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A RELATED WORK

A.1 STRATEGIC CLASSIFICATION

Generally, strategic behaviors can cause feature and label distribution of individuals to shift, which
have long been closely related to concept drift (Lu et al., 2018), preference shift (Carroll et al.,
2022), and algorithm recourse (Karimi et al., 2022). Strategic classification has been extensively
studied since (Hardt et al., 2016a) formally modeled the interaction between individuals and a
decision maker as a Stackelberg Game, and proposed a framework for strategic classification. While
taking the individuals’ best response into account, the decision maker can make the optimal decision
by anticipating strategic manipulation. During recent years, more complex models on strategic
classification have been proposed (Ben-Porat and Tennenholtz, 2017; Dong et al., 2018; Braverman
and Garg, 2020; Jagadeesan et al., 2021; Izzo et al., 2021; Ahmadi et al., 2021; Tang et al., 2021; Zhang
et al., 2020a; 2022; Eilat et al., 2022; Liu et al., 2022; Lechner and Urner, 2022; Chen et al., 2020a).
Ben-Porat and Tennenholtz (2017) developed a best response linear regression predictor where two
players compete and each gets a payoff depending on the proportion of the points he/she predicts
more accurately than the other player. Dong et al. (2018) focused on the online version of the strategic
classification algorithm. Chen et al. (2020a) developed a strategic-aware linear classifier to minimize
the Stacelberg regret. Braverman and Garg (2020) modified the classifier to random ones. Moreover,
Jagadeesan et al. (2021) added noise to standard strategic classification and modified the standard
microfoundations into alternative microfoundations to let a portion of individuals be irrational and not
have perfect knowledge about the decision maker’s policy. Tang et al. (2021) considered the setting
where the decision maker only knew a subset of individuals’ actions. Levanon and Rosenfeld (2022)
generalized strategic classification to situations where individuals and the decision maker have aligned
interests. Perdomo et al. (2020); Izzo et al. (2021); Hardt et al. (2022) proposed and elaborated the
concept of performative prediction where predictive decisions can influence the outcomes to predict.
Izzo et al. (2021) proposed an algorithm performative gradient descent to compute performative
optimal points. Hardt et al. (2022) defined performative power as a measure of how much a decision
can change the population. This framework can formulate more general strategic classification
settings. Liu et al. (2022) studied the situation where competitions between individuals are present
in strategic classification. (Eilat et al., 2022) relaxed the assumption that individual best responses
are independent of each other and proposed a robust learning framework based on a Graph Neural
Network. Lechner and Urner (2022) proposed a novel loss function considering both the accuracy of
the prediction rule and its vulnerability to strategic manipulation.

A.2 IMPROVEMENT WITH A LABEL CHANGE

Another line of research takes improvement into account(Liu et al., 2019; Zhang et al., 2020a;
Liu et al., 2020; Rosenfeld et al., 2020; Chen et al., 2020b; Haghtalab et al., 2020; Kleinberg
and Raghavan, 2020; Alon et al., 2020; Miller et al., 2020; Shavit et al., 2020; Bechavod et al.,
2021; Jin et al., 2022; Barsotti et al., 2022; Ahmadi et al., 2022a; Raab and Liu, 2021; Heidari
et al., 2019). Liu et al. (2019; 2020); Zhang et al. (2020a); Rosenfeld et al. (2020); Ahmadi et al.
(2022b) studied the conditions under which individuals will choose to improve their qualifications.
Specifically, Liu et al. (2019) investigated how different decision rules (e.g. maxutil, fair) influence
population qualification. Liu et al. (2020) modeled the improvement cost as a random variable
and further pointed out that a subsidizing mechanism for individual costs can be beneficial for
improving behaviors. Zhang et al. (2020a) studied the dynamic of population qualification under a
partially observed Markov decision problem setting, where improvement probability is given as a
parameter. Rosenfeld et al. (2020) proposed a Look-ahead regularization to directly penalize the
drop of population qualification. Ahmadi et al. (2022b) proposed a common improvement capacity
model and a individualized improvement capacity model to optimize social welfare and fairness while
considering individual improvement.

There are other studies considering both strategic manipulation and improvement (Chen et al., 2020b;
Haghtalab et al., 2020; Kleinberg and Raghavan, 2020; Alon et al., 2020; Miller et al., 2020; Shavit
et al., 2020; Bechavod et al., 2021; Jin et al., 2022; Barsotti et al., 2022; Ahmadi et al., 2022a; Harris
et al., 2022; Horowitz and Rosenfeld, 2023; Yan et al., 2023). Besides the works which have been
mentioned in Sec. 1, (Barsotti et al., 2022) modeled strategic manipulation and improvement similarly
with costs that differ within constant factors. The paper also did simulations where manipulation and
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improvement were present. (Ahmadi et al., 2022a) considered a general discrete model and a linear
model where improvement and manipulation are both possible.

