 0 for all s ∈ S.

Again applying Jensen’s inequality to (9), for s̄ ∈ arg maxs∈S g(s) we have

max
s

{
exp

(
g(s)

)}
= exp

(
g(s̄)

)
≤

∑
a∈A,s′∈S

π̄(a|s̄)T (s′|s̄, a) exp

(
γg(s′)

)
.

As the sum on the right is a weighted average, we know∑
a∈A,s′∈S

π̄(a|s̄)T (s′|s̄, a) exp

(
γg(s′)

)
≤ max

s

{
exp

(
γg(s)

)}
.

Hence, as γ < 1, we conclude that g(s) ≤ 0 for all s ∈ S.

Combining these results, we conclude that g ≡ 0, that is, V ∗λ = v. Finally, we substitute the definition
of f and the value function v into (6) to see that the entropy-regularized optimal policy is π∗λ = π̄.

Proof of Theorem 2. From Theorem 1, if we can determine the value function for one of our agents,
then the reward is uniquely identified. Given we know both agents’ policies (π, π̃) and our agents are
optimizing their respective MDPs, for every a ∈ A, s ∈ S, we know the value of

λ log
π(a|s)
π̃(a|s)

= γ
∑
s′∈S
T (s′|s, a)v(s′)− γ̃

∑
s′∈S
T̃ (s′|s, a)v(s′)− (v(s)− ṽ(s)) (10)

where v, ṽ are the agents’ respective value functions. This is an inhomogeneous system of linear
equations in {v(s), ṽ(s)}s∈S . Therefore, by standard linear algebra (in particular, the Fredholm
alternative), it is uniquely determined up to the addition of solutions to the homogeneous equation

0 = γ
∑
s′∈S
T (s′|s, a)v(s′)− γ̃

∑
s′∈S
T̃ (s′|s, a)v(s′)− (v(s)− ṽ(s)) for all s ∈ S, a ∈ A.
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However, as we have assumed our pair of MDPs is value-distinguishing, the only solutions to this
equation have at least one of v and ṽ constant (we assume v without loss of generality). Therefore, the
space of solutions to (10) is either empty (in which case no consistent reward exists), or determines v
up to the addition of a constant. Given v is determined up to a constant we can use Theorem 1 to
determine f , again up to the addition of a constant.

The following result9 from elementary number theory will prove useful in what follows.
Lemma 1. LetR ⊂ N be a set of natural numbers, with the property thatR is closed under addition
(if a, b ∈ R then a + b ∈ R). Suppose R has greatest common divisor 1 (i.e. gcd(R) = 1). Then
there exist elements a, b ∈ R which are coprime (i.e. gcd(a, b) = 1). Furthermore, for any coprime
a, b ∈ R, for all c ≥ ab, we know c ∈ R, in particular, there exist at least two distinct pairs of
nonnegative integers λ, µ such that λa+ µb = c.

Proof. We first show a coprime pair a, b ∈ R exists. As gcd(R ∩ {x : x ≤ y}) is decreasing in y,
and the integers are discrete, there exists a smallest value y such that gcd(R ∩ {x : x ≤ y}) = 1.
Applying Bézout’s lemma, there exist integers {λk}k≤y such that∑

k∈R,k≤y

λkk = 1.

Rearranging this sum by taking all negative terms to the right hand side, we obtain the desired positive
integers a =

∑
{k∈R,k≤y,λk>0} λkk and b =

∑
{k∈R,k≤y,λk<0} |λk|k which satisfy a = b+ 1 (so

a and b are coprime) and a, b ∈ R (asR is closed under addition).

We now take an arbitrary coprime pair a, b ∈ R. Again by Bézout’s lemma, there exist (possibly
negative) integers λ̃, µ̃ such that λ̃a+ µ̃b = 1, and hence λ̃ca+ µ̃cb = c. However, for any integer k
it follows that (λ̃c+kb)a+(µ̃c−ka)b = c. Since this holds for all k ∈ Z, we can choose k such that
1 ≤ λ = (λ̃c+kb) ≤ b. However, this implies that (λ̃c+kb)a ≤ ab ≤ c, and so µ = (µ̃c−ka) ≥ 0.
AsR is closed under addition, we see that c = λa+ µb ∈ R.

To see non uniqueness, we simply observe that if c ≥ ab, in the construction above we have µ ≥ a,
and hence (λ+ b, µ− a) is an alternative pair of coefficients.

Proof of Theorem 3. We suppose that f can be identified, and first show that all states can be accessed
from s, that is, for each s′ there exists T > 0 such that Pπ(ST = s′|S0 = s) > 0, but that T can vary
with s′. Suppose there were states which cannot be reached by a path starting in s. It is clear that it
would be impossible to identify the cost associated with any state which cannot be accessed, as we
obtain no information about actions in these states. Therefore, all states can be accessed from s.

It remains to show that, if f can be identified, we can reach all states using paths of a common
length. We initially focus on the paths from s to s. If we can return in precisely T steps, then
(by the Markov property) we can also return in kT steps, for any k ∈ N. Therefore either the set
{T : Pπ(ST = s|S0 = s) > 0} is unbounded, or the state s will never be revisited (in the language
of Markov chains, it is ephemeral). If the starting state is ephemeral, it is clear that we can add a
constant to its rewards independently of all other states’ rewards, as this will not affect decision
making – we leave this state immediately and never return. This would imply that the reward cannot
be determined up to a global constant, and hence we conclude that the starting state is not ephemeral.

