
MDP Playground: A Design and Debug
Testbed for Reinforcement Learning

Raghu Rajan1, Jessica Lizeth Borja Diaz1, Suresh Guttikonda1,
Fabio Ferreira1, André Biedenkapp1, Jan Ole von Hartz1 & Frank Hutter1,2

1 University of Freiburg 2 Bosch Center for Artificial Intelligence
rajanr@cs.uni-freiburg.de

Abstract

We present MDP Playground, an efficient testbed for Reinforcement Learning1

(RL) agents with orthogonal dimensions that can be controlled independently2

to challenge agents in different ways and obtain varying degrees of hardness in3

generated environments. We consider and allow control over a wide variety of4

dimensions, including delayed rewards, rewardable sequences, density of rewards,5

stochasticity, image representations, irrelevant features, time unit, action range6

and more. We define a parameterised collection of fast-to-run toy environments7

in OpenAI Gym by varying these dimensions and propose to use these for the8

initial design and development of agents. We also provide wrappers that inject9

these dimensions into complex environments from Atari and Mujoco to allow for10

evaluating agent robustness. We further provide various example use-cases and11

instructions on how to use MDP Playground to design and debug agents. We12

believe that MDP Playground is a valuable testbed for researchers designing new,13

adaptive and intelligent RL agents and those wanting to unit test their agents.14

1 Introduction15

RL has succeeded at many disparate tasks, such as helicopter aerobatics, game-playing and continuous16

control [2, 38, 49, 10, 14, 17]. However, a lot of the insights obtained are on very complex and in17

many instances blackbox environments.18

There are many different types of standard environments, as many as there are different kinds of19

tasks in RL [e.g. 57, 6, 11]. They specialise in specific kinds of tasks. The underlying assumptions20

in many of these environments are that of a Markov Decision Process (MDP) [see, e.g., 44, 52] or21

a Partially Observable MDP (POMDP) [see, e.g., 22, 25]. However, there is a lack of simple and22

general MDPs which capture common difficulties seen in RL and let researchers experiment with23

them in a fine-grained manner. Many researchers design their own toy problems which capture the24

key aspect of their problem and then try to gain whitebox insights because the standard complex25

environments, such as Atari and Mujoco, are too expensive or too opaque for the initial design and26

development of their agent. To standardise this initial design and debug phase of the development27

pipeline, we propose a platform which distils difficulties for MDPs that can be generalised across RL28

problems and allows to independently inject these difficulties.29

Disadvantages of complex environments when considered from a point of view of a design and30

debug testbed include: 1) They are very expensive to evaluate. For example, a DQN [38] run on31

Atari [6] took us 4 CPU days and 64GB of memory to run. 2) The environment structure itself is32

so complex that it leads to “lucky” agents performing better (e.g., in [18]). Furthermore, different33

implementations even using the same libraries can lead to very different results [18]. 3) Many34

difficulties are concurrently present in the environments and do not allow us to independently test35

Submitted to the 35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets
and Benchmarks. Do not distribute.

their impact on agents’ performance. During the design phase, we need environments to encapsulate,36

preferably orthogonally, the different difficulties present. For instance, MNIST [32] captured some37

key difficulties required for computer vision (CV) which made it a good testbed for designing and38

debugging CV algorithms, even though it cannot be used to directly learn models for much more39

specific CV applications such as classification of plants or medical image analysis.40

The main contributions of this paper are:41

• We identify and discuss dimensions of MDPs that can have a significant effect on agent42

performance, both for discrete and continuous environments;43

• We discuss how to use MDP Playground to design and debug agents with various experi-44

ments; toy experiments can be run in as few as 30 seconds on a single core of a laptop;45

• We discuss insights that can be gained with the various considered dimensions; transferring46

insights from toy to complex environments for some under-studied dimensions led to47

significant improvements in performances on complex environments.48

2 Dimensions of MDPs49

We try to exhaustively identify orthogonal dimensions of hardness in RL by going over the many50

components of a (PO)MDP. By orthogonal, we mean that these dimensions are present independent51

of each other in environments. This was tried exhaustively to allow as many dimensions as possible52

for researchers to systematically study them and gain new insights.53

We define an MDP as a 7-tuple (S,A, P,R, ρo, γ, T), where S is the set of states, A is the set of54

actions, P : S × A → S describes the transition dynamics, R : S × A × S → R describes the55

reward dynamics, ρo : S → R+ is the initial state distribution, γ is the discount factor and T is the56

set of terminal states. We define a POMDP with two additional components - O represents the set of57

observations and Ω : S ×A×O → R+ describes the probability density function of an observation58

given a state and action. To clarify terminology, following [51] we will use information state to mean59

the state representation used by the agent and belief state as the posterior belief of the unobserved60

state given the full observation history. If the belief state were to be used as the information state by61

an agent, this would be sufficient to compute an optimal policy. However, since the full observation62

history is not tractable to store for many environments, agents in practice use the last few observations63

as their information state which renders it only partially observable. This is important because many64

of the motivated dimensions are actually due to the information state being non-Markov.65

2.1 MDPs in MDP Playground66

Toy Environments The toy environments are cheap and encapsulate all the identified dimensions.67

The components of the MDP can be automatically generated according to the dimensions or can be68

user-defined. Any dimension not specified is set to a vanilla default value. Further, the underlying69

MDP state is exposed in an augmented_state variable, which allows users to design agents that may70

try to identify the true underlying MDP state given the observations. We now briefly describe the71

auto-generated discrete and continuous environments, since we use these for the experiments section72

and expect that these will cover the majority of the use-cases. This is followed by implementation73

details of selected dimensions; details for all dimensions can be found in Algorithm 1 in Appendix C.74

Discrete Environments In the discrete case, S and A contain categorical elements, and random75

instantiations of P and R are generated after the remaining dimensions have been set. The generated76