A.3 MACHINE LEARNING FAIRNESS

While machine learning algorithms are able to achieve high accuracy in different tasks, they are likely
to be unfair to individuals from different ethnic groups. To measure the fairness of algorithms, various
metrics have been proposed including demographic parity (Feldman et al., 2015), equal opportunity
(Hardt et al., 2016b), equalized odds (Hardt et al., 2016b) and equal resource (Gupta et al., 2019).

More importantly, several works have studied how strategic behaviors impact fairness (Liu et al., 2019;
Zhang et al., 2020a; Liu et al., 2020; Zhang et al., 2022). Specifically, Liu et al. (2019) considered
one-step feedback where static fairness does not promote dynamic fairness. Zhang et al. (2020a)
analyzed the long-term impact of static fairness metrics based on dynamics of population qualification.
Liu et al. (2020) studied how heterogeneity across groups and the lack of realizability can destroy
long-term fairness in strategic classification. Zhang et al. (2022) has proposed a probabilistic model
to demonstrate strategic manipulation as well as the fairness impacts of strategic behaviors, where the
individuals shift their feature distribution instead of directly changing their features. The work also
assumed randomness in manipulation cost. Meanwhile, it explored influences on different fairness
metrics when strategic manipulation is present(Barocas et al., 2019; Hardt et al., 2016b).

B ADDITIONAL DISCUSSIONS

B.1 THE COMPARISON BETWEEN OUR MODEL AND CAUSAL STRATEGIC LEARNING

Previous works in causal strategic learning model every strategic classification problem as a structural
causal model (SCM). SCM is a graphic model depicting the causal relationships between different
features and the label, where features can be classified as causal or non-causal after a causal discovery
process (Miller et al., 2020). strategic manipulation means intervening in the non-causal nodes and
improvement corresponds to intervening in the causal nodes. Though the model takes both behaviors
into account and can accommodate complex causal structures, it has the following weaknesses: (i)
The individuals can intervene in any feature node arbitrarily with a deterministic outcome to any
value once their budgets permit, which is not practical as illustrated in 1; (ii) In most real-world cases,
individuals are not able to intervene the observable features directly. Instead, they intervene in other
unobserved features (causal or non-causal) to change the observable features. So it is sometimes
meaningless to distinguish whether an observable feature is causal or non-causal, because the root
causes of its value change may be diverse.

We illustrate (ii) more clearly in Fig. 5, a causal graph where U, V are unobserved. However, U is
non-causal and V is causal. It is easy to see only X is observable and correlated to Y , but its change
can be either "causal" or "non-causal" with respect to Y .

By contrast, our probabilistic framework does not classify X as causal or non-causal. It models both
manipulation and improvement as imitating qualified individuals and incorporates the randomness of
outcomes and costs. With limited control over their features, individuals can only expect a distribution
shift and may even fail when they take certain actions. We believe the concise yet effective design of
our model is more suitable for many practical situations nowadays, while the causal strategic models
sometimes assign too much power to individuals.

B.2 MORE PRACTICAL EXAMPLES FITTING TO OUR MODEL

In Sec. 1 and Appendix B.1, we already explain the motivation of our model in detail. Here we
provide more motivating examples besides college admission:

1. Loan application:

(a) Manipulation: an unqualified applicant may "steal" the features from qualified ones by
purchasing a social security card (SSN) from the hackers. The "stolen" features are still
random when the applicant decides to purchase an SSN because the card is often randomly
drawn from many stolen cards of qualified individuals.
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Figure 5: An example causal graph where only X is observable and U, V are unobserved.

(b) Improvement: an unqualified applicant may observe the qualified individuals’ profiles and
strive to imitate their behaviors. However, the applicant never knows the realization of his/her
features before trying to improve. The applicant can only try their best to mimic qualified
individuals and expects the successful imitation will cause his/her feature distribution to shift.

2. Job application:

(a) Manipulation: an unqualified applicant may "steal" the features from qualified ones by hiring
an imposter to take the interview instead of him/her (especially when remote interviews are
prevalent today). Similar to previous examples, the applicant does not know the exact feature
realization when making the decision to manipulate.

(b) Improvement: an unqualified applicant may still observe the features of qualified ones by
reading their interview preparation tips or looking at their technical portfolios. Then they
may try hard to imitate the qualified individuals. Similar to previous examples, the applicant
still has no idea of the exact outcome when he/she decides to improve.

B.3 THE OPTION OF TAKING NO ACTION

The comprehensive probabilistic model can be easily extended to the setting where "manipulate",
"improve" and "do nothing" are all possible. Specifically, denoting the expected utility of doing
nothing as UN pθq. We know UM pθq, UIpθq do not change, while UN pθq “ 0. Thus, we can
derive manipulation probability PM pθq “ PrpUM pθq ą UIpθq and UM pθq ą 0q and PIpθq “

PrpUIpθq ą UM pθq and UIpθq ą 0q.

