Identifiability in Inverse Reinforcement Learning:
Supplementary Material

A Appendix: Proofs of Results

Proof of Theorem 1. Fix f as in the statement of the theorem. Then (4) characterizes the correspond-
ing value function
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Combining these inequalities, along with the fact v < 1, we conclude that g(s) > 0 for all s € S.
Again applying Jensen’s inequality to (9), for 5 € argmax, 5 g(s) we have
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As the sum on the right is a weighted average, we know
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Hence, as v < 1, we conclude that g(s) < 0 forall s € S.

Combining these results, we conclude that g = 0, that is, V" = v. Finally, we substitute the definition
of f and the value function v into (6) to see that the entropy-regularized optimal policy is 75 = 7. [

Proof of Theorem 2. From Theorem 1, if we can determine the value function for one of our agents,
then the reward is uniquely identified. Given we know both agents’ policies (7, 7) and our agents are
optimizing their respective MDPs, for every a € A, s € S, we know the value of
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where v, v are the agents’ respective value functions. This is an inhomogeneous system of linear

equations in {v(s), 0(s)}ses. Therefore, by standard linear algebra (in particular, the Fredholm
alternative), it is uniquely determined up to the addition of solutions to the homogeneous equation

0=r Z T(s'|s,a)v(s') — 7 Z T(s'|s,a)v(s") — (v(s) — &(s)) forall s € S,a € A.
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However, as we have assumed our pair of MDPs is value-distinguishing, the only solutions to this
equation have at least one of v and v constant (we assume v without loss of generality). Therefore, the
space of solutions to (10) is either empty (in which case no consistent reward exists), or determines v
up to the addition of a constant. Given v is determined up to a constant we can use Theorem 1 to
determine f, again up to the addition of a constant. O

The following result’ from elementary number theory will prove useful in what follows.

Lemma 1. Let R C N be a set of natural numbers, with the property that R is closed under addition
(iff a,b € R then a+ b € R). Suppose R has greatest common divisor 1 (i.e. gcd(R) = 1). Then
there exist elements a,b € R which are coprime (i.e. gcd(a,b) = 1). Furthermore, for any coprime
a,b € R, forall c > ab, we know ¢ € R, in particular, there exist at least two distinct pairs of
nonnegative integers \, pu such that Aa + pb = c.

Proof. We first show a coprime pair a,b € R exists. As gcd(R N {z : © < y}) is decreasing in y,
and the integers are discrete, there exists a smallest value y such that gcd(R N {z : z < y}) = 1.
Applying Bézout’s lemma, there exist integers {\x } x<, such that

Z Aok = 1.
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Rearranging this sum by taking all negative terms to the right hand side, we obtain the desired positive
integers @ = 3 e gy aes0p Mk and b= 3" cn o\, <oy [Ak|k which satisfy a = b + 1 (so
a and b are coprime) and a, b € R (as R is closed under addition).

We now take an arbitrary coprime pair a,b € R. Again by Bézout’s lemma, there exist (possibly
negative) integers A, [ such that Aa + b = 1, and hence Aca + picb = c. However, for any integer k
it follows that (Ac+ kb)a + (fic — ka)b = ¢. Since this holds for all k € Z, we can choose k such that

1 < X = (Ac+kb) < b. However, this implies that (Ac + kb)a < ab < ¢, and so p = (jic — ka) > 0.
As R is closed under addition, we see that ¢ = Aa + ub € R.

To see non uniqueness, we simply observe that if ¢ > ab, in the construction above we have 1 > a,
and hence (\ + b, u — a) is an alternative pair of coefficients. O

Proof of Theorem 3. We suppose that f can be identified, and first show that all states can be accessed
from s, that is, for each s’ there exists 7' > 0 such that P™(Sp = §’|Sg = s) > 0, but that T can vary
with s’. Suppose there were states which cannot be reached by a path starting in s. It is clear that it
would be impossible to identify the cost associated with any state which cannot be accessed, as we
obtain no information about actions in these states. Therefore, all states can be accessed from s.

It remains to show that, if f can be identified, we can reach all states using paths of a common
length. We initially focus on the paths from s to s. If we can return in precisely 1" steps, then
(by the Markov property) we can also return in k7" steps, for any & € N. Therefore either the set
{T : P™(St = s|Sy = s) > 0} is unbounded, or the state s will never be revisited (in the language
of Markov chains, it is ephemeral). If the starting state is ephemeral, it is clear that we can add a
constant to its rewards independently of all other states’ rewards, as this will not affect decision
making — we leave this state immediately and never return. This would imply that the reward cannot
be determined up to a global constant, and hence we conclude that the starting state is not ephemeral.