P and R are deterministic and held fixed for the environment. We keep ρo to be uniform over the77

non-terminal states, and T is fixed to be a subset of S based on a chosen terminal state density.78

Continuous Environments In the continuous case, environments correspond to the simplest real79

world task we could find: moving a rigid body to a target point, similar to [16] and [28]. P is80

formulated such that each action dimension affects the corresponding space dimension - s is set to be81

equal to the action applied for time unit seconds on a rigid body. This is integrated over time to yield82

the next state. R is designed such that the reward for the current time step is the distance travelled83

towards the target since the last step.84

Both, the discrete and continuous environments, in MDP Playground can be described as graphical85

POMDPs.86

2

2.2 Motivations of Dimensions and Implementations87

We now describe many of the dimensions from a general point of view and their implementations in88

MDP Playground. For clarity, we describe only the dimensions with experiments in the main paper89

here in greater detail and refer the reader to Appendix B and the documentation for more detailed90

descriptions of all the dimensions.91

Reward Delay For many environments, in many situations, agents perform an action that is conse-92

quential to receiving a reward but the agent is only rewarded in a delayed manner [see e.g. 4] (see93

Figure 1d). For example, shooting at an enemy ship in Space Invaders leads to rewards much later94

than the action of shooting. Any action taken after that is inconsequential to obtaining the reward for95

destroying that enemy ship. In MDP Playground, the reward is artificially delayed by a non-negative96

integer number of timesteps, d.97

Reward Density Environments can also be characterised by their reward density. When an en-98

vironment has denser rewards (see Figure 1a), one is more likely to obtain a supervisory reward99

signal. In sparse reward settings [15], the reward is 0 more frequently, especially, for example, in100

continuous control environments where a long trajectory is followed and then a single non-zero101

reward is received at its end. In MDP Playground, for discrete environments, the reward density,102

rd, is defined as the fraction of possible sequences of length n that are actually rewarded by the103

environment, given that n is constant. If numr sequences are rewarded, we define the reward density104

to be rd = numr/
(|S|−|T |)!

(|S|−|T |−n)! and the sparsity as 1− rd. For continuous environments, density is105

controlled by having a sparse or dense environment using a make_denser configuration option.106

Stochasticity Another characteristic of environments that can significantly impact performance of107

agents is stochasticity. The environment, i.e., dynamics P and R, may be stochastic or may seem108

stochastic to the agent due to partial observability or sensor noise (see Figure 1b-1c). A robot109

equipped with a rangefinder, for example, has to deal with various sources of noise in its sensors [55].110

In MDP Playground, for discrete environments, transition noise t_n ∈ [0, 1]; with probability t_n,111

an environment transitions uniformly at random to a state that is not the true next state given by P .112

For discrete environments, reward noise r_n ∈ R; a normal random variable distributed according113

to N (0, σ2
r_n) is added to the true reward. For continuous environments, both p_n and r_n are114

normally distributed and directly added to the states and rewards.115

Irrelevant Features Environments also tend to have a lot of irrelevant features [45] that one need116

not focus on. This holds for both table-based learners and approximators like Neural Networks117

(NNs). NNs additionally can even fit random noise [64] and having irrelevant features is likely118

to degrade performance. For example, in certain racing car games, though the whole screen is119

visible, concentrating on only the road would be more efficient without loss in performance. In MDP120

Playground, for discrete environments, a new discrete dimension with its own transition function121

Pirr which is independent of P , is introduced. However, only the discrete dimension corresponding122

to P is relevant to calculate the reward function. Similarly, in continuous environments, dimensions123

of S and A are labelled as irrelevant and not considered in the reward calculation.124

Representations Another aspect is that of representations. The same underlying state may have125

many different external representations/observations, e.g., feature space vs pixel space. Mujoco tasks126

may be learnt in feature space vs directly from pixels, and Atari games can use the underlying RAM127

state or images. For images, various image transformations [shift, scale, rotate, flip and others; 19]128

may manifest as observations of the same underlying state and can pose a challenge to learning. In129

MDP Playground, for discrete environments, when this aspect is enabled, each categorical state is130

associated with an image of a regular polygon which becomes the externally visible observation o to131

the agent. This image can further be transformed by shifting, scaling, rotating or flipping, which are132

applied at random to the polygon whenever an observation is generated. For continuous environments,133

image observations can be rendered for 2D environments. Examples of some generated states can be134

seen in Figures 10-11 in Appendix I.135

Time Unit and Action Range For continuous control problems, we describe 2 additional dimensions136

here: action range [26], a weight penalising actions; and time unit, the discretisation of time (see137

Figure 1e).138

We now summarise the dimensions identified above (with the (PO)MDP component they impact in139

brackets):140

3

S0 S2
a+

R = 0S1a-

R = 1

R = 0S3a-

(a) R density: only 1 of 3
possible actions (a+) leads
to a reward

S0 S20.8

S1

S3
0.1

0.1

(b) P noise: A noise of 0.2
(split into 0.1 and 0.1 and
shown with dotted lines)
is shown to lead the agent
to a state which is not the
true next state.

S0 S1

R = 1

S0 S1

R = 0.79

S0

R = 1.05

S1

(c) R noise: The same
transition leads to differ-
ent rewards.

S0 S1 S2
a+ a-

R = 0 R = 1

(d) R delay: The rewarding action (a+)
leads to a reward not immediately but
a step later than it was executed and
this reward is achieved even though an
action inconsequential to achieving the
reward (a-) was performed. Note: the
reward would have been achieved a step
later irrespective of which action was
performed in the second step.

S0 S0.5

t = 0.5

S1

t = 1

(e) Time Unit: We depict a "half" ac-
tion, i.e., performed for a time unit that
is half the default time unit, leading to
an intermediate state

Figure 1: We depict some of the dimensions visually following [59]. Not all states and actions are
depicted to focus on the dimension of interest. Rewarding actions are shown as a+ while actions
shown as a- are not rewarding. Reward is shown as R and time unit as t.