With PM pθq, PIpθq, we can write out the new strategic utility and study its property if necessary.
However, in reality, it is more reasonable for individuals to always take an action. For instance,
applicants feeling they are not qualified will at least take some measures to improve their chances to
be admitted. Thus, the model in the main paper disallows "taking no action".

B.4 DISCUSSION ON ADJUSTED PREFERENCES

Utility loss from the adjusted preferences. Although adjusting preferences is a simple yet effective
way to promote fairness and disincentivize manipulation, the actual utility received by the decision-
maker inevitably diminishes as k1 or k2 changes (as the actual utility the decision-maker receives is
always determined by the original function Upθq in Eq. equation 3). Nonetheless, such diminished
utilities may still be higher than the utility under non-strategic policy pθ˚. This is illustrated empirically
in Sec. 5 and Appendix C.

Adjusted preference as a regularizer to promote fairness. We have shown that adjusting weights
k1, k2, k3 in learning objective (Eq. equation 5) can control the individual behavior and algorithmic
fairness. Indeed, we can view this adjustment mechanism as a regularization method: by adjusting
weights, we are essentially changing the objective Upθq by adding a regularizer, i.e.,

pUpθq ` Φpθ, k1, k2, k3q “ Upθq ` ∆Φpθ, k1, k2, k3q
looooooooomooooooooon

regularizer
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with the regularizer ∆Φpθ, k1, k2, k3q defined as follows:

Φpθ, k1, k2, k3q ´ Φpθ, up1 ´ αq, up1 ´ αq, up1 ´ αqq

Weights k1, k2, k3 are the regularization parameters. The analysis in Sec. 4.2 and 4.3 suggests that
to learn optimal policies that satisfy certain constraints such as bounded fairness violation and/or
bounded individual’s manipulation, we may transform this constrained optimization into a regularized
unconstrained optimization. This view, by incorporating fairness and strategic classification in a
simple unified framework, may provide insights for researchers from both communities.

B.5 ESTIMATE MODEL PARAMETERS

A complete estimation procedure. With only the knowledge of conditional distribution of qualified
individuals PX|Y px|1q and the population’s qualification rate α, we introduce a complete procedure
to estimate PX|Y px|0q, q, P I , ϵ, PCM´CI

pxq sequentially. Specifically, we need to do controlled
intervention experiments on an experimental population as follows.

1. Estimate PX|Y px|0q: Set the lowest decision threshold θ “ 0 to estimate PX|Y px|0q. Since
all unqualified individuals will be accepted, the resulting distribution is the original mixture
distribution p1 ´ αq ¨ PX|Y px|0q ` α ¨ PX|Y px|1q. Thus, with minor assumptions on the feature
distribution families, we can estimate PX|Y px|0q.

2. Estimate q: Apply the strictest auditing procedures (e.g., audit everyone in [26]) to the population
to disable manipulation. With manipulation disabled and arbitrary decision threshold θ applied, all
unqualified people choose to improve, and the resulting qualification rate is p1 ´ αqq ` α. Thus,
by examining the qualification rate after the intervention we can get the estimation of q.

3. Estimate P I : Apply an arbitrary decision threshold θ to the population, the resulting population
probability density distribution will be a mixture of p1 ´ αqp1 ´ qqP I ` rp1 ´ αqq ` αsPX|1.
Similarly, with minor assumptions on the distribution family of P I , we can estimate P I .

4. Estimate ϵ: With q, P I known, the decision-maker can first apply another arbitrary θ to new
samples from the population and observe the resulting new population. This gives the new
qualification rate αp. Because αp “ α ` p1 ´ αqp1 ´ PM pθqqq where PM pθq is the probability
of manipulation under θ, we can then compute the value of PM pθq. Note that the decision-maker
also knows how many individuals (among all individuals) are discovered to manipulate (cheat),
and let this proportion be ϵc, then we can estimate the manipulation detection probability ϵ as

ϵc
PM pθq

.
5. Finally, with all previous parameters known, we can apply different θ to the population several

times to obtain data points of PM . Then since PM corresponds to points of FCM´CI
, with minor

assumptions on the distribution family of PM , we can directly fit the distribution and get PCM´CI
.

It is worth noting that all the above steps can be more robust by doing multiple intervention
experiments. And we also note that according to(Miller et al., 2020), to learn parameters in
Strategic Classification, controlled experiments with intervention are necessary and cannot be
further simplified. We will add the above discussion to the paper to improve its significance.

Robustness of results when q, ϵ are noisy.