Next, still focusing on paths from s to s, we show that 7' can take any value above some bound. Let ¢
be the greatest common divisor of R = {t : P™(S; = s|Sp = s) > 0}; we will show that ¢ = 1. For
contradiction, suppose ¢ > 1. Then our system is periodic, and by classical results on irreducible
matrices (e.g. [Seneta, 2006, Theorem 1.3]) we know that there is a partition of S into ¢ sets, such
that we will certainly make transitions within the sets of states So — S — ... = Sf_1 — Sp 3 s.
By adding ¢ € R to the rewards of states in Sy, and subtracting ¢/~ from rewards of states in Sy,
we do not affect behavior. Therefore, the reward cannot be identified up to a global constant unless
t=1

However, given = 1 and the set R is closed under addition (by concatenating cycles), Lemma 1
implies that R must contain all sufficiently large values, that is, it is possible to return to the initial
state in any sufficiently large number of steps.

Thanks to Victor Flynn for discussion on the formulation and proof of this result.



Finally, we have seen that it is possible to transition from s to s’ in a finite number of steps, and that
it is possible to transition from s to s in any sufficiently large number of steps. From the Markov
property we conclude that for every value of 7" sufficently large, for all choices of s’ we have
]PW(ST/ = 5’|So = S) > 0. O

Proof of Theorem 4. We first prove the sufficiency statement. The optimal policy satisfies
Mog7f(als) = Q; (s,a) — V;(s) = f(s,a) + ’y(ZT(s'|s,a)Vtil(s’)) — Vi (s).
We write (for notational simplicity), v(s) = V;_,(s), and hence, given V¢ = g by assumption,

f(s.a) = v(s) + Aogi_y (a (ZT s, a)g(s"))- an

This shows that f is completely determined (if it exists) by the function v.

We also observe that for every ¢t we have the recurrence relation

Vi (s) = —Mog i (als) + f(s.0) +7( 3 T 15, )V ("))
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This holds for any choice of action a (unlike the usual dynamic programming relation, which only
involves the optimal policy). Writing V for the vector with components {V;*(s) }scs we have the
recurrence relation

= Mog =19 i 4 7( > T (S5, a) (Vi (s) — g(s/))).
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where Y, is a known vector valued function, with components
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[Te(a)]s = Aog —— = = 1 ' ZT (s'|s,a)g(s).

Solving the recurrence relation, we have, for any sequence of actions ay, ..., ap—1 (with the convention
that the empty matrix product is the identity)
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From this linear system, we can extract the single row corresponding to the fixed initial state sg.
Assuming this is the row indicated by the e; basis vector, we have
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for a known function G, expressible in terms of 7, g and {7} tT;Ol.

Now that the MDP has full action-rank, the system of equations,
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admits at most one solution, denoted by v. Substituting into (13), we have a unique solution to the
equation V" (sg) = 0. However, we need to consider all possible values of Vj(so).

For any choice of actions {at}tT:_Ol,

T
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Here 1 denotes the all-one vector in RY . Therefore, the set of all possible (V' (so), v) pairs is given
by

(c.;0+ EP) e e R}, v € (0,),
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From (11), we conclude that f can be identified up to a constant.

To show necessity, we observe from the above that, if the system is not full action-rank, then there
exists a linear subspace of choices of v, which do not differ only by constants, such that we can
construct the same value vectors V for all ¢, satisfying (12) and hence (11). It follows that we have
a nontrivial manifold of rewards f which generate the same optimal policies, that is, the rewards are
not identifiable. O

Proof of Corollary 1. We first observe that it is a classical result on Markov chains (see, for example,
[Seneta, 2006, Theorem 1.5]) that the conditions of case (i) guarantee those of case (iii), for some
choice of R, R" > 0. The conditions of case (ii) also guarantee those of case (iii), with both the
cycles being the self-loop. It is therefore sufficient to consider case (iii).