• Reward Delay (R)
• Reward Density (R)
• Transition Noise (P)

• Reward Noise (R)
• Irrelevant Features (O)
• Representations (O)

• Action Range (A)
• Time Unit (P)141

Only selected dimensions are included here, to aid in understanding and to show use-cases for MDP142

playground. Trying to exhaustively identify dimensions has led to a very flexible platform and143

Appendix B lists all the dimensions of MDP Playground. We would like to point out that it largely144

depends on the domain which dimensions are important. For instance, in a video game domain, a145

practitioner may not want to inject any kind of noise into the environment, if their only aim is to146

obtain high scores, whereas in a domain like robotics adding such noise to a deterministic simulator147

could be crucial in order to obtain generalisable policies [56].148

3 MDP Playground149

Code samples An environment instance is created as easily as passing a Python dict:150

from mdp_playground.envs import RLToyEnv
config = {

’state_space_type’: ’discrete’,
’action_space_size’: 8,
’delay’: 1,
’sequence_length’: 3,
’reward_density’: 0.25,
}

env = RLToyEnv(**config)

Very low-cost execution Experiments with151

MDP Playground are cheap, allowing aca-152

demics without special hardware to perform153

insightful experiments. Wall-clock times de-154

pend a lot on the agent, network size (in case155

of NNs) and the dimensions used. Neverthe-156

less, to give the reader an idea of the runtimes157

involved, DQN experiments (with a network158

with 2 hidden layers of 256 units each) took159

on average 35s for a complete run of DQN160

4

none s S f r sSrf
image_transforms

0

50

Re
wa

rd

(a) DQN

none s S f r sSrf
image_transforms

0

50

Re
wa

rd

(b) Rainbow

none s S f r sSrf
image_transforms

0

100

Re
wa

rd

(c) A3C

2 4 8 16
image_sh_quant

0

50

Re
wa

rd

(d) DQN shift

Figure 2: AUC of episodic reward at the end of training for the different agents when varying
representation. ’s’ denotes shift (quantisation of 1), ’S’ scale, ’f’ flip and ’r’ rotate in the labels
in the first three subfigures and image_sh_quant represents quantisation of the shifts in the DQN
experiment for this. Error bars represent 1 standard deviation. Note the different reward scales.

0.1 0.2 0.5 1.0 2.0 4.0 8.0
time_unit

0

5

Re
w

ar
d

(a) time unit toy

0.2 0.4 1.0 2.0 4.0
time_unit

0

5000

Re
wa

rd

(b) time unit complex

2 3 4 6 10
state_space_dim

0

5

Re
wa

rd

(c) irr. dims. rew.

0 1 2 4 8
delay

0

1000

Re
wa

rd

(d) DQN qbert

Figure 3: a and b: DDPG with time unit on toy and complex (HalfCheetah) environment at the end
of training (time unit is relative to the defaults). c: DDPG with irrelevant dimensions injected on
the toy environment. d: DQN on qbert. Error bars represent 1 standard deviation. Note the different
y-axis scales.

for 20 000 environment steps. In this setting,161

we restricted Ray RLLib [33] and the under-162

lying Tensorflow [1] to run on one core of a laptop (core-i7-8850H CPU – the full CPU specifications163

for a single core can be found in Appendix R). This equates to roughly 30 minutes for the entire delay164

experiment shown in Figure 12a which was plotted using 50 runs (10 seeds × 5 settings for delay;165

these 50 runs could also be run in an embarrassingly parallel manner on a cluster). Even when using166

the more expensive continuous or representation learning environments, runs were only about 3-5167

times slower.168

Complex Environment Wrappers We further provide wrappers for Atari and Mujoco which can be169

used to inject some of the dimensions also into complex environments.170

Design decisions While many dimensions can seem challenging at first, it is also the nature of RL171

that different dimensions tend to be important in different specific applications. The video game172

domain was provided as an example of this in Section 2.2. Another example is of reward scale. The173

agents we tested here re-scale or clip rewards already and the effects of this dimension are not as174

important as they would be otherwise. To maintain the flexibility of having as many dimensions as175

possible and yet keep the platform easy to use, default values are set for dimensions that are not176

configured. This effectively turns off those dimensions. Thus, as in the code example, users only177

need to provide dimensions they are interested in.178

Further design decisions are discussed in detail in Appendix G.179

4 Using MDP Playground180

We discuss in detail various experiments along with how they may be used to design new agents and181

to debug existing agents. For the experiments, we set |S| and |A| to 8 and the terminal state density182

to 0.25. The reward scale is set to 1.0 whenever a reward is given by the environment. We evaluated183

Rllib implementations [33] of DQN [38], Rainbow DQN [20], A3C [37] on discrete environments184

and DDPG [34], TD3 [14] and SAC [17] on continuous environments over grids of values for the185

dimensions. Hyperparameters and the tuning procedure used are available in Appendix O. We used186

fully connected networks except for pixel-based representations where we used Convolutional Neural187

Networks (CNNs) [31].188

4.1 Designing New Agents189

We hope our toy environments will help identify inductive biases needed for designing new RL agents190

without getting confounded by other sources of "noise" in the evaluation. What is important for doing191

5

this is to be able to identify if the trends seen on the toy environments would also occur for more192

complex environments. We now provide empirical support for this with several experiments.193