We also present an experiment to relax the assumption that the decision-maker knows q, ϵ exactly on
FICO data. Instead, they only know q ` δ or ϵ ` δ where δ is a Gaussian noise. We do 100 rounds of
simulations and produce plots with expectation and error bars similar to Fig. 4(Fig. 6 and Table 3
show the results with noisy q, while Fig. 7 and Table 4 show the results with noisy ϵ). The results
show adjusting k still works under noisy q and ϵ although inconsistency exists.

Table 3: Comparison between three types of optimal thresholds (FICO data) when there is a Gaussian
noise on q with standard deviation 0.1 and k1,c “ k1,aa “ 1.25. For utility and PM , the left value in
parenthesis is for Group a, while the right is for Group b. The fairness metric is eqopt.

Threshold category Utility PM Unfairness

Non-strategic p0.698, 0.171q p0.331, 0.513q 0.136
Original average noisy strategic p0.703, 0.201q p0.212, 0.284q 0.057
Adjusted average noisy strategic p0.700, 0.192q p0.170, 0.220q 0.043
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Figure 6: Impact of adjusted preferences (FICO data) when there is a Gaussian noise on q. The noises
have 0 mean, and 0.05, 0.1, 0.15 standard deviation from the left two plots to the right two plots.
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Figure 7: Impact of adjusted preferences (FICO data) when there is a Gaussian noise on ϵ. The noises
have 0 mean, and 0.05, 0.1 standard deviation from the left two plots to the right two plots.

Table 4: Comparison between three types of optimal thresholds (FICO data) when there is a Gaussian
noise on ϵ with standard deviation 0.1 and other settings stay the same.

Threshold category Utility PM Unfairness

Non-strategic p0.698, 0.171q p0.331, 0.513q 0.136
Original average noisy strategic p0.700, 0.195q p0.192, 0.251q 0.050
Adjusted average noisy strategic p0.698, 0.185q p0.158, 0.194q 0.037

C ADDITIONAL EMPIRICAL RESULTS

C.1 ADDITIONAL RESULTS ON FICO SCORE

Firstly, Fig. 9 shows the conditional distribution PX|Y S and P I of each ethnic group. Fig. 8
demonstrates Assumption 2.1 is satisfied. Fig. 23 shows the (non)-strategic optimal thresholds under
different combinations of q, ϵ for each ethnic group. All four plots demonstrate the correctness of
Thm. 4.1.
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Figure 8: Illustration of Assumption 2.1 on FICO Data

Table 5: Comparison between three types of optimal thresholds for FICO data. For utility and PM ,
the left value in parenthesis is for Asian, while the right is for Hispanic. The fairness metric is eqopt.

Threshold category Utility PM Unfairness

Non-strategic p0.726, 0.427q p0.115, 0.322q 0.089
Original strategic p0.734, 0.448q p0.055, 0.161q 0.047
Adjusted strategic p0.726, 0.434q p0.023, 0.070q 0.022

Moreover, besides the illustration of Thm. 4.5 and Thm. 4.6 using Caucasian and African American
data. We also demonstrate the same results hold for Asian and Hispanic as in Fig. 10.
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Figure 12: Manipulation prob-
ability PM pθq of Asian and
Hispanic

The scenario considered in Figure 12 satisfies the condition 1.(ii) in
Thm. 4.5, because the original strategic optimal threshold θ˚

s ă θmax

for both groups. We further conduct experiments in this setting
to evaluate the impacts of adjusting preferences. We consider
equal opportunity (EqOpt) as the fairness metric, under which
EX„PC

s
r1pX ě pθqs “ FX|Y Spθ|1, sq and the unfairness measure

can be reduced to
ˇ

ˇFX|Y Spθ|1, aq ´ FX|Y Spθ|1, bq
ˇ

ˇ.

The results are shown in Figure 10, where dashed red and dashed
blue curves are manipulation probabilities under non-strategic pθ˚ and
strategic θ˚pk1q, respectively. Solid red and solid blue curves are
the actual utilities Uppθ˚q and Upθ˚pk1qq received by the decision-maker. The difference between
the two green curves measures the unfairness between Asian and Hispanic. k1 “ 1 corresponds to
the original decision-maker while others when k1 ą 1 indicate the decision-maker with adjusted
preferences. Results show that compared to the non-strategic pθ˚, the strategic θ˚, by taking into
account strategic behavior disincentives the strategic manipulation. When condition 1(ii) in Thm.
4.5 is satisfied, increasing k1 can disincentivize manipulation (i.e., PM decreases) while improving
fairness. These validate Thm. 4.5 and 4.6.
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Figure 9: Manipulation curve and manipulation probability for both groups under optimal non-
strategic thresholds
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Figure 10: Illustration of Thm. 4.5 and Thm. 4.6 on FICO Data (Asian vs Hispanic)

In Table 5, We summarize the comparison between non-strategic pθ˚, original strategic θ˚, and
adjusted strategic θ˚pk1q (when k1,a “ k1,h “ 1.5). It shows that decision-makers by adjusting
preferences can significantly mitigate unfairness and disincentivize manipulation, with only slight
decreases in utilities.