To show that the MDP has full action rank, we observe that for every possible path of states, there
exists a corresponding sequence of actions, and vice versa. We will therefore use these different

perspectives interchangeably. We also observe that, as our MDP is deterministic, e, Hﬁ;lo T(as) is
a vector indicating the current state at time ¢, when started in state e;. Therefore,

Or_1({arhiso) i= ] (Tgwr:[w))

is a row vector, containing a time-weighted occupation density — in particular, if v = 1, it simply
counts the number of times we have entered each state. (This is in contrast to Remark 6, where we
have an expected occupation density; here we can simplify given the control problem is deterministic.)
Our aim, therefore, is to construct a collection of paths which give a full-rank system of occupation
densities.

Starting in state so = e;, consider a shortest path (i.e. a path with the fewest number of transitions) to
each state s’. Denote these paths ry = {sg — ... — s'}, and the corresponding sequence of actions

a®'. These paths have lengths |r,| and time-weighted occupation densities Oy, ({af }+>0) which are
linearly independent (a longer path will contain states not in a shorter path, while paths of the same
length will differ in their final state; by reordering the states we can then obtain a lower-triangular
structure in the matrix of occupation densities [Q),. | ({af }+>0)]{a,1c.4)- This gives us N = [S] paths,
of varying lengths, with linearly independent occupation densities.

We now consider prefixing our paths with cycles, in order to make them the same length. Fix an
arbitrary integer value 77 > max; |rs| + |Q||@Q’| — 1. By Lemma 1, for all states s, there exist
nonnegative integers A, p15 such that T = Ag|Q| + ps|Q’| + |rs|- Therefore, taking the concatenated
path consisting of A, repeats of cycle (), then p, repeats of cycle Q’, then our shortest path r,, gives
us a path from sg to s of length 7”. Denote each of these paths P.

Concatenation of paths has an elegant effect on the occupation densities: If () is a cycle and r a
path (starting from the terminal state of (), their concatenation () * r and corresponding actions
a®?,a”,a®*", then the occupation densities combine linearly:

O1ur| ({a* }ez0) = Ojg—1({a }ez0) + 71910, ({a] }es0), (14)

(observe that the occupation density excludes the (repeated) final state of the cycle).

We now observe that for the initial state, the shortest path is of length zero (i.e. has no transitions).
From Lemma 1, as T’ > |Q||Q’|, we know that there are multiple choices of A, p satisfying the stated

construction, and therefore there are at least two possible paths P;, and 1530 with the desired length,
from the initial state to itself, using distinct numbers of cycles'%: (A, , p1s,) and (s, , fis, )-

10T the cycles are both a self-loop, then this becomes degenerate, but in the following step the final column
and row of the matrix M can be omitted, and the remainder of the argument follows in essentially the same way.



This construction yields a collection of paths with full rank occupation densities. To verify this
explicitly, we extract the rows corresponding to the paths { P, }scs and P;,, and use (14) to see that
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After subtracting the first from the last row of M, as A, # As,, we see that M has a simple structure,
in particular it is a full-rank matrix with N + 1 rows and N + 2 columns. As the final matrix on
the right hand side of (15) is of rank IV, this implies that the left hand side of (15) is also of rank NV
(by Sylvester’s rank inequality). As the left hand side of (15) is a selection of rows from the matrix
considered in Definition 3, we conclude that our MDP must be of full action rank.

Our collection of paths also shows that our system has full access at horizon T = T’ + 1, and
therefore the identification result follows from Theorem 4. By varying 7”7, we see this result holds for
any choice of T' > |Q||Q’| + max; |rs|, as desired. O

Example 1. Consider the problem with three states S = {A, B,C}, with possible transitions
A — {B,C}, B —» Aand C — B. Starting in state A, the shortest paths are then given by
{A},{A — B},{A — C}, and we have cycles {A — B — A} and {A — C — B — A}. Writing
out the occupation densities of each of these paths (ignoring the terminal state of the two cycles),
with v = 1, we get the system

(A B C)
A 1 00
Shortest paths A— B 1 1 0
A—C = |10 1
Cycles (excluding final state) { A 1_4> g i B 1 } (1)

This corresponds to the final term on the right hand side of (15). Clearly, the section above the
horizontal line (corresponding to the shortest paths) is lower-triangular, and hence of full rank. We
prefix our paths by appropriate numbers of cycles, in order to make them the same length. This
implies that, with a horizon T' =7 = 2 x 3 + 1, we consider the paths

A—-C—-B—+A—-C—-B— A 3 2 2
A—-B—+A—-C—-B—A—B 3 1 T-1  t—1
A-B—>3A-SC—-B—sA-C |=> |3 2 2 :{ez(zwtn'ﬂ‘(at/))}