We tested the trends of the dimensions on more complex Atari and Mujoco tasks. For Atari, we ran194

the agents on beam_rider, breakout, qbert and space_invaders when varying the dimensions delay195

and transition noise. For Mujoco, we ran the agents on HalfCheetah, Pusher and Reacher using196

mujoco-py when varying the dimensions time unit and action range. We evaluated 5 seeds for 500k197

steps for Pusher and Reacher, 3M for HalfCheetah and 10M (40M frames) for Atari. The values198

shown for action range and time unit are relative to the ones used in Mujoco.199

Varying representations We turned on image representations for discrete environments and applied200

various transforms (shift, scale, rotate and flip) one at a time and also all at once. We observed that201

the more transforms are applied to the images, the harder it is for agents to learn, as can be seen in202

Figures 2a-c. This was to be expected since there are many more combinations to generalise over for203

the agent.204

It is important to note, from the point of view of a design platform, that our platform allows us to205

identify the inductive bias of CNNs being good for image observations without having to conduct206

such experiments on complex and expensive environments. This is because the toy environments207

capture many key features of image representations and thus the image classification capabilities of208

CNNs can help identify the underlying MDP state. In a similar manner, we have captured key features209

of other dimensions. If one were to design a new inductive bias which helps the agent identify the210

underlying MDP state in the presence of the other dimensions, this could be tested in a coarse and211

quick manner on our platform.212

Varying time unit We observed that the time unit has an optimal value which has significant impact213

on performance in the toy continuous environment (Figure 3a), i.e., that it can be neither too small214

nor too large. We decided to tune the time unit also for complex environments (Figures 3b, 8 and 9).215

The insight from the toy environment transferred to the complex case and there were gains of even216

100% in some cases over the default value of the time units used in the "expert-tuned" environments.217

A further insight to be had is that for simpler environments like the toy, Pusher and Reacher, the218

effect of the selection of the time unit was not as pronounced as for a more complex environment like219

HalfCheetah. This makes intuitive sense as one can expect a narrower range of values to work for220

more complex environments. This shows that it is even more important to tune such dimensions for221

more complex environments.222

The basic agent design we showed above does this once and sets its optimal time unit statically. An223

ideal adaptive agent design would even set the time unit in an online manner. Since the trends from224

the toy environment coarsely transfer to the complex environments, coarse and quick insights can be225

gained on the toy environments.226

Varying action range We observed similar trends as for time unit, in that there was an optimal227

value of action range, i.e., that it can be neither too small nor too large. Figure 9 shows this for all228

considered agents on HalfCheetah (for SAC and DDPG, runs for action range values>= 2 and>= 4229

crashed and are absent from the plot). This supports the insight gained on our simpler environment230

that tuning this value may lead to significant gains for an agent. For already tuned environments, such231

as the ones in Gym, this dimension is easily overlooked but when faced with new environments setting232

it appropriately can lead to substantial gains. In fact, even in the tuned environment setting of Gym,233

we found that all three algorithms performed best for an action range 0.25 times the value found in234

Gym for Reacher (Figures 8c, 8k, 8g in Appendix H). Moreover, the learning curves in Appendix235

N further show that for increasing action range the training gets more variant. The difference in236

performances across the different values of action range is much greater in the complex environments.237

We believe this is due to correlations within the multiple degrees of freedom as opposed to a rigid238

object in the toy environment.239

To the best of our knowledge, the impact of time unit and action range is under-researched while240

developing agents because the standard environments have been pre-configured by experts. However,241

it’s clear from Figure 3b, that pre-configured values were not optimal and even basic tuning improves242

performance significantly in even known environments. In a completely unknown environment, if we243

want agents to perform optimally, these dimensions would need to be taken into account even more244

when designing agents.245

6

Varying transition noise We observe similar trends for injecting transition noise into Atari envi-246

ronments for all three agents as for the toy environments. We also observe that for some of the247

environments, transition noise actually helps improve performance. This has also been observed in248

prior work [61]. This happens when the exploration policy was not tuned optimally since inserting249

transition noise is almost equivalent to ε-greedy exploration for low values of noise. We also observed250

a similar effect for the toy environments in Figure 18 in Appendix J. However, we also observe that251

performance drop is different for different environments. This is to be expected as there are other252

dimensions of hardness which we cannot control or measure for these environments.253

Varying reward delay We see that on average performance drops for the delay experiments when254

more delay is inserted , as was the case for the toy environments. For qbert (Figure 3d), these drops255

are greater on average across the agents. However, for breakout (Figure 6b), in many instances, we256

don’t even see performance drops. In beam_rider (Figure 6a) and space_invaders (Figure 6d), the257

magnitude of these effects are intermediate to breakout and qbert. This trend becomes clearer when258

we also look at Figures 7b-p in Appendix H. We believe this is because large delays from played259

action to reward are already present in breakout, which means that inserting more delays does not260

have as large an effect as in qbert (Figures 3d). Agents are strongest affected in qbert which, upon261

looking at gameplay, we believe has the least delays from rewarding action to reward compared262

to the other games. The trends for delay were noisier than for transition noise, even though on263

average the trends transferred from MDP Playground to the complex environments. Many considered264

environments tend to also have repetitive sequences which would dilute the effect of injecting delays.265

Many of the learning curves in Appendix N, with delays inserted, are indistinguishable from normal266

learning curves. We believe that, in addition to the motivating examples, this is empirical evidence267

that delays are already present in these environments and so inserting them does not cause the curves268

to look vastly different. In contrast, when we see learning curves for transition noise, we observe269

that, as we inject more and more noise, training tends to a smoother curve as the agent tends towards270

becoming a completely random agent.271

Additionally, we also have experiments with similar trends also for another dimension - reward272

noise. The average rank correlation over 12 experiments (3 agents x 4 Atari environments) was 0.867273

for transition noise, 0.617 for reward delay, and 0.733 for reward noise. Tables 1, 2 and 3 list the274

individual rank correlation for each experiment, i.e. agent, environment and dimension.275

To analyse transfer of dimensions between toy and complex benchmarks, for the Atari experiments,276

we use the Spearman rank correlation coefficient between corresponding toy and complex experiments277

for performance across different values of the dimension of hardness. The Spearman correlation was278