Experiments with demographic parity as new fairness metric

We also reconducted the above experiments with demographic parity (DP) as the new fairness metric.
As illustrated in Sec. 4.3, P DP

s pxq “ PX|Spx|sq. Similar to Fig. 4 and the bottom plot of Fig. 10, we
produce Fig. 13 based on DP, which demonstrate the same patterns as the figures based on Eqopt.

C.2 RESULTS FOR GAUSSIAN DATA

Assume there are two groups For s P ta, bu, we both have:

PX|Y Spx|0, sq „ Np0, 1q

P I
s „ Np0.5, 1q

PX|Y Spx|1, sq „ Np1, 1q

CM ´ CI „ Np0, 0.25q (6)

We first illustrate the conditional feature distributions for Gaussian data in Fig. 11. With these
parameters pre-determined, we still need to vary α, ϵ, q to obtain pθ˚, θ˚ under different parameter
combinations.

(Non)-strategic optimal threshold and utility

To illustrate the complex nature under different permutations of parameters, with the pre-determined
parameters in equation 6 and α “ 0.6, we vary q and plot both non-strategic optimal thresholds and
regular strategic ones with respect to different ϵ as shown in the bottom plot of Fig. 14, where the
lower graphs illustrate Thm. 4.1, i.e. the red line is always under the blue line.
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Figure 11: Illustration of equation 6
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Figure 13: Illustration of Thm. 4.5 and Thm. 4.6 in FICO Data with fairness metric DP. Left figure is
for Caucasian and African American, while the right is for Asian and Hispanic

We also demonstrate the strategic utility under different combinations of q, ϵ with pre-determined
parameters in equation 6 and α “ 0.3 or α “ 0.6. Fig. 15 and 16 suggest the complicated nature of
regular strategic utility under different parameter combinations. It is possible to have 0,1 or 2 extreme
points.

Illustration of threshold shifts while adjusting k

To illustrate 4.5, we demonstrate the effects of adjusting each of k1, k2, k3. According to Fig. 17
and 18, we can see when k1 is large enough, the optimal strategic threshold is definitely lower than
the optimal non-strategic ones. However, when α is small, we need larger k1 to pull θ˚ downward.
According to Fig. 19 and 20, we can see when the population is majority qualified, adjusting k2 is
not guaranteed to shift θ˚ upward (Fig. 20).

Illustration of condition 1.(i), Thm. 4.5

We first show a parameter setting satisfying condition 1.(i) in Thm. 4.5. With pre-determined
parameters in equation 6 , we set q “ ϵ “ 0.5 and αa “ 0.2, αb “ 0.25. This matches the notation
tradition in Sec. 4.3 where group a is the disadvantaged group with a lower qualified percentage.
Also, because q ` ϵ ě 1, the setting satisfies condition 1.(i) in Thm. 4.5. We first illustrate the
manipulation probability under optimal original strategic threshold θ˚

s as in Fig. 11. From Fig. 22,
we can set k1a “ k2a “ 1.25 to let the strategic utility still be larger than the one under non-strategic
optimal threshold(i.e. the solid blue line is above the solid red line), while lower the cumulative
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Figure 14: (Non)-strategic optimal threshold

density dramatically (i.e. the dotted green line) to admit more qualified individuals and disincentivize
manipulation (i.e. the dashed blue line). The details of comparisons are shown in Table 7.

Illustration of condition 1.(ii), Thm. 4.5

With pre-determined parameters in equation 6 , we set q “ ϵ “ 0.25 and αa “ 0.4, αb “ 0.6. This
matches the notation tradition in Sec. 4.3 where group a is the disadvantaged group with a lower
qualified percentage. We first illustrate the manipulation probability under optimal original strategic
threshold θ˚

s as in Fig. 21. Fig. 21 reveals that 1.(ii) in 4.5 is satisfied because the orange and
green points are both located before the extreme large point of PM pθq. Thus, we could increase k1s
to disincentivize manipulation while improving fairness as shown in Fig. 22. From Fig. 22, we
can set k1a “ k2a “ 1.25 to let the strategic utility still be larger than the one under non-strategic
optimal threshold(i.e. the solid blue line is above the solid red line), while lower the cumulative
density dramatically (i.e. the dotted green line) to admit more qualified individuals and disincentivize
manipulation (i.e. the dashed blue line). In Table 6, We summarize the comparison between non-
strategic pθ˚, original strategic θ˚, and adjusted strategic θ˚pk1q (when k1,c “ k1,aa “ 1.25). It shows
that decision-makers by adjusting preferences can significantly mitigate unfairness and disincentivize
manipulation, with only slight decreases in utilities.