4 3 0 t=0 /=0 {ar}CA

A—-B—+A—+B—-A—-B—A

The matrix of occupation densities shown here is the left hand side of (15) and is easily seen to be
full rank; the matrix M from (15) is given by

1000 2
0101 1
M=1901 11
10030



Proof of Corollary 2. We represent states by their corresponding basis vectors. For any initial state
e;, consider the space spanned by the possible future states. Given we have as many actions as
possible future states, and the rank-nullity theorem, we know that this space must be the same as
the space spanned by the vectors {7 (:|s,a);a € A}. In particular, for any e; such that it is possible
to transition from e; to e; in a single step, there exists a set of weights ¢, over actions (which do

not need to sum to one or be nonnegative) such thate; = 3 _ , ca€] T(a). In other words, there
is no difference between the linear span generated by these stochastic transitions and deterministic
transitions. As actions at every time can be varied independently, and the requirement that a MDP
has full action rank depends only on the space spanned by transition matrices, the problem reduces to
the setting of Corollary 1. O

Proof of Theorem 5. Necessity. Suppose the IRL problem admits an action-independent solution
f:8 — R. Then for any (s,a) € S x A,

f(s) = Alog(als) =7 > T(s']s, a)v(s’) + v(s),
s’eS
where v is the corresponding value function. Notice that for any a € A, forall s € S,

f(s) = Nogm(als) =7 > T(s'|s,a)v(s") + v(s)

s'eS

= Alog 7(ag|s) 727' "Is, ao)v(s") 4 v(s).

s'eS
Therefore, taking v to be the vector with components v(s), we have a solution to the system of
equations (8).

Sufficiency. Let v be a solution to the system of equations (8). By abuse of notation, we may write
v(s) for the components of v. Then for any (s,a) € S x A,

Mog 7(als) — Z T(s's,a)v(s") = Nog7(ag|s) — Z T(s'|s,a0)v(s").
s'eS s'eS
Therefore, the quantity f(s) := Alog 7(ao|s) —~ Yoves T(s']s,a0)v(s") +v(s) is independent
of a. From Theorem 1, we conclude that f is a solution to the IRL problem.
[

Proof of Corollary 3. Let vy be a solution to (8), which is assumed to exist. By the Fredholm
alternative (as in Theorem 2) the solution set Ys for (8) is given by

Ys = {’Uo +KiK€E span( ﬂ K(a))}.

acA

From Theorem 5, the set of action-independent solutions for the IRL is given by

]P‘Sz{f:f()—)\logwao| WZT (8|8, a0)v(s") + v(s); forUEYS,séS}.

s'eS

We then observe that the stated condition is sufficient — if constant vectors are the only valid choices
for k, then v and hence f € Fg will only vary by constants.

To show necessity, denote by fj the solution corresponding to vg. Suppose there exists a vector

€ < ﬂlC(a))\{cl:ceR}.

acA
Define
A(s) =0(s) =7 Y _ T(s']s,a0)d(s), VseS.
s’eS
It follows that fo + A € Fg; if A is not a constant, we see that the reward is not uniquely identifiable.



To show A is not a constant, let

= 3 S e 0 = in v = in v v =
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Therefore, A is not a constant. It follows that our condition is necessary in order to have an identifiable
action-independent reward O

Proof of Corollary 4. We will verify the condition of Corollary 3.

In the stochastic transition case, the proof of Corollary 2 shows that, under the stated assumption on
the rank of the transitions, we can perform row operations on our transition matrix (corresponding to
linear combinations of actions) to obtain a deterministic transition matrix. In particular, the space
NaeaC(a) is the same under the assumption on the rank of the transitions as under the assumption
that transitions are deterministic. We can therefore focus our attention on the deterministic transition
case.

If transitions are deterministic, the matrix T(a) has rows given by the basis vectors indicating
the future states; so the matrix AT(a) has rows which are the difference of two basis vectors
corresponding to one-step linked states. Therefore, a vector v € KC(a) must have entries v; = v;
whenever e; and e; correspond to these one-step-linked states.

By considering all possible choices of a, we see that a vector v € Nge 4K (a) must have entries
v; = v; whenever e; and e; correspond to any one-step linked states (and this is a sufficient condition
to ensure v € Ny 4K (a)). However, if our MDP is reward-decomposable, there is no proper subset
S1 of § which is closed under taking one-step linked states. Therefore, if our MDP is reward-
decomposable, the only vectors in the kernel of AT(a) for every a are the constant vectors, as
desired.