>= 0.7 for 19 out of 24 experiments and a positive correlation for four of the remaining five. DQN279

with delays added on breakout was the only experiment with correlation 0.280

Varying irrelevant features We observed that introducing irrelevant dimensions to the control prob-281

lem, while keeping the number of relevant dimensions fixed to 2, decreased an agent’s performance282

(see Figures 3c & 17f). This gives us the insight that having irrelevant features interferes with the283

learning process. An inductive bias that learns to focus only on the relevant dimensions could be284

unit-tested to gain coarse insights on the toy environments.285

We have shown similar trends for SAC on HalfCheetah in Figure 9a in Appendix H.286

Varying Multiple Dimensions In MDP Playground, it is possible to vary multiple dimensions at the287

same time in the same base environment. For instance, Figure 4d shows the interaction effect (an288

inversely proportional relationship) between the action range and the time unit in the continuous toy289

environment with DDPG. This insight allows us to design an adaptive agent which sets its action290

range depending on the time unit and vice versa. Since many real-world systems can be described291

in terms of a simple rigid body moving towards a target point, the toy continuous environment is a292

useful testbed for this.293

More such experiments can be found in Appendix L, including varying both P and R noises together294

in discrete environments and more. Further design ideas for new agents can be found in Appendix E.295

4.2 Insights into Existing Agents296

Apart from the insights gained for designing agents above, we discuss more insights for existing297

agents explicitly here.298

7

The experiment for varying representations on toy environments discussed above (Figures 2a-c)299

further showed that the degradation in performance is much stronger for DQN compared to Rainbow300

and A3C which are known to perform better than DQN in complex environments.301

This led us to another interesting insight regarding the inductive bias of CNNs. It was unexpected302

for us that the most problematic transform for the agents to deal with was shift. Despite the spatial303

invariance learned in CNNs [30], our results imply that that seems to be the hardest one to adapt to.304

As these trends were strongest in DQN, we evaluated further ranges for the individual transforms305

for DQN. Here, shifts had the most possible different combinations that could be applied to the306

images. Therefore, we quantised the shifts to have fewer possible values. Figure 2d shows that DQN’s307

performance improved with increasing quantisation (i.e., fewer possible values) of shift. We noticed308

similar trends for the other transforms as well, although not as strong as they do not have as many309

different values as shift (see Figures 29b-c in Appendix J). We emphasize that in a more complex310

setting, we would have easily attributed some of these results to luck but in the setting where we had311

individual control over the dimensions, our platform allowed us to dig deeper in a controlled manner.312

Another insight we gain is from the time unit experiment (see Figures 3a and 3b), which indicates313

time unit should not be infinitesimally small to achieve too fine-grained control since there is an314

optimal time unit for which we should repeat the same action [7].315

transition_noise

reward_noise

reward_density

delay

sequence_length

image_transforms

20

40

60

80

A3C
DQN
RAINBOW

(a) discrete envs.

transition_noise

reward_noise

target_radius

action_range time_unit

action_loss_weight

state_space_dim

2

4

6

DDPG
TD3
SAC

(b) cont. envs. (c) reward density

0.02 0.05 0.1
time_unit

0.25

0.5

1.0

ac
tio

n_
sp

ac
e_

m
ax

0

1

2

3

4

Reward

(d) action range + time unit

Figure 4: Analysing and Debugging

In Figure 3d, where we varied delay on qbert, we show how a dimension induces hardness in an316

environment. This result is representative of the experiments on toy and complex environments which317

are included in Appendix H and H with the difference that results are noisier in complex environments318

since the dimensions are already present there in varying degrees. We, thus, studied what kinds319

of failure modes can occur when an agent is faced with such dimensions and even obtained noisy320

learning curves typically associated with RL on the toy environments as can be seen in Appendix M.321

At the same time, the experiment in Figure 3d also shows how the complex environment wrappers322

allow researchers, who are curious, to study the robustness of their agents to these dimensions on323

complex environments, without having to fiddle with lower-level code. This is a typical use-case324

further down the agent development pipeline, i.e., close to deployment.325

Design and Analyse Experiments We allow the user the power to inject dimensions into toy or326

complex environments in a fine-grained manner. This can be used to define custom experiments with327

the dimensions. The results can be analysed in an accompanying Jupyter notebook using the 1D328

plots. There are also radar plots inspired by bsuite [42], but with more flexibility in choosing the329

dimensions, and these can even be applied to complex environment experiments. Since, different330

users might be interested in different dimensions, these are loaded dynamically from the data. For331

instance, radar plots for the dimensions we varied in our toy experiments can be seen as in Figures 4a332

and 4b.333

4.3 Debugging Agents334

Analysing how an agent performs under the effect of various dimensions can reveal unexpected335

aspects of an agent. For instance, when using bsuite agents, we noticed that when we varied our336

environment’s reward density, the performance of the bsuite Sonnet DQN agent would go up in337

proportion to the density (see Figure 4c). This did not occur for other bsuite agents. This seemed to338

suggest something different for the DQN agent and when we looked at DQN’s hyperparameters we339

realised that it had a fixed ε schedule while the other agents had decaying schedules. Such insights340

8

can easily go unnoticed if the environments used are too complex. The high bias nature of our toy341

environments helps debug such cases.342

In another example, in one of the Ray versions we used, we observed that DQN was performing well343

on the varying representations environment while Rainbow was performing poorly. We were quickly344

able to ablate additional Rainbow hyperparameters on the toy environments and found that their noisy345

nets [13] implementation was broken (see Figure 5 in Appendix). We then tested and observed the346

same on more complex environments. This shows how easily and quickly agents can be debugged to347

see if something major is broken. This, in combination with their low computational cost, also makes348

a case to use the toy environments in Continuous Integration (CI) tests on repositories.349