Next, still focusing on paths from s to s, we show that T can take any value above some bound. Let t̄
be the greatest common divisor ofR = {t : Pπ(St = s|S0 = s) > 0}; we will show that t̄ = 1. For
contradiction, suppose t̄ > 1. Then our system is periodic, and by classical results on irreducible
matrices (e.g. [Seneta, 2006, Theorem 1.3]) we know that there is a partition of S into t̄ sets, such
that we will certainly make transitions within the sets of states S0 → S1 → ...→ St̄−1 → S0 3 s.
By adding c ∈ R to the rewards of states in S0, and subtracting c/γ from rewards of states in S1,
we do not affect behavior. Therefore, the reward cannot be identified up to a global constant unless
t̄ = 1.

However, given t̄ = 1 and the set R is closed under addition (by concatenating cycles), Lemma 1
implies thatR must contain all sufficiently large values, that is, it is possible to return to the initial
state in any sufficiently large number of steps.

9Thanks to Victor Flynn for discussion on the formulation and proof of this result.
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Finally, we have seen that it is possible to transition from s to s′ in a finite number of steps, and that
it is possible to transition from s to s in any sufficiently large number of steps. From the Markov
property we conclude that for every value of T ′ sufficently large, for all choices of s′ we have
Pπ(ST ′ = s′|S0 = s) > 0.

Proof of Theorem 4. We first prove the sufficiency statement. The optimal policy satisfies

λ log π∗t (a|s) = Q∗t (s, a)− V ∗t (s) = f(s, a) + γ
(∑

s′

T (s′|s, a)V ∗t+1(s′)
)
− V ∗t (s).

We write (for notational simplicity), υ(s) = V ∗T−1(s), and hence, given V ∗T ≡ g by assumption,

f(s, a) = υ(s) + λ log π∗T−1(a|s)− γ
(∑

s′

T (s′|s, a)g(s′)
)
. (11)

This shows that f is completely determined (if it exists) by the function υ.

We also observe that for every t we have the recurrence relation

V ∗t (s) = −λ log π∗t (a|s) + f(s, a) + γ
(∑

s′

T (s′|s, a)V ∗t+1(s′)
)

= λ log
π∗T−1(a|s)
π∗t (a|s)

+ υ(s) + γ
(∑

s′

T (s′|s, a)
(
V ∗t+1(s′)− g(s′)

))
.

This holds for any choice of action a (unlike the usual dynamic programming relation, which only
involves the optimal policy). Writing Vt for the vector with components {V ∗t (s)}s∈S we have the
recurrence relation

Vt = Υt(a) + υ + γT(a)Vt+1; VT−1 = υ, (12)

where Υt is a known vector valued function, with components

[Υt(a)]s = λ log
π∗T−1(a|s)
π∗t (a|s)

− γ
∑
s′

T (s′|s, a)g(s′).

Solving the recurrence relation, we have, for any sequence of actions a0, ..., aT−1 (with the convention
that the empty matrix product is the identity)

V0 =

( T−1∑
t=0

[
γt
( t−1∏
t′=0

T(at′)
)

Υt(at)
])

+

( T−1∑
t=0

γt
t−1∏
t′=0

T(at′)

)
υ + γT

( T−1∏
t′=0

T(at′)
)
g.

From this linear system, we can extract the single row corresponding to the fixed initial state s0.
Assuming this is the row indicated by the ei basis vector, we have

V ∗0 (s0) = e>i

( T−1∑
t=0

γt
t−1∏
t′=0

T(at′)

)
υ +G(a0, ..., aT−1) (13)

for a known function G, expressible in terms of γ, g and {π∗t }T−1
t=0 .

Now that the MDP has full action-rank, the system of equations,

−G(a0, . . . , aT−1) = e>i

[ T−1∑
t=0

γt
t−1∏
t′=0

T(at′)

]
v, ∀a0, . . . , aT−1,

admits at most one solution, denoted by ῡ. Substituting into (13), we have a unique solution to the
equation V ∗0 (s0) = 0. However, we need to consider all possible values of V ∗0 (s0).

For any choice of actions {at}T−1
t=0 ,

e>i

[ T−1∑
t=0

γt
t−1∏
t′=0

T(at′)

]
1 =

{
1−γT
1−γ , γ ∈ (0, 1),

T, γ = 1.
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Here 1 denotes the all-one vector in RN . Therefore, the set of all possible (V ∗0 (s0), υ) pairs is given
by 

{
(c, ῡ + c(1−γ)

1−γT ) : ∀c ∈ R
}
, γ ∈ (0, 1),{

(c, ῡ + c
T ) : ∀c ∈ R

}
, γ = 1.

From (11), we conclude that f can be identified up to a constant.

To show necessity, we observe from the above that, if the system is not full action-rank, then there
exists a linear subspace of choices of υ, which do not differ only by constants, such that we can
construct the same value vectors Vt for all t, satisfying (12) and hence (11). It follows that we have
a nontrivial manifold of rewards f which generate the same optimal policies, that is, the rewards are
not identifiable.

Proof of Corollary 1. We first observe that it is a classical result on Markov chains (see, for example,
[Seneta, 2006, Theorem 1.5]) that the conditions of case (i) guarantee those of case (iii), for some
choice of R,R′ > 0. The conditions of case (ii) also guarantee those of case (iii), with both the
cycles being the self-loop. It is therefore sufficient to consider case (iii).