Conversely, if our MDP is not reward-decomposable, then there exists a set S; # S satisfying the
conditions above, and hence a nonconstant vector v € Nge 4K (a). The result of Corollary 3 then
shows the reward is not identifiable. O

B Appendix: A linear-quadratic-Gaussian problem

In this appendix, we will present the corresponding results for a class of one-dimensional linear-
quadratic problems with Gaussian noise, ultimately inspired by Kalman [1964]. This simplified
framework allows us to explicitly observe the degeneracy of inverse reinforcement learning, even if
we add restrictions on the choice of value functions.

Optimal LQG control Suppose our agent seeks to control, using a real-valued process A; a discrete
time process with dynamics

Sit1 = (G + psSt + o Ar) + (G + 055t + 0, A1) Z1 41

for constants i, (s, (tq, T, 0s,0,. The innovations process Z is a Gaussian white noise with unit
variance. Our agent uses a randomized strategy m(a|s) to maximize the expectation of the entropy-
regularized infinite-horizon discounted linear-quadratic reward:

E[Zv( [ (S apmtalsyda + xuiatis )|

where f(s,a) = azos® + a115a + ap2a® 4+ a19s + apgra + age and H(r) = — [, 7(a) log(r(a)da
is the Shannon entropy of 7. We assume the coefficients of f are such that the problem is well posed
(i.e. it is not possible to obtain an infinite expected reward).



Just as in the discrete state and action space setting, we can write down the state-action value function

1 /_S_a2
WECETELTY

ds’. (16
058+ 04a)? 2(5+Uss—|—aaa)2) (16)

1(s,a) = f(s,a)+ V(s
Qo) = J(ss0) +7 [ ) e
Using this, the optimal policy and value function are given by
mi(als) = exp (@3 (s,0) = Vi () /A)), (17)
Vi (s) = V™ (s) = Alog / exp (Q’;; (s,a) /)\) da. (18)
R

What is particularly convenient about this setting is that @) is a quadratic in (s, a), V) is a quadratic in
s, and 7} (+|s) is a Gaussian density. In particular, the optimal policy is of the form

Y(als) ! e { (a_kls_k2)2}

v = ——— eX - - ===

A o P 2k )
. 1 [a? —2(k/’18+k2)a (kls+k2)2 A
= exp {_)\ [ ks + T + 5 log (2mk3 )

for some constants k1, ks € R, ks > 0, which can be determined!! in terms of the known parameters
Ha, its, 0, A and the parameters of the reward function {c;; }iyj<a.

Theorem 6. Consider an agent with a policy of the form (19). Suppose we also know that the value
function V' is a quadratic (or, equivalently, that the reward function is a quadratic in (s,a)). The
space of rewards consistent with this policy is given by:

F z{f(s, a) = ags® + arysa + agpa’® + aips + agra + ago

—k k-1 2 2 2 2
(a20, a11, agp2) = (%7 T 72k3> — B2 (’Y(MS +03) — 1, 29(pstta + 0504), V(i +Ua,))7
—kiks k _ _ _ _
(Mm%ﬁZ( é2,i)—ﬁ%%@m«wmgﬂﬂwm+mm0—6&%@+L7m)

ago, B2, B1 € R}-
(20

Proof. We consider an arbitrary quadratic
v(s) = Bas® + Pus + Bo

as a candidate value function. If we have begun from the assumption that the reward function f is
quadratic, we know that the corresponding value function is quadratic, so this is not a restrictive
assumption.

We then compute the state-action value function using (16), to give

Qa(s,0) = f(5,) (B (1 + o5+ 120)? + (7 + 035 + 000)?) + B+ s + 1a) + o).
Combining with (19) and (17), we see that a reward function f is consistent with the observed policy
if

2 _ 2
Alogm(als) = {a 215 1 ka)a + (ks + ks)

ks 2%3

A
+ 5 log (27T]<53A)

= f(s,a) + v(ﬂz((ﬂ + 58 + 1a0)” + (5 + 055 + 040)%) + Bi(f + pres + praa) + ﬁo)

- (5232 + B1s + 50)-

"The explicit formulae for k1, k2 and k3, and the coefficients of the value function, can be obtained by
equating the coefficients of f with the values obtained in (21). Under the assumption that the optimal control
problem is well posed, this has a solution with k3 > 0.