Further, we believe the same structured nature of MDP Playground also makes it a valuable tool350

for theoretical research. We evaluated tabular baselines Q-learning [52], Double Q-learning [60]351

and SARSA [52] on the discrete non-image based environments with similar qualitative results to352

those for deep agents. These can be found in Appendix K. This makes our platform a bridge between353

theory and practice where both kinds of agents can be tested.354

The experiments here are only a glimpse into the power and flexibility of MDP Playground. Users355

can even upload custom P s and Rs and custom images for representations O and our platform takes356

care of injecting the other dimensions for them (wherever possible). This allows users to control357

different dimensions in the same base environment and gain further insights.358

5 Discussion and Related Work359

The Behaviour Suite for RL [bsuite; 42] is the closest related work to MDP Playground. [42] collect360

known (toy) environments from the literature and use these to characterise agents based on their361

performance on these environments. Most environments in bsuite can be seen as an intermediate362

step between our MDPs and more complex environments. This is because bsuite’s environments363

are already more specific and complex than the toy environments in MDP Playground. This makes364

bsuite’s dimensions not orthogonal and atomic like ours and thus not individually controllable. Fine-365

grained control is a feature that sets our platform apart. bsuite has a collection of presets chosen by366

experts which work well but would be much harder to play around with. While MDP Playground367

also has good presets through default values defined for experiments, it is much easier to configure.368

Further, it also means that bsuite experiments are much more expensive than ours. While bsuite itself369

is quite cheap to run, MDP Playground experiments are an order of magnitude cheaper. In contrast370

to bsuite, we demonstrate how the identified trends on the toy and complex environments can be371

used to design and debug agents. Further, bsuite currently has no toy environment for Hierarchical372

RL (HRL) agents while MDP Playground’s rewardable sequences fits very well with HRL. Finally,373

bsuite offers no continuous control environments, whereas MDP Playground provides both discrete374

and continuous environments. This is important because several agents like DDPG, TD3, SAC are375

designed for continuous control. A more detailed comparison with bsuite and other related work can376

be found in Appendix D.377

Toybox [58] and Minatar [62] are also cheap platforms like ours with similar goals of gaining deeper378

insights into RL agents. However, their games target the specific Atari domain and are, like bsuite,379

more specific and complementary to our approach.380

We found [3] the most similar work to ours in spirit. They propose that current deep RL research381

has been increasing the complexity of the dynamics P but has not paid much attention to the state382

distributions and reward distribution over which RL policies work and that this has made RL agents383

brittle. This also raises concerns about the narrow scope of these so-called "complex" environments384

and we aim to remedy that with our dimensions. We agree with them in this regard. However, they385

only target continuous environments. We capture their dimensions in a different manner and offer386

many more dimensions with fine-grained control. Furthermore, their code is not open-source.387

Further research includes Procgen [11], Obstacle Tower [24] and Atari [6]. Procgen adds various388

heterogeneous environments and tries to quantify generalisation in RL. In a similar vein, Obstacle389

Tower provides a generalization challenge for problems in vision, control, and planning. These390

benchmarks do not capture orthogonal dimensions of difficulty and as a result, they do not have the391

same type of fine-grained control over their environments’ difficulty and neither can each dimension392

be controlled independently. We view this as a crucial aspect when testing new agents. [12] provides393

9

some overlapping dimensions with our platform but it consists of only continuous environments, and394

doesn’t target the toy domain.395

6 Limitations of the Approach and its Ethical and Societal Implications396

The toy environments are meant to be design and debug testbeds and not for engineering/tuning the397

final agent HPs. As such, they are extremely cheap compared to complex environments and (as one398

would expect), they can only be used to draw high-level insights that transfer and are likely not as399

discriminating as complex environments for many of the finer changes between RL agents. They400

also cannot be used directly to determine the values of hyperparameters (HPs) to use on complex401

environments. For example, just as complex environments require bigger NNs, they would need402

correspondingly different HPs, such as bigger replay buffers. Even the performance of agents in bsuite403

(which has more complex environments than our benchmark) do not transfer to the more complex404

environments (https://github.com/deepmind/bsuite/issues/14). In a similar vein, to the405

best of our knowledge, MNIST hyperparameters do not transfer to ImageNet and it is only used for406

testing out initial design ideas.407

Further, high-dimensional control problems where there are interaction effects between degrees of408

freedom are not captured in the toy rigid body control problem as this is the domain of complex409

benchmarks and beyond the scope of this platform. (The platform does provide complex environment410

wrappers, though, which inject some of the mentioned dimensions. We couldn’t find such wrappers411

in the literature/on the Internet.)412

Finally, Multi-Agent RL, Multi Objective RL, Time Varying MDPs (and probably some more research413

areas) are beyond the scope of the current work.414

In terms of the broader impact on society and ethical considerations, we foresee no direct impact,415

only indirect consequences through RL since our work promotes standardisation and reproducibility416

which should accelerate RL research. An additional environmental impact would be that, at least,417

prototyping and testing of agents could be done cheaply, reducing carbon emissions.418

7 Conclusion and Future Work419

We introduced a low-cost platform to design and debug RL agents and provided instructions on420

how to use it with supporting experiments. The platform allows us to disentangle various factors421

that make RL environments hard by providing fine-grained control over various dimensions. This422

also lends itself to easily achievable insights and helps debug agents. We further demonstrated423

how the performance of the studied agents is adversely affected by the dimensions. To the best of424

our knowledge, we are the first to perform a principled study of how significant aspects such as425

non-Markov information states, irrelevant features, representations and low-level dimensions, like426

time discretisation, affect agent performance.427

We want MDP Playground to be a community-driven effort and it is open-source for the benefit428

of the RL community at https://github.com/automl/mdp-playground. While we tried to429

exhaustively identify dimensions of hardness, it is unlikely that we have captured all orthogonal430

dimensions in RL. We welcome more dimensions that readers think will help us encapsulate further431

challenges in RL and will add them based on the community’s thoughts.432

Future work can tackle not only theoretical development of such dimensions but also additional433

analysis of such dimensions in complex domains such as Mujoco and dexterous manipulation [46].434