To show that the MDP has full action rank, we observe that for every possible path of states, there
exists a corresponding sequence of actions, and vice versa. We will therefore use these different
perspectives interchangeably. We also observe that, as our MDP is deterministic, e>i

∏t−1
t′=0 T(at′) is

a vector indicating the current state at time t, when started in state ei. Therefore,

OT−1({at}t≥0) := e>i

( T−1∑
t=0

γt
t−1∏
t′=0

T(at′)

)
is a row vector, containing a time-weighted occupation density – in particular, if γ = 1, it simply
counts the number of times we have entered each state. (This is in contrast to Remark 6, where we
have an expected occupation density; here we can simplify given the control problem is deterministic.)
Our aim, therefore, is to construct a collection of paths which give a full-rank system of occupation
densities.

Starting in state s0 ≡ ei, consider a shortest path (i.e. a path with the fewest number of transitions) to
each state s′. Denote these paths rs′ = {s0 → ...→ s′}, and the corresponding sequence of actions
as
′
. These paths have lengths |rs| and time-weighted occupation densities O|rs|({ast}t≥0) which are

linearly independent (a longer path will contain states not in a shorter path, while paths of the same
length will differ in their final state; by reordering the states we can then obtain a lower-triangular
structure in the matrix of occupation densities [O|rs|({ast}t≥0)]{at}⊂A). This gives usN = |S| paths,
of varying lengths, with linearly independent occupation densities.

We now consider prefixing our paths with cycles, in order to make them the same length. Fix an
arbitrary integer value T ′ ≥ maxs |rs| + |Q||Q′| − 1. By Lemma 1, for all states s, there exist
nonnegative integers λs, µs such that T ′ = λs|Q|+µs|Q′|+ |rs|. Therefore, taking the concatenated
path consisting of λs repeats of cycle Q, then µs repeats of cycle Q′, then our shortest path rs, gives
us a path from s0 to s of length T ′. Denote each of these paths Ps.

Concatenation of paths has an elegant effect on the occupation densities: If Q is a cycle and r a
path (starting from the terminal state of Q), their concatenation Q ∗ r and corresponding actions
aQ, ar, aQ∗r, then the occupation densities combine linearly:

O|Q∗r|({aQ∗rt }t≥0) = O|Q|−1({aQt }t≥0) + γ|Q|O|r|({art}t≥0), (14)

(observe that the occupation density excludes the (repeated) final state of the cycle).

We now observe that for the initial state, the shortest path is of length zero (i.e. has no transitions).
From Lemma 1, as T ′ ≥ |Q||Q′|, we know that there are multiple choices of λ, µ satisfying the stated
construction, and therefore there are at least two possible paths Ps0 and P̃s0 with the desired length,
from the initial state to itself, using distinct numbers of cycles10: (λs0 , µs0) and (λ̃s0 , µ̃s0).

10If the cycles are both a self-loop, then this becomes degenerate, but in the following step the final column
and row of the matrix M can be omitted, and the remainder of the argument follows in essentially the same way.
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This construction yields a collection of paths with full rank occupation densities. To verify this
explicitly, we extract the rows corresponding to the paths {Ps}s∈S and P̃s0 , and use (14) to see that

OT−1({aPs0t }t≥0)

OT−1({aPs1t }t≥0)
· · ·

OT−1({aPsNt }t≥0)

OT−1({aP̃s0t }t≥0)

 = M



O|rs0 |({a
rs0
t }t≥0)

O|rs1 |({a
rs1
t }t≥0)
· · ·

O|rsN |({a
rsN
t }t≥0)

O|Q|−1({aQt }t≥0)

O|Q′|−1({aQ
′

t }t≥0)


(15)

where

Γ(λ,Q) :=

{
(1− γλ|Q|)/(1− γ|Q|), γ 6= 1,

λ, γ = 1,

M =


γT
′

0 · · · 0 Γ(λs0 , Q) γλs0 |Q|Γ(µs0 , Q
′)

0 γT
′−|rs1 | · · · 0 Γ(λs1 , Q) γλs1 |Q|Γ(µs1Q

′)
. . .

0 0 · · · γT
′−|rsN | Γ(λsN , Q) γλsN |Q|Γ(µsNQ

′)

γT
′

0 · · · 0 Γ(λ̃s0 , Q) γλ̃s0 |Q|Γ(µ̃s0 , Q
′)

 .

After subtracting the first from the last row of M , as λs0 6= λ̃s0 , we see that M has a simple structure,
in particular it is a full-rank matrix with N + 1 rows and N + 2 columns. As the final matrix on
the right hand side of (15) is of rank N , this implies that the left hand side of (15) is also of rank N
(by Sylvester’s rank inequality). As the left hand side of (15) is a selection of rows from the matrix
considered in Definition 3, we conclude that our MDP must be of full action rank.

Our collection of paths also shows that our system has full access at horizon T = T ′ + 1, and
therefore the identification result follows from Theorem 4. By varying T ′, we see this result holds for
any choice of T ≥ |Q||Q′|+ maxs |rs|, as desired.

Example 1. Consider the problem with three states S = {A,B,C}, with possible transitions
A → {B,C}, B → A and C → B. Starting in state A, the shortest paths are then given by
{A}, {A→ B}, {A→ C}, and we have cycles {A→ B → A} and {A→ C → B → A}. Writing
out the occupation densities of each of these paths (ignoring the terminal state of the two cycles),
with γ = 1, we get the system

Shortest paths

{
Cycles (excluding final state)

{


A
A→ B
A→ C
A→ B

A→ C → B

 ⇒

(A B C)
1 0 0
1 1 0
1 0 1
1 1 0
1 1 1

 .