Rearranging, we conclude that f is given by

k2 k
fla,s) = {— 2713 — Ba(y(p2 + 02) — 1)}32 + [k;f — 2B2y(phspra + asoa)]as

k1ko
k3

+ [— % — By (g + Oi)}az + [— — 282y (jupts + 005) — Bu(vps +1) |5
3

+ {% — 289y (fipta + G04) — 1 (’Y,Ua)}a
3

+ [~ 5 loa(2nhsA) — 51 (3 + %) — Bufi+ ol — )]
(2D

As (B2, B1, o) are arbitrary, we have the desired statement. O

As in Theorem 1, we see that the inverse reinforcement learning problem only defines the rewards
up to the choice of value function, which is arbitrary; the restriction to quadratic rewards or values
simply reduces our problem to the smaller range of rewards determined by the three coefficients in
the quadratic V.

The following theorem gives the linear-quadratic version of Theorem 2. As our agents’ actions have a
linear effect on the state variable, this leads to a particularly simple set of conditions for identifiability
of the reward, given observation of two agents’ policies.

Theorem 7. Suppose we now have two agents, who are both following their respective optimal
controls of the form (19), for the same reward function, but disagree on some combination of the
dynamics and discount rate. We write

T = (ws +1, wa) and 1y = (7(#5 +02) = 1, 2y(psta + 0504), V(12 + 03))7

giving us two pairs of vectors (x1,x2) (for the first agent) and (I1, T2) (for the second agent). We
assume we know these vectors for each agent. The quadratic reward function f consistent with both
agents’ policies, if it exists, is uniquely identified up to the addition of a constant shift, if (and only if)

T 531 T2 ~7~72

= n = .
(E2Y (Y 2]l = |z

Proof. We see from (20) that a single agent’s actions identify a space of valid rewards [F, which is
parameterized by the constant shift agy and the two free variables 31, 52. From these free variables,
(20) identifies the values of a = (ag, a11, a2, @10, ao1 ). The reward function f is uniquely defined,
up to a constant shift, if we can identify the value of a, which (by assumption) is the same for both
agents.

Considering the role of 33, (20) defines a line in R? of possible values for (azg, a11, ag2). If the
assumption xo /||x2|| # Z2/||Z2|| holds, then the lines for our two agents will not be parallel, therefore
will either never meet (in which case no consistent reward exists), or will meet at a point, uniquely
identifying (ag0, a11, ap2) and the corresponding values of (2 for each agent. Conversely, if the
assumption does not hold, then the lines will be parallel, so cannot meet in a unique point, in which
case there are either zero or infinitely many reward functions consistent with both agents’ policies.

Essentially the same argument then applies to the equation for (a1, ag1). Given that 85 has already
been identified for each agent, varying /3; for each agent defines a pair of lines in R2, which are not
parallel if and only if the stated assumption on x1, 1 holds. Therefore, we can uniquely identify
(a10, ao1) if and only if the stated assumption holds. O

Due to the simplicity of the characterization in Theorem 7, we can easily see that it is enough to
observe two agents using different discount rates.

Corollary 5. Suppose we observe two agents, each using optimal policies of the form (19), for the
same dynamics and rewards, but different discount rates. Then the underlying quadratic reward
consistent with both agents’ policies is identifiable up to a constant.



Proof. Simply observe that the value of v introduces a non-scaling change in the vectors x1, 2
defined in Theorem 7. O

We can also easily determine the identifiability of action-independent rewards.

Corollary 6. For an agent with a policy of the form (19), there exists an action-independent reward
function corresponding to this policy if and only if

Hsta + 0504
2o

and this case, the action-independent reward is unique.

k=

Proof. From Theorem 6, in order to have an action independent reward we must have a1 = agy =
ap1 = 0. From (20), we know

k1
a1 =0 = [y=
1 2 2]@37(/145#0, + Usaa)
0 = g -1
agy = R
. 1T 2hgy(p2 + 02)
The statement k1 = —(pusftq + 0504)/ (12 + 02) is easily seen to be equivalent to stating that these

equations are consistent.