Given the current brittleness of RL agents [18], and many claims that have been challenged [5, 58],435

we believe RL agents need to be tested on a lower and more basic level to gain insights into their436

inner workings. MDP Playground is like a programming language for regularly structured MDPs437

which allows delving deeper into the inner workings of RL agents.438

10

https://github.com/deepmind/bsuite/issues/14
https://github.com/automl/mdp-playground

Acknowledgements439

The authors gratefully acknowledge support by BMBF grant DeToL, by the Bosch Center for440

Artificial Intelligence, and by the European Research Council (ERC) under the European Union’s441

Horizon 2020 research and innovation programme under grant no. 716721, by the state of Baden-442

Württemberg through bwHPC and the German Research Foundation (DFG) through grant no INST443

39/963-1 FUGG. They would like to thank their group, especially Joerg, Steven, Samuel, for helpful444

feedback and discussions. Raghu would like to additionally thank Michael Littman for his feedback445

and encouragement and the RLSS 2019, Lille organisers and participants who he had interesting446

discussions with.447

References448

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A. Davis, J. Dean,449

M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,450

L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,451

M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Va-452

sudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng.453

TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.454

[2] P. Abbeel, A. Coates, and A. Y Ng. Autonomous helicopter aerobatics through apprenticeship455

learning. The International Journal of Robotics Research, 29(13):1608–1639, 2010.456

[3] Olov Andersson and Patrick Doherty. Toward robust deep rl via better benchmarks: Identifying457

neglected problem dimensions. In 2nd Reproducibility in Machine Learning Workshop at ICML458

2018, Stockholm, Sweden, 2018.459

[4] J. A. Arjona-Medina, M. Gillhofer, M. Widrich, T. Unterthiner, J. Brandstetter, and S. Hochreiter.460

RUDDER: return decomposition for delayed rewards. In H. M. Wallach, H. Larochelle,461

A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, editors, Proceedings of the 32nd462

International Conference on Advances in Neural Information Processing Systems (NeurIPS’19),463

pages 13544–13555, 2019.464

[5] Akanksha Atrey, Kaleigh Clary, and David D. Jensen. Exploratory not explanatory: Coun-465

terfactual analysis of saliency maps for deep reinforcement learning. In 8th International466

Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.467

OpenReview.net, 2020.468

[6] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An469

evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,470

Jun 2013.471

[7] A. Biedenkapp, R. Rajan, F. Hutter, and M. Lindauer. Towards TempoRL: Learning when to472

act. In Workshop on Inductive Biases, Invariances and Generalization in RL (BIG@ICML’20),473

July 2020.474

[8] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.475

OpenAI gym. arXiv:1606.01540 [cs.LG], June 2016.476

[9] P. Chrabaszcz, I. Loshchilov, and F. Hutter. Back to basics: Benchmarking canonical evolution477

strategies for playing atari. In J. Lang, editor, Proceedings of the Twenty-Seventh International478

Joint Conference on Artificial Intelligence, (IJCAI’18), pages 1419–1426. ijcai.org, 2018.479

[10] K. Chua, R. Calandra, R. McAllister, and S. Levine. Deep reinforcement learning in a handful of480

trials using probabilistic dynamics models. In Proceedings of the 31st International Conference481

on Advances in Neural Information Processing Systems (NeurIPS’18), pages 4754–4765, 2018.482

[11] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman. Leveraging Procedural Generation to Bench-483

mark Reinforcement Learning. arXiv:1912.01588 [cs.LG], Dec 2019.484

[12] Gabriel Dulac-Arnold, Nir Levine, Daniel J. Mankowitz, Jerry Li, Cosmin Paduraru, Sven485

Gowal, and Todd Hester. An empirical investigation of the challenges of real-world reinforce-486

ment learning. CoRR, abs/2003.11881, 2020.487

11

[13] M. Fortunato, M. G. Azar, B. Piot, J. Menick, M. Hessel, I. Osband, A. Graves, V. Mnih,488

R. Munos, D. Hassabis, O. Pietquin, C. Blundell, and S. Legg. Noisy networks for exploration.489

In Proceedings of the International Conference on Learning Representations (ICLR’18), 2018.490

Published online: iclr.cc.491

[14] S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-critic492

methods. In J. G. Dy and A. Krause, editors, Proceedings of the 35th International Conference493

on Machine Learning (ICML’18), pages 1582–1591. PMLR, 2018.494

[15] R. D. Gaina, S. M. Lucas, and D. Pérez-Liébana. Tackling sparse rewards in real-time games495

with statistical forward planning methods. In Proceedings of the 33rd Conference on Artificial496

Intelligence (AAAI’19), pages 1691–1698. AAAI Press, 2019.497

[16] T. Haarnoja, H. Tang, P. Abbeel, and S. Levine. Reinforcement learning with deep energy-based498

policies. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference499

on Machine Learning, (ICML’17), pages 1352–1361. PMLR, 2017.500

[17] T. Haarnoja, A. Zhou, P. Abbeel, and Sergey Levine. Soft Actor-Critic: Off-policy maximum501

entropy deep reinforcement learning with a stochastic actor. In J. G. Dy and A. Krause, editors,502

Proceedings of the 35th International Conference on Machine Learning (ICML’18), pages503

1856–1865. PMLR, 2018.504

[18] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep reinforcement505

learning that matters. In S. A. McIlraith and K. Q. Weinberger, editors, Proceedings of the506

Conference on Artificial Intelligence (AAAI’18), pages 3207–3214. AAAI Press, 2018.507