This corresponds to the final term on the right hand side of (15). Clearly, the section above the
horizontal line (corresponding to the shortest paths) is lower-triangular, and hence of full rank. We
prefix our paths by appropriate numbers of cycles, in order to make them the same length. This
implies that, with a horizon T = 7 = 2× 3 + 1, we consider the paths

A→ C → B → A→ C → B → A
A→ B → A→ C → B → A→ B
A→ B → A→ C → B → A→ C
A→ B → A→ B → A→ B → A

· · ·

⇒


3 2 2
3 3 1
3 2 2
4 3 0
· · ·

 =

[
e>A

( T−1∑
t=0

γt
t−1∏
t′=0

T(at′)

)]
{at}⊂A

The matrix of occupation densities shown here is the left hand side of (15) and is easily seen to be
full rank; the matrix M from (15) is given by

M =

 1 0 0 0 2
0 1 0 1 1
0 0 1 1 1
1 0 0 3 0

 .
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Proof of Corollary 2. We represent states by their corresponding basis vectors. For any initial state
ei, consider the space spanned by the possible future states. Given we have as many actions as
possible future states, and the rank-nullity theorem, we know that this space must be the same as
the space spanned by the vectors {T (·|s, a); a ∈ A}. In particular, for any ej such that it is possible
to transition from ei to ej in a single step, there exists a set of weights ca over actions (which do
not need to sum to one or be nonnegative) such that ej =

∑
a∈A cae

>
i T(a). In other words, there

is no difference between the linear span generated by these stochastic transitions and deterministic
transitions. As actions at every time can be varied independently, and the requirement that a MDP
has full action rank depends only on the space spanned by transition matrices, the problem reduces to
the setting of Corollary 1.

Proof of Theorem 5. Necessity. Suppose the IRL problem admits an action-independent solution
f : S → R. Then for any (s, a) ∈ S ×A,

f(s) = λ log π̄(a|s)− γ
∑
s′∈S
T (s′|s, a)v(s′) + v(s),

where v is the corresponding value function. Notice that for any a ∈ A, for all s ∈ S,

f(s) = λ log π̄(a|s)− γ
∑
s′∈S
T (s′|s, a)v(s′) + v(s)

= λ log π̄(a0|s)− γ
∑
s′∈S
T (s′|s, a0)v(s′) + v(s).

Therefore, taking υ to be the vector with components v(s), we have a solution to the system of
equations (8).

Sufficiency. Let υ be a solution to the system of equations (8). By abuse of notation, we may write
υ(s) for the components of υ. Then for any (s, a) ∈ S ×A,

λ log π̄(a|s)− γ
∑
s′∈S
T (s′|s, a)υ(s′) = λ log π̄(a0|s)− γ

∑
s′∈S
T (s′|s, a0)υ(s′).

Therefore, the quantity f̂(s) := λ log π̄(a0|s)−γ
∑
s′∈S T (s′|s, a0)υ(s′) +υ(s) is independent

of a. From Theorem 1, we conclude that f̂ is a solution to the IRL problem.

Proof of Corollary 3. Let υ0 be a solution to (8), which is assumed to exist. By the Fredholm
alternative (as in Theorem 2) the solution set YS for (8) is given by

YS =

{
υ0 + κ : κ ∈ span

( ⋂
a∈A
K(a)

)}
.

From Theorem 5, the set of action-independent solutions for the IRL is given by

FS =

{
f : f(s) = λ log π̄(a0|s)− γ

∑
s′∈S
T (s′|s, a0)υ(s′) + υ(s); for υ ∈ YS , s ∈ S

}
.

We then observe that the stated condition is sufficient – if constant vectors are the only valid choices
for κ, then υ and hence f ∈ FS will only vary by constants.

To show necessity, denote by f0 the solution corresponding to υ0. Suppose there exists a vector

υ̂ ∈
( ⋂
a∈A
K(a)

)
\ {c1 : c ∈ R}.

Define
∆(s) = υ̂(s)− γ

∑
s′∈S
T (s′|s, a0)υ̂(s′), ∀s ∈ S.

It follows that f0 + ∆ ∈ FS ; if ∆ is not a constant, we see that the reward is not uniquely identifiable.
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To show ∆ is not a constant, let

υ = max
s∈S

υ̂(s), s ∈ arg max
s∈S

υ̂(s), υ = min
s∈S

υ̂(s), s = arg min
s∈S

υ̂(s), υ̃ =

∑
s∈S υ̂(s)

|S|
.

Then υ = υ̂(s) < υ̃ < υ = υ̂(s). We have

∆(s)− (1− γ)υ̃ = υ − υ̃ − γ
∑
s∈S
T (s|s, a0)[υ̂(s)− υ̃] ≥ (1− γ)(υ − υ̃) > 0;

∆(s)− (1− γ)υ̃ = υ − υ̃ − γ
∑
s∈S
T (s|s, a0)[υ̂(s)− υ̃] ≤ (1− γ)(υ − υ̃) < 0.

Therefore, ∆ is not a constant. It follows that our condition is necessary in order to have an identifiable
action-independent reward

Proof of Corollary 4. We will verify the condition of Corollary 3.

In the stochastic transition case, the proof of Corollary 2 shows that, under the stated assumption on
the rank of the transitions, we can perform row operations on our transition matrix (corresponding to
linear combinations of actions) to obtain a deterministic transition matrix. In particular, the space
∩a∈AK(a) is the same under the assumption on the rank of the transitions as under the assumption
that transitions are deterministic. We can therefore focus our attention on the deterministic transition
case.