The value of 31 can then always be chosen in a unique way to guarantee ag; = 0, as required. [

C Appendix: A discussion of guided cost learning and related maximum
entropy inverse reinforcement learning models

The guided cost learning algorithm was proposed in Finn et al. [2016b] to solve an (undiscounted)
inverse reinforcement learning problem over a finite time horizon with a finite state-action space
(S, A). In Finn et al. [2016b], instead of directly modelling the optimal feedback policy, the optimal
trajectory distribution is taken as the starting point for inference. Adopting the idea of the maximum
casual entropy model in Ziebart [2010] (phrased in terms of rewards rather than costs) a common
interpretation of the algorithm assumes we observe trajectories 7 sampled from the distribution

T-1
T T T T T 1 T T
pf(T = (SO»G'Oa' . '75T—17aT—178T)) = Zfexp{ Z f(staat)}v (22)
t=0

where the partition factor

7 =Y e { §f<s:,a:>} ~ By o0 { §f<s:,az>} Jar)]

is estimated through importance sampling with the ‘ambient distribution’ ¢(7), which can be chosen
arbitrarily'?

As mentioned above, and discussed further by Ziebart et al. [2008] and Levine [2018], this is
consistent with our entropy regularized MDP when transitions are deterministic, but differs for
stochastic problems. An alternative maximum entropy model, which incorporates knowledge of 7T,
assumes trajectories are sampled from

o () = o 50 Hexp{ (s7,07) } T (5T ls7 7). (23)

12 An additional complexity in the guided cost learning algorithm is that the reward function and the ambient
distribution are updated iteratively. Numerically, this can be seen as a variance reduction technique, rather
than a conceptual change to the algorithm. First, the reward function f is updated by alternately maximizing
the log likelihood log p* (T) over the demonstrator’s trajectories {7;"}i—, which is equivalent to solving

f = argmin ¢ Dxu(q”[lp ). Secondly, the ambient distribution ¢ is updated by minimizing the KL divergence

D1 (q||p”) using the trajectories {T;I}?il sampled from q(1) = po(s3) [T}y me(af|sT)T (s7y1s7, af).

Using this method, the transition probabilities 7 can also be estimated, and ¢ can be seen as closely related to
the law 57 in (23).
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To see how this connects to the entropy regularized MDP, we observe that a entropy-regularized
optimizing agent will generate trajectories with distribution

T-1
¢* (1) = po(sg) [ ] 7 (aflsD) T (s7411s7, a7), 24)

t=0

where " = {Trj};‘rz_ol solves the problem discussed in Section 4.

Given that we do not have an infinite-horizon time-homogenous system, the optimal policy 7* is
typically time-dependent and this is reflected in the density ¢*, and hence in the trajectories we
observe. Using p/ in (23) as the basis of the guided cost learning algorithm, the demonstrator’s
optimal trajectory distribution ¢* can be written in the desired form (i.e. for some choice of f in
(23), which may or may not correspond to the agent’s rewards), provided the underlying f;,,. and
Jtrue lead to a time-invariant optimal policy 7*. Otherwise, one should further adjust the guided cost
learning model p/ to include time-dependent rewards f, that is,

 T—1
() = uoz(iw IT exp { £t 57, al) fTsTals ai). (25)
t=0

With the addition of time-dependent rewards, it is interesting to consider what this variation of guided
cost learning will output. Suppose we observe a large number of trajectories and estimate a reward
fest to maximize the likelihood (25), or equivalently to minimize the KL divergence Dxr,(¢*||57).
Comparing p/ in (25) with ¢* in (24), we see that the minimum KL divergence is Dkr,(¢*|3/) = 0,
which is achieved when, foreach ¢ € {0...,7 — 1},

fest(ta S, a) +c = Q:(& CL) - V;*(S)
= ftrue(ta S, CL) + ]ES’~T(~|s,a) [Vvtj-l(‘s/)] - V;*(S)

where ¢; € R is a constant (which may depend on ¢, but not on s). This will yield firue = fest
provided (¢, s) — V;*(s) is a deterministic function of time (i.e. it is independent of s), and this is a
necessary condition for nontrivial 7.

In other words, the identifiability issue discussed in the main body of this paper remains, as the
demonstrator’s trajectory distribution will depend on the state-action value function @)}, rather than
directly on the reward. Furthermore, this variation of guided cost learning generally corresponds to
finding a reward which generates the observed policy, and yields a value function V* which does not
vary with the state of the system. Of course, this reward will not usually be the same as that faced by
the demonstrator, and so the results of guided cost learning are not guaranteed to generalize to agents
with different transition probabilities.

We note that Balakrishnan et al. [2020] discuss the non-identifiability of costs in a MaxEntIRL
approach. Their work focuses on building a projection under which rewards resulting in similar
policies are mapped together, and then build a Bayesian estimation method for this projected data.
What we have seen is that this approach is consistent (after the modifications discussed above), and
will identify some cost function which gives the corresponding policy. For the entropy-regularized
problem, our results precisely describe the kernel of this projection — it must correspond to different
choices of the value function for the system.