Illustration of condition 2, Thm. 4.5

Besides, we also show one more parameter setting satisfying condition 2 in Thm. 4.5. With pre-
determined parameters in equation 6 , we also set q “ ϵ “ 0.2 and αa “ 0.3, αb “ 0.35. This
matches the notation tradition in Sec. 4.3 where group a is the disadvantaged group with a lower
qualified percentage. Also, based on Fig. 21, q ` ϵ ă 1 and αa, αb ă 0.5, the setting satisfies
condition 2 in Thm. 4.5. We first illustrates the manipulation probability under optimal original
strategic threshold θ˚

s and non-strategic threshold xθ˚
s as in Fig. 21. As shown in Fig. 22, for both

groups, we demonstrate the manipulation probability for pθ˚, θ˚ and θpk1q when k1 varies, (non)-
strategic utility and cumulative density conditioned on Y “ 1 (i.e. this measures the unfairness
based on equal opportunity). This plot suggests we can find suitable k2a and k2b to disincentivize
manipulation and promote fairness, while also making the utility higher than the one under non-
strategic optimal threshold. From Fig. 22, we can set both k2a and k2b at 1.25 to let the strategic
utility still be larger than the utility under non-strategic optimal threshold (i.e. the solid blue line is
above the solid red line), while keeping the cumulative density function closer (i.e. the green dotted
line) to mitigate unfairness, and also disincentivize manipulation (i.e. the blue dashed line). The
details of comparisons are shown in Table 8.
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Figure 15: Regular strategic utility when α “ 0.6. The left figure has ϵ “ 0, q “ 0.5 and the right
has ϵ “ 0.75, q “ 0.25
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Figure 16: Regular strategic utility when α “ 0.3. The left figure has ϵ “ 0, q “ 0.5 and the right
has ϵ “ 0.75, q “ 0.25
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Figure 17: Strategic optimal threshold θ˚pk1q after increasing k1 while keeping k2, k3 fixed. Left
figure has q “ 0.01 and right figure has q “ 0.99, while both figures have α “ 0.6

Table 6: Comparison between three types of optimal thresholds for Gaussian data satisfying condition
1.(i). For utility and PM , the left value in parenthesis is for Group a, while the right is for Group b.
The fairness metric is eqopt.

Threshold category Utility PM Unfairness

Non-strategic p0.054, 0.327q p0.519, 0.368q 0.280
Original strategic p0.081, 0.384q p0.266, 0.168q 0.073
Adjusted strategic p0.088, 0.385q p0.176, 0.159q 0.008
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Figure 18: Strategic optimal threshold θ˚pk1q after increasing k1 while keeping k2, k3 fixed. Left
figure has q “ 0.01 and right figure has q “ 0.99, while both figures have α “ 0.3
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Figure 19: Strategic optimal threshold θ˚pk2q after increasing k2 while keeping k1, k3 fixed. Left
figure has q “ 0.01 and right figure has q “ 0.99, while both figures have α “ 0.3
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Figure 20: Strategic optimal threshold θ˚pk2q after increasing k2 while keeping k1, k3 fixed. Left
figure has q “ 0.01 and right figure has q “ 0.99, while both figures have α “ 0.6
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Figure 21: Manipulation probability PM pθq: from left to right are plots for condition 1.(i), 1.(ii), 2
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Figure 22: Illustration of Thm. 4.5 and Thm. 4.6. From left to right are illustrations for condition
1.(i),1.(ii),2
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Figure 23: (Non)-strategic optimal thresholds under different q, ϵ for different ethnic groups (top left:
Caucasian; top right: African American; bottom left: Asian; bottom right: Hispanic)
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Table 7: Comparison between three types of optimal thresholds for Gaussian data satisfying condition
1.(ii). For utility and PM , the left value in parenthesis is for Group a, while the right is for Group b.
The fairness metric is eqopt.

Threshold category Utility PM Unfairness

Non-strategic p0.029, 0.060q p0.434, 0.393q 0.086
Original strategic p0.204, 0.251q p0.046, 0.040q 0.019
Adjusted strategic p0.191, 0.241q p0.023, 0.023q 0

Table 8: Comparison between three types of optimal thresholds for Gaussian data satisfying condition
2. For utility and PM , the left value in parenthesis is for Group a, while the right is for Group b. The
fairness metric is eqopt.