If transitions are deterministic, the matrix T(a) has rows given by the basis vectors indicating
the future states; so the matrix ∆T(a) has rows which are the difference of two basis vectors
corresponding to one-step linked states. Therefore, a vector υ ∈ K(a) must have entries υi = υj
whenever ei and ej correspond to these one-step-linked states.

By considering all possible choices of a, we see that a vector υ ∈ ∩a∈AK(a) must have entries
υi = υj whenever ei and ej correspond to any one-step linked states (and this is a sufficient condition
to ensure υ ∈ ∩a∈AK(a)). However, if our MDP is reward-decomposable, there is no proper subset
S1 of S which is closed under taking one-step linked states. Therefore, if our MDP is reward-
decomposable, the only vectors in the kernel of ∆T(a) for every a are the constant vectors, as
desired.

Conversely, if our MDP is not reward-decomposable, then there exists a set S1 6= S satisfying the
conditions above, and hence a nonconstant vector υ ∈ ∩a∈AK(a). The result of Corollary 3 then
shows the reward is not identifiable.

B Appendix: A linear-quadratic-Gaussian problem

In this appendix, we will present the corresponding results for a class of one-dimensional linear-
quadratic problems with Gaussian noise, ultimately inspired by Kalman [1964]. This simplified
framework allows us to explicitly observe the degeneracy of inverse reinforcement learning, even if
we add restrictions on the choice of value functions.

Optimal LQG control Suppose our agent seeks to control, using a real-valued processAt a discrete
time process with dynamics

St+1 = (µ̄+ µsSt + µaAt) + (σ̄ + σsSt + σaAt)Zt+1

for constants µ̄, µs, µa, σ̄, σs, σa. The innovations process Z is a Gaussian white noise with unit
variance. Our agent uses a randomized strategy π(a|s) to maximize the expectation of the entropy-
regularized infinite-horizon discounted linear-quadratic reward:

E
[ ∞∑
t=1

γt
(∫

R
f(St, a)π(a|s)da+ λH(π(·|St)

)]
where f(s, a) = α20s

2 + α11sa+ α02a
2 + α10s+ α01a+ α00 andH(π) = −

∫
R π(a) log(π(a)da

is the Shannon entropy of π. We assume the coefficients of f are such that the problem is well posed
(i.e. it is not possible to obtain an infinite expected reward).
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Just as in the discrete state and action space setting, we can write down the state-action value function

Qπλ(s, a) = f(s, a) +γ

∫
R
V πλ (s′)

1√
2π(σ̄ + σss+ σaa)2

exp
(
− (s′ − µss− µaa)2

2(σ̄ + σss+ σaa)2

)
ds′. (16)

Using this, the optimal policy and value function are given by

π∗λ(a|s) = exp
((
Q
π∗λ
λ (s, a)− V π

∗
λ

λ (s)
)/
λ
)
, (17)

V ∗λ (s) = V
π∗λ
λ (s) = λ log

∫
R

exp
(
Q
π∗λ
λ (s, a)

/
λ
)
da . (18)

What is particularly convenient about this setting is that Q is a quadratic in (s, a), Vλ is a quadratic in
s, and π∗λ(·|s) is a Gaussian density. In particular, the optimal policy is of the form

π∗λ(a|s) =
1√

2πλk3

exp

{
− (a− k1s− k2)2

2λk3

}
= exp

{
− 1

λ

[
a2 − 2(k1s+ k2)a

2k3
+

(k1s+ k2)2

2k3
+
λ

2
log (2πk3λ)

]} (19)

for some constants k1, k2 ∈ R, k3 > 0, which can be determined11 in terms of the known parameters
µa, µs, σ, λ and the parameters of the reward function {αij}i+j≤2.
Theorem 6. Consider an agent with a policy of the form (19). Suppose we also know that the value
function V is a quadratic (or, equivalently, that the reward function is a quadratic in (s, a)). The
space of rewards consistent with this policy is given by:

F =

{
f(s, a) = a20s

2 + a11sa+ a02a
2 + a10s+ a01a+ a00

∣∣∣∣
(a20, a11, a02) =

(−k2
1

2k3
,
k1

k3
,
−1

2k3

)
− β2

(
γ(µ2

s + σ2
s)− 1, 2γ(µsµa + σsσa), γ(µ2

a + σ2
a)
)
,

(a10, a01) =
(−k1k2

k3
,
k2

k3

)
− β2

(
2γ(µ̄µs + σ̄σs), 2γ(µ̄µa + σ̄σa)

)
− β1

(
γµs + 1, γµa

)
,

a00, β2, β1 ∈ R
}
.

(20)

Proof. We consider an arbitrary quadratic

v(s) = β2s
2 + β1s+ β0

as a candidate value function. If we have begun from the assumption that the reward function f is
quadratic, we know that the corresponding value function is quadratic, so this is not a restrictive
assumption.

We then compute the state-action value function using (16), to give

Qλ(s, a) = f(s, a) + γ
(
β2

(
(µ̄+ µss+ µaa)2 + (σ̄ + σss+ σaa)2

)
+ β1(µ̄+ µss+ µaa) + β0

)
.

Combining with (19) and (17), we see that a reward function f is consistent with the observed policy
if

λ log π(a|s) = −
[
a2 − 2(k1s+ k2)a

2k3
+

(k1s+ k2)2

2k3
+
λ

2
log (2πk3λ)

]
= f(s, a) + γ

(
β2

(
(µ̄+ µss+ µaa)2 + (σ̄ + σss+ σaa)2

)
+ β1(µ̄+ µss+ µaa) + β0

)
−
(
β2s

2 + β1s+ β0

)
.