D Appendix: Numerical examples of inverse reinforcement learning

In this section, we present a regularized MDP as in Section 3.1 to illustrate numerically the identi-
fiability issue associated with inverse RL. In particular, we consider a state space S with 10 states
and an action space A with 5 actions, with A = 1. We compute optimal policies as in Section 2 and
reconstruct the underlying rewards. As discussed in Section 3 the optimal policies and the transition
kernel can be inferred from state-action trajectories, so will assumed known. We identify the state
and action spaces with the basis vectors in R'? and R® respectively, so can write f(a, s) = a' Rs for
the reward function, and 7 (s'|s,a) = s P,(s’) for the transition function. The true reward Ry, and
transition matrices { P, }4c.4 are randomly generated and fixed; see Figures 1 and 2.
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D.1 Non-uniqueness of infinite-sample IRL

We first look at inverse RL starting from a single optimal policy 7y with discount factor v; = 0.95.
We represent 7 as a matrix I1; in R>*1°, where each column gives the probabilities of each action
when in the corresponding state.

-1.69 -1.79 -2.08 —~1.25

-2.34 -1.83 -2.12

-2.07 22138 -1.63 =237

0.21 0.22
0.1

(d) Peg (€) Pes

Figure 2: Underlying true transition kernel

To solve the inverse RL problem, we numerically find R, v to minimize the loss

Lging(R,v) = Z Z [aTl'Ils — exp {aTRs + 'ylsTPav — st}]2 .
a€A seS

An Adam optimizer is adopted with o = 0.002, (31, 82) = (0.5, 0.9) with overall 2000 minimization
steps. The experiments are conducted over 6 different random initializations, sampled from the same
distribution as was used to construct the ground truth model. The training loss Lsing decays rapidly
to close to 0, as shown in Figure 3a. This indicates that, after the minimization procedure comes to an
end, the learnt reward matrix R reveals a corresponding optimal policy IT; close to the true optimal
policy II;; see also Figure 8 for a direct comparison.

However, when comparing the learnt reward R and the underlying reward Ry, as in Figures 4 and 5a,
as well as the comparison between the corresponding value vectors as in Figure 5b, we can see that
the true reward function Ry, has not been correctly inferred. Here this is not an issue of statistical
error, as we assume full information on the optimal policy and the Markov transition kernel.
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Figure 4: Learning from one optimal policy, under ~;: difference R — Ry, between learnt and true
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Figure 5: Learning from one optimal policy, under ~y;: comparisons

D.2 Uniqueness of IRL with multiple discount rates

We now demonstrate that the issue of identifiability can be resolved if there is additional information
on an optimal policy under the same reward matrix Ry, but different environment. Here, we assume
we are given the policy II; optimal with discount factor v; = 0.95, and the policy I, optimal with
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discount factor 2 = 0.25. Correspondingly, the loss function for the minimization is adjusted to

Laoun (R, v1,v2) = % Z Z [aTﬂls — exp {aTRs +y18 Pyoy — v;—s}]Q
acA seS

1
+3 ;;S [a™Tas —exp {a" Rs + 725 Pyvz — v;s}]Q ,

An Adam optimizer is adopted with a = 0.005, (31, 82) = (0.5, 0.9) with overall 2000 minimization
steps. With the same set of 6 random initializations for the minimization procedure, the training loss
Lgoupb also decays rapidly to close to 0. This again suggests that the learnt reward matrix R can lead
to policies II; and IIs, each optimal when using the corresponding discount factor y; and ~y», that are
close to the given policies II; and Ily; see Figures 9 and 10. What differs from the single optimal
policy case is that, with the additional information I, we are able to consistently recover Ry, up to a
constant shift; see Figures 6 and 7. Some numerical error remains, due to the optimization algorithm
used, as seen by the fact the graphs in Figure 6 do still vary, and the error in the value function v
in 7(a). Nevertheless, the errors are an order of magnitude less than was observed in Figure 5 when
using observations under a single discount rate.
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Figure 9: Learning from optimal policies under ~; and +,: difference II; — IT; between learnt and
true policies under 7;. Note scale of 1073.
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Figure 10: Learning from optimal policies under ~; and ~y: differences IIy — II, between learnt and
true policies under 7. Note scale of 1073.
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