Threshold category Utility PM Unfairness

Non-strategic p´0.036,´0.014q p0.674, 0.686q 0.088
Original strategic p0.001, 0.004q p0.508, 0.547q 0.084
Adjusted strategic p0, 0q p0.500, 0.500q 0.002
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D DERIVATIONS AND PROOFS

D.1 DERIVATIONS OF EQ. EQUATION 1

UM pθq is the expected utility gain of an unqualified agent if choosing to manipulate: i. If the
manipulation is not exposed, the probability of admission is 1´FX|Y pθ|1q because the manipulation
leads the agents to get his/her new feature from P pX|1q, which happens at a probability 1´ϵ; ii. If the
manipulation is exposed, the probability of admission is 0, which happens at a probability ϵ; iii. If the
agent does not manipulate, the probability of admission is 1´FX|Y pθ|0q because now his/her feature
is from the unqualified population, and keep in mind that the agents will never know the exact values
of his/her feature when he/she makes decisions; Then according to the total probability theorem, the
expectation of utility gain UM pθq “ p1 ´ ϵq ¨ p1 ´ FX|Y pθ|1qq ` ϵ ¨ 0 ´ p1 ´ FX|Y pθ|0qq ´ CM .

UIpθq is the expected utility gain of an unqualified agent if choosing to improve: i. If the improvement
succeeds, the probability of admission is 1 ´ FX|Y pθ|1q because the improvement leads the agents
to get his/her new feature from P pX|1q, which happens at a probability q; ii. If the manipulation is
exposed, the probability of admission is 1 ´ F Ipθq, which happens at a probability 1 ´ q; iii. If the
agent does not manipulate, the probability of admission is 1 ´ FX|Y pθ|0q.

Then according to the total probability theorem, we can derive UIpθq as well. Finally, substitute
above two terms into PM pθq “ Pr pUM pθq ą UIpθqq and we get Eq. equation 1.

D.2 PROOF OF THM. 2.3

Assumption 2.2 ensures that PCM´CI
ą 0 when θ in its domain. Thus, we can directly take the

derivative inside equation 1, we can get p1 ´ qq ¨ P Ipθq ´ p1 ´ q ´ ϵqPX|Y pθ|1q. To get its sign, we

only need to consider p1 ´ qq ´ p1 ´ q ´ ϵq
PX|Y pθ|1q

P Ipθq
.

Thus, if 1 ´ q ´ ϵ ď 0, the derivative is always larger than 0 (since q ă 1). So under this situation,
PM is always increasing. Otherwise, since PX|Y pθ|1q

P Ipθq
is increasing according to Assumption 2.1, it

will first increase and then decrease, with PX|Y pθmax|1q

P Ipθmaxq
“

1´q
1´q´ϵ .

Since PX|Y pθmax|1q

P Ipθmaxq
is monotonically increasing and 1´q

1´q´ϵ “ 1` ϵ
1´q´ϵ , when q increases 1` ϵ

1´q´ϵ

increases, making θmax increases. The same also holds when ϵ increases. Note that while q or ϵ
increases, we still need q ` ϵ ď 1.

D.3 PROOF OF THM. 4.1

Assume θ P pa, bq. When q Ñ 1, improvement will always succeed. Also, Thm. 2.3 reveals PM pθq

reaches its minimum when θ Ñ a, so PM paq ă 0.5. Thus, improvement will always bring a benefit
that is larger than manipulation to the strategic decision-maker (since improvement always succeeds).
Thus, the decision maker may set a threshold as low as possible (Ñ a) to maximize its utility, which
will always be lower than the non-strategic optimal threshold.

D.4 PROOF OF PROP. 4.2

Assume θ P pa, bq. Consider the situation when k2, k3 both stay fixed and k1 Ñ 8, U “ Φ ` Û
is dominated by k1ϕ1. Noticing ϕ1 reaches its maximum when θ Ñ a, we will also have the new
optimal θ˚pk1q Ñ a. Since a is the minimum possible value of the threshold, the optimal threshold
when ka is large enough will definitely be smaller than the optimal non-strategic threshold as well as
the original optimal strategic threshold.

D.5 PROOF OF PROP. 4.3

Assume θ P pa, bq. Consider the situation when k1, k3 both stay fixed and k2 Ñ 8, U “ Φ ` Û is
dominated by ´k2ϕ2. ϕ2 Ñ 0 both when θ Ñ b or a (i.e. ϕ2 reaches its minimum). However, the
non-strategic utility should be 0 when θ Ñ b but smaller than 0 when θ Ñ a if not majority of people
are qualified. This will make the new optimal θ˚pk2q Ñ b. Since b is the maximum possible value of
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the threshold, the optimal threshold when k2 is large enough will definitely be larger than the optimal
non-strategic threshold as well as the original optimal strategic threshold.