11The explicit formulae for k1, k2 and k3, and the coefficients of the value function, can be obtained by
equating the coefficients of f with the values obtained in (21). Under the assumption that the optimal control
problem is well posed, this has a solution with k3 > 0.
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Rearranging, we conclude that f is given by

f(a, s) =
[
− k2

1

2k3
− β2(γ(µ2

s + σ2
s)− 1)

]
s2 +

[k1

k3
− 2β2γ(µsµa + σsσa)

]
as

+
[
− 1

2k3
− β2γ(µ2

a + σ2
a)
]
a2 +

[
− k1k2

k3
− 2β2γ(µ̄µs + σ̄σs)− β1(γµs + 1)

]
s

+
[k2

k3
− 2β2γ(µ̄µa + σ̄σa)− β1(γµa)

]
a

+
[
− λ

2
log(2πk3λ)− β2γ(µ̄2 + σ̄2)− β1µ̄+ β0(1− γ)

]
.

(21)

As (β2, β1, β0) are arbitrary, we have the desired statement.

As in Theorem 1, we see that the inverse reinforcement learning problem only defines the rewards
up to the choice of value function, which is arbitrary; the restriction to quadratic rewards or values
simply reduces our problem to the smaller range of rewards determined by the three coefficients in
the quadratic V .

The following theorem gives the linear-quadratic version of Theorem 2. As our agents’ actions have a
linear effect on the state variable, this leads to a particularly simple set of conditions for identifiability
of the reward, given observation of two agents’ policies.

Theorem 7. Suppose we now have two agents, who are both following their respective optimal
controls of the form (19), for the same reward function, but disagree on some combination of the
dynamics and discount rate. We write

x1 =
(
γµs + 1, γµa

)
and x2 =

(
γ(µ2

s + σ2
s)− 1, 2γ(µsµa + σsσa), γ(µ2

a + σ2
a)
)
,

giving us two pairs of vectors (x1, x2) (for the first agent) and (x̃1, x̃2) (for the second agent). We
assume we know these vectors for each agent. The quadratic reward function f consistent with both
agents’ policies, if it exists, is uniquely identified up to the addition of a constant shift, if (and only if)

x1

‖x1‖
6= x̃1

‖x̃1‖
and

x2

‖x2‖
6= x̃2

‖x̃2‖
.

Proof. We see from (20) that a single agent’s actions identify a space of valid rewards F, which is
parameterized by the constant shift a00 and the two free variables β1, β2. From these free variables,
(20) identifies the values of a = (a20, a11, a02, a10, a01). The reward function f is uniquely defined,
up to a constant shift, if we can identify the value of a, which (by assumption) is the same for both
agents.

Considering the role of β2, (20) defines a line in R3 of possible values for (a20, a11, a02). If the
assumption x2/‖x2‖ 6= x̃2/‖x̃2‖ holds, then the lines for our two agents will not be parallel, therefore
will either never meet (in which case no consistent reward exists), or will meet at a point, uniquely
identifying (a20, a11, a02) and the corresponding values of β2 for each agent. Conversely, if the
assumption does not hold, then the lines will be parallel, so cannot meet in a unique point, in which
case there are either zero or infinitely many reward functions consistent with both agents’ policies.

Essentially the same argument then applies to the equation for (a10, a01). Given that β2 has already
been identified for each agent, varying β1 for each agent defines a pair of lines in R2, which are not
parallel if and only if the stated assumption on x1, x̃1 holds. Therefore, we can uniquely identify
(a10, a01) if and only if the stated assumption holds.

Due to the simplicity of the characterization in Theorem 7, we can easily see that it is enough to
observe two agents using different discount rates.

Corollary 5. Suppose we observe two agents, each using optimal policies of the form (19), for the
same dynamics and rewards, but different discount rates. Then the underlying quadratic reward
consistent with both agents’ policies is identifiable up to a constant.
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Proof. Simply observe that the value of γ introduces a non-scaling change in the vectors x1, x2

defined in Theorem 7.

We can also easily determine the identifiability of action-independent rewards.
Corollary 6. For an agent with a policy of the form (19), there exists an action-independent reward
function corresponding to this policy if and only if

k1 = −µsµa + σsσa
µ2
a + σ2

a

and this case, the action-independent reward is unique.

Proof. From Theorem 6, in order to have an action independent reward we must have a11 = a02 =
a01 = 0. From (20), we know

a11 = 0 ⇒ β2 =
k1

2k3γ(µsµa + σsσa)

a02 = 0 ⇒ β2 =
−1

2k3γ(µ2
a + σ2

a)
.

The statement k1 = −(µsµa + σsσa)/(µ2
a + σ2

a) is easily seen to be equivalent to stating that these
equations are consistent.

The value of β1 can then always be chosen in a unique way to guarantee a01 = 0, as required.