[19] D. Hendrycks and T. G. Dietterich. Benchmarking neural network robustness to common508

corruptions and perturbations. In Proceedings of the International Conference on Learning509

Representations (ICLR’19), 2019. Published online: iclr.cc.510

[20] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot,511

M. Azar, and D. Silver. Rainbow: Combining improvements in deep reinforcement learning.512

In S. A. McIlraith and K. Q. Weinberger, editors, Proceedings of the Conference on Artificial513

Intelligence (AAAI’18), pages 3215–3222. AAAI Press, 2018.514

[21] Alex Irpan. Deep reinforcement learning doesn’t work yet. https://www.alexirpan.com/515

2018/02/14/rl-hard.html, 2018.516

[22] T. Jaakkola, S. P. Singh, and M. I. Jordan. Reinforcement learning algorithm for partially517

observable markov decision problems. In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors,518

Proceedings of the 7th International Conference on Advances in Neural Information Processing519

Systems (NeurIPS’95), pages 345–352, 1995.520

[23] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement521

learning. J. Mach. Learn. Res., 11:1563–1600, 2010.522

[24] A. Juliani, A. Khalifa, V.P. Berges, J. Harper, E. Teng, H. Henry, A. Crespi, J. Togelius, and523

D. Lange. Obstacle Tower: A Generalization Challenge in Vision, Control, and Planning. In524

S. Kraus, editor, Proceedings of the Twenty-Eighth International Joint Conference on Artificial525

Intelligence (IJCAI), pages 2684–2691. ijcai.org, Feb 2019.526

[25] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in527

partially observable stochastic domains. Artif. Intell., 101(1-2):99–134, 1998.528

[26] Anssi Kanervisto, Christian Scheller, and Ville Hautamäki. Action space shaping in deep529

reinforcement learning. In IEEE Conference on Games, CoG 2020, Osaka, Japan, August 24-27,530

2020, pages 479–486. IEEE, 2020.531

[27] Geir Kirkebøen and Gro HH Nordbye. Intuitive choices lead to intensified positive emotions:532

An overlooked reason for “intuition bias”? Frontiers in Psychology, 8:1942, 2017.533

[28] P. Klink, H. Abdulsamad, B. Belousov, and J. Peters. Self-paced contextual reinforcement534

learning. In L. P. Kaelbling, D. Kragic, and K. Sugiura, editors, 3rd Annual Conference on535

Robot Learning, (CoRL’19), pages 513–529. PMLR, 2019.536

12

iclr.cc
iclr.cc
https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html

[29] Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying537

the carbon emissions of machine learning. arXiv preprint arXiv:1910.09700, 2019.538

[30] Y. LeCun. Learning invariant feature hierarchies. In A. Fusiello, V. Murino, and R. Cucchiara,539

editors, Computer Vision - ECCV 2012, pages 496–505. Springer, 2012.540

[31] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel. Back-541

propagation applied to handwritten zip code recognition. Neural Comput., 1(4):541–551,542

1989.543

[32] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.544

[33] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. E. Gonzalez, M. I. Jordan,545

and I. Stoica. RLlib: Abstractions for distributed reinforcement learning. In J. Dy and A. Krause,546

editors, Proceedings of the 35th International Conference on Machine Learning (ICML’18),547

volume 80, pages 3059–3068. Proceedings of Machine Learning Research, 2018.548

[34] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.549

Continuous control with deep reinforcement learning. In Y. Bengio and Y. LeCun, editors,550

Proceedings of the International Conference on Learning Representations (ICLR’16), 2016.551

Published online: iclr.cc.552

[35] Michael L. Littman, Ufuk Topcu, Jie Fu, Charles Lee Isbell Jr., Min Wen, and James Mac-553

Glashan. Environment-independent task specifications via GLTL. CoRR, abs/1704.04341,554

2017.555

[36] Odalric-Ambrym Maillard, Timothy A. Mann, and Shie Mannor. How hard is my mdp?" the556

distribution-norm to the rescue". In Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D.557

Lawrence, and Kilian Q. Weinberger, editors, Advances in Neural Information Processing558

Systems 27: Annual Conference on Neural Information Processing Systems 2014, December559

8-13 2014, Montreal, Quebec, Canada, pages 1835–1843, 2014.560

[37] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and561

K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In M. Balcan562

and K. Weinberger, editors, Proceedings of the 33rd International Conference on Machine563

Learning (ICML’16), volume 48, pages 1928–1937, 2016.564

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,565

M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,566

H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through567

deep reinforcement learning. Nature, 518(7540):529–533, 2015.568

[39] Norman Mu and Justin Gilmer. MNIST-C: A robustness benchmark for computer vision. CoRR,569

abs/1906.02337, 2019.570

[40] D. S. Nau. Pathology on game trees revisited, and an alternative to minimaxing. Artif. Intell.,571

21(1-2):221–244, 1983.572

[41] Ronald Ortner, Pratik Gajane, and Peter Auer. Variational regret bounds for reinforcement573

learning. In Amir Globerson and Ricardo Silva, editors, Proceedings of the Thirty-Fifth574

Conference on Uncertainty in Artificial Intelligence, UAI 2019, Tel Aviv, Israel, July 22-25,575

2019, volume 115 of Proceedings of Machine Learning Research, pages 81–90. AUAI Press,576

2019.577

[42] I. Osband, Y. Doron, M. Hessel, J. Aslanides, E. Sezener, A. Saraiva, K. McKinney, T. Lattimore,578

C. Szepezvari, S. Singh, B. Van Roy, R. Sutton, D. Silver, and H. Van Hasselt. Behaviour579

suite for reinforcement learning. In Proceedings of the International Conference on Learning580

Representations (ICLR’19), 2019. Published online: iclr.cc.581

[43] J. Pearl. Theoretical impediments to machine learning