D.6 PROOF OF PROP. 4.4

Assume θ P pa, bq. Consider the situation when k1, k2 both stay fixed and k3 Ñ b, U “ Φ ` Û is
dominated by ´k3ϕ3. Take the derivative of p1 ´ ϵq ¨ p1 ´ FX|Y pθ|1qq ´ p1 ´ FX|Y pθ|0qq (the term

multiplied by PM in ϕ3), we get 1 ´ p1 ´ ϵq
PX|Y pX|1q

PX|Y pX|0q
. This suggests the term will first increase and

then decrease. Thus, the maximizer of ´k3 ¨ ϕ3 “ ´k3 ¨ PM ¨ p1 ´ p1 ´ ϵq
PX|Y pX|1q

PX|Y pX|0q
q will locate

before the root of p1 ´ ϵq ¨ p1 ´ FX|Y pθ|1qq ´ p1 ´ FX|Y pθ|0qq. Then noticing that increasing ϵ will
lower the value of the root, we can confirm the existence of ϵ̄ to make the root small enough, thereby
making the maximizer of ´k3 ¨ ϕ3 smaller enough. Then because U is dominated by ´k3ϕ3, θ˚pk3q

will also be small enough.

D.7 PROOF OF THM. 4.5

Assume θ P pa, bq.

1. Under condition 1.(i), Thm. 2.3 shows PM pθq strictly increases. Because increasing k1 will cause
θ˚pk1q to left shift until approaching a, PM pθ˚pk1qq will keep decreasing to its minimum value.

2. Under condition 1.(ii), Thm. 2.3 shows PM pθq strictly increases before θmax, where
PX|Y pθmax|1q

P Ipθmaxq
“

1´q
1´q´ϵ . Since PX|Y pθ|1q

P Ipθq
is increasing, we would know θ˚ ă θmax. Because

increasing k1 will cause θ˚pk1q to left shift until approaching a, PM pθ˚pk1qq will keep decreasing to
its minimum value.

3. Under condition 2, Thm. 2.3 shows PM pθq strictly decreases after θmax, where PX|Y pθmax|1q

P Ipθmaxq
“

1´q
1´q´ϵ . Since PX|Y pθ|1q

P Ipθq
is increasing, we would know θ˚ ą θmax. Because increasing k2 when

α ď 0.5 will cause θ˚pk2q to right shift until approaching a, PM pθ˚pk2qq will keep decreasing to
FCM´CI

p0q, which is smaller than PM ppθ˚q.

D.8 PROOF OF THM. 4.6

Define Fc
s as some cumulative density function (CDF) associated with fairness metric C. The

unfairness
ˇ

ˇEX„PC
a

r1px ě θaqs ´ EX„PC
b

r1px ě θbqs
ˇ

ˇ can also be written as Fc
apθaq ´ Fc

apθbq.

1. Under situation 1, Thm. 4.5 already reveals increasing k1 can disincentivize strategic manipulation.
Meanwhile, Fc

spθ˚
s pk1qq will decrease for both groups because θ˚

s pk1q decreases for both group. Thus,
there must exist k1a, k1b to mitigate the difference between Fc

apθ˚
a pk1qq and Fc

bpθ˚
b pk1qq, which is

promoting the fairness at the same time of disincentivizing manipulation.

2. Under situation 2, Thm. 4.5 already reveals increasing k2 can disincentivize strategic manipulation.
Meanwhile, Fc

spθ˚
s pk2qq will increase for both groups because θ˚

s pk2q increases for both group. Thus,
there must exist k2a, k2b to mitigate the difference between Fc

apθ˚
a pk2qq and Fc

bpθ˚
b pk2qq, which is

promoting the fairness at the same time of disincentivizing manipulation.

3.Under situation 3, Thm. 4.5 already reveals increasing k1 for group a and increasing k2 for group b
can disincentivize strategic manipulation. Meanwhile, Fc

spθ˚
a pk1qq will decrease for a and Fc

spθ˚
b pk2qq

increase for b. Thus, because a is already the disadvantaged group, the difference between Fc
spθ˚

a pk1qq

and Fc
spθ˚

b pk2qq will be mitigated, which is promoting the fairness at the same time of disincentivizing
manipulation.

D.9 PROOF OF COROLLARY 4.7

Corollary 4.7 can be derived directly from Thm. 4.5 and Thm. 4.6. To recap, Thm. 4.5 identifies all
scenarios under which manipulation is guaranteed to be disincentivized via adjusting preferences;
Theorem reftheorem:fairness finds all scenarios when promoting fairness and disincentivizing manip-
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ulation can be attained simultaneously; Corollary 4.7 emphasizes all scenarios where disincentivizing
manipulation does not guarantee fairness improvement.

In Corollary 4.7, to ensure the manipulation to always be disincentivized, both groups a, b should
satisfy either scenario identified in Thm. 4.5. This results in four possible combinations, and three
out of these four are the scenarios found in Thm. 4.6. The left one situation is the case in Corollary
4.7 (group a satisfies condition 2 and group b satisfies condition 1). In this case, group a can be
disincentivized only by increasing k2. However, increasing k2 can only make the decision threshold
pθ˚
a higher, which will exacerbate the unfairness (since group a has αa ă 0.5, by condition 2.(i)).
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