C Appendix: A discussion of guided cost learning and related maximum
entropy inverse reinforcement learning models

The guided cost learning algorithm was proposed in Finn et al. [2016b] to solve an (undiscounted)
inverse reinforcement learning problem over a finite time horizon with a finite state-action space
(S,A). In Finn et al. [2016b], instead of directly modelling the optimal feedback policy, the optimal
trajectory distribution is taken as the starting point for inference. Adopting the idea of the maximum
casual entropy model in Ziebart [2010] (phrased in terms of rewards rather than costs) a common
interpretation of the algorithm assumes we observe trajectories τ sampled from the distribution

pf (τ = (sτ0 , a
τ
0 , . . . , s

τ
T−1, a

τ
T−1, s

τ
T )) =

1

Zf
exp

{ T−1∑
t=0

f(sτt , a
τ
t )

}
, (22)

where the partition factor

Zf =
∑
τ

exp

{ T−1∑
t=0

f(sτt , a
τ
t )

}
= Eτ∼q

[
exp

{ T−1∑
t=0

f(sτt , a
τ
t )

}/
q(τ)

]
is estimated through importance sampling with the ‘ambient distribution’ q(τ), which can be chosen
arbitrarily12.

As mentioned above, and discussed further by Ziebart et al. [2008] and Levine [2018], this is
consistent with our entropy regularized MDP when transitions are deterministic, but differs for
stochastic problems. An alternative maximum entropy model, which incorporates knowledge of T ,
assumes trajectories are sampled from

p̄f (τ) =
µ0(sτ0)

Zf

T−1∏
t=0

exp
{
f(sτt , a

τ
t )
}
T (sτt+1|sτt , aτt ). (23)

12An additional complexity in the guided cost learning algorithm is that the reward function and the ambient
distribution are updated iteratively. Numerically, this can be seen as a variance reduction technique, rather
than a conceptual change to the algorithm. First, the reward function f is updated by alternately maximizing
the log likelihood log pf (τ) over the demonstrator’s trajectories {τ∗i }Ni=1, which is equivalent to solving
f̂ = arg minf DKL(q∗‖pf ). Secondly, the ambient distribution q is updated by minimizing the KL divergence
DKL(q‖pf ) using the trajectories {τ qj }

M
j=1 sampled from q(τ) = µ0(sτ0)

∏T−1
t=0 πt(a

τ
t |sτt )T (sτt+1|sτt , aτt ).

Using this method, the transition probabilities T can also be estimated, and q can be seen as closely related to
the law p̄f in (23).
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To see how this connects to the entropy regularized MDP, we observe that a entropy-regularized
optimizing agent will generate trajectories with distribution

q∗(τ) = µ0(sτ0)

T−1∏
t=0

π∗t (aτt |sτt )T (sτt+1|sτt , aτt ), (24)

where π∗ = {π∗t }T−1
t=0 solves the problem discussed in Section 4.

Given that we do not have an infinite-horizon time-homogenous system, the optimal policy π∗ is
typically time-dependent and this is reflected in the density q∗, and hence in the trajectories we
observe. Using p̄f in (23) as the basis of the guided cost learning algorithm, the demonstrator’s
optimal trajectory distribution q∗ can be written in the desired form (i.e. for some choice of f in
(23), which may or may not correspond to the agent’s rewards), provided the underlying ftrue and
gtrue lead to a time-invariant optimal policy π∗. Otherwise, one should further adjust the guided cost
learning model p̄f to include time-dependent rewards f , that is,

p̃f (τ) =
µ0(sτ0)

Zf

T−1∏
t=0

exp
{
f(t, sτt , a

τ
t )
}
T (sτt+1|sτt , aτt ). (25)

With the addition of time-dependent rewards, it is interesting to consider what this variation of guided
cost learning will output. Suppose we observe a large number of trajectories and estimate a reward
fest to maximize the likelihood (25), or equivalently to minimize the KL divergence DKL(q∗‖p̃f ).
Comparing p̃f in (25) with q∗ in (24), we see that the minimum KL divergence is DKL(q∗‖p̃f ) = 0,
which is achieved when, for each t ∈ {0 . . . , T − 1},

fest(t, s, a) + ct = Q∗t (s, a)− V ∗t (s)

= ftrue(t, s, a) + ES′∼T (·|s,a)

[
V ∗t+1(S′)

]
− V ∗t (s)

where ct ∈ R is a constant (which may depend on t, but not on s). This will yield ftrue = fest

provided (t, s) 7→ V ∗t (s) is a deterministic function of time (i.e. it is independent of s), and this is a
necessary condition for nontrivial T .

In other words, the identifiability issue discussed in the main body of this paper remains, as the
demonstrator’s trajectory distribution will depend on the state-action value function Q∗t , rather than
directly on the reward. Furthermore, this variation of guided cost learning generally corresponds to
finding a reward which generates the observed policy, and yields a value function V ∗ which does not
vary with the state of the system. Of course, this reward will not usually be the same as that faced by
the demonstrator, and so the results of guided cost learning are not guaranteed to generalize to agents
with different transition probabilities.

We note that Balakrishnan et al. [2020] discuss the non-identifiability of costs in a MaxEntIRL
approach. Their work focuses on building a projection under which rewards resulting in similar
policies are mapped together, and then build a Bayesian estimation method for this projected data.
What we have seen is that this approach is consistent (after the modifications discussed above), and
will identify some cost function which gives the corresponding policy. For the entropy-regularized
problem, our results precisely describe the kernel of this projection – it must correspond to different
choices of the value function for the system.

D Appendix: Numerical examples of inverse reinforcement learning

In this section, we present a regularized MDP as in Section 3.1 to illustrate numerically the identi-
fiability issue associated with inverse RL. In particular, we consider a state space S with 10 states
and an action space A with 5 actions, with λ = 1. We compute optimal policies as in Section 2 and
reconstruct the underlying rewards. As discussed in Section 3 the optimal policies and the transition
kernel can be inferred from state-action trajectories, so will assumed known. We identify the state
and action spaces with the basis vectors in R10 and R5 respectively, so can write f(a, s) = a>Rs for
the reward function, and T (s′|s, a) = s>Pa(s′) for the transition function. The true reward Rtr and
transition matrices {Pa}a∈A are randomly generated and fixed; see Figures 1 and 2.
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D.1 Non-uniqueness of infinite-sample IRL

We first look at inverse RL starting from a single optimal policy π1 with discount factor γ1 = 0.95.
We represent π1 as a matrix Π1 in R5×10, where each column gives the probabilities of each action
when in the corresponding state.

Figure 1: Underlying true reward matrix Rtr

(a) Pe51
(b) Pe52

(c) Pe53

(d) Pe54
(e) Pe55

Figure 2: Underlying true transition kernel

To solve the inverse RL problem, we numerically find R, v to minimize the loss

Lsing(R, v) =
∑
a∈A

∑
s∈S

[
a>Π1s− exp

{
a>Rs+ γ1s

>Pav − v>s
}]2

.

An Adam optimizer is adopted with α = 0.002, (β1, β2) = (0.5, 0.9) with overall 2000 minimization
steps. The experiments are conducted over 6 different random initializations, sampled from the same
distribution as was used to construct the ground truth model. The training loss Lsing decays rapidly
to close to 0, as shown in Figure 3a. This indicates that, after the minimization procedure comes to an
end, the learnt reward matrix R̂ reveals a corresponding optimal policy Π̂1 close to the true optimal
policy Π1; see also Figure 8 for a direct comparison.

However, when comparing the learnt reward R̂ and the underlying reward Rtr, as in Figures 4 and 5a,
as well as the comparison between the corresponding value vectors as in Figure 5b, we can see that
the true reward function Rtr has not been correctly inferred. Here this is not an issue of statistical
error, as we assume full information on the optimal policy and the Markov transition kernel.
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(a) Loss with one optimal policy, under γ1 (b) Loss with two optimal policies, under γ1 and γ2

Figure 3: Training Losses

(a) Initialization 0 (b) Initialization 1 (c) Initialization 2

(d) Initialization 3 (e) Initialization 4 (f) Initialization 5

Figure 4: Learning from one optimal policy, under γ1: difference R̂−Rtr between learnt and true
reward matrices

(a) `2 error of learnt reward. (b) `2 error of learnt value function.

Figure 5: Learning from one optimal policy, under γ1: comparisons

D.2 Uniqueness of IRL with multiple discount rates

We now demonstrate that the issue of identifiability can be resolved if there is additional information
on an optimal policy under the same reward matrix Rtr but different environment. Here, we assume
we are given the policy Π1 optimal with discount factor γ1 = 0.95, and the policy Π2 optimal with
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discount factor γ2 = 0.25. Correspondingly, the loss function for the minimization is adjusted to

Ldoub(R, v1, v2) =
1

2

∑
a∈A

∑
s∈S

[
a>Π1s− exp

{
a>Rs+ γ1s

>Pav1 − v>1 s
}]2

+
1

2

∑
a∈A

∑
s∈S

[
a>Π2s− exp

{
a>Rs+ γ2s

>Pav2 − v>2 s
}]2

.

An Adam optimizer is adopted with α = 0.005, (β1, β2) = (0.5, 0.9) with overall 2000 minimization
steps. With the same set of 6 random initializations for the minimization procedure, the training loss
Ldoub also decays rapidly to close to 0. This again suggests that the learnt reward matrix R̃ can lead
to policies Π̃1 and Π̃2, each optimal when using the corresponding discount factor γ1 and γ2, that are
close to the given policies Π1 and Π2; see Figures 9 and 10. What differs from the single optimal
policy case is that, with the additional information Π2, we are able to consistently recover Rtr up to a
constant shift; see Figures 6 and 7. Some numerical error remains, due to the optimization algorithm
used, as seen by the fact the graphs in Figure 6 do still vary, and the error in the value function v1

in 7(a). Nevertheless, the errors are an order of magnitude less than was observed in Figure 5 when
using observations under a single discount rate.

(a) Initialization 0 (b) Initialization 1 (c) Initialization 2

(d) Initialization 3 (e) Initialization 4 (f) Initialization 5

Figure 6: Learning from two optimal policies, under γ1 and γ2: difference R̃−Rtr between learnt
and true R matrices. Note scale of 10−1.

(a) `2 error of learnt value
function v1 with discount γ1

(b) `2 error of learnt value
function v2 with discount γ2

(c) `2 error of learnt reward matrix

Figure 7: Two optimal policies under γ1 and γ2: comparisons
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(a) Initialization 0 (b) Initialization 1 (c) Initialization 2

(d) Initialization 3 (e) Initialization 4 (f) Initialization 5

Figure 8: Learning from optimal policy under γ1: difference Π̂1 −Π1 between optimal policy under
the learnt model and the true optimal policy. Note scale of 10−4.

(a) Initialization 0 (b) Initialization 1 (c) Initialization 2

(d) Initialization 3 (e) Initialization 4 (f) Initialization 5

Figure 9: Learning from optimal policies under γ1 and γ2: difference Π̃1 −Π1 between learnt and
true policies under γ1. Note scale of 10−3.

(a) Initialization 0 (b) Initialization 1 (c) Initialization 2

(d) Initialization 3 (e) Initialization 4 (f) Initialization 5

Figure 10: Learning from optimal policies under γ1 and γ2: differences Π̃2 −Π2 between learnt and
true policies under γ2. Note scale of 10−3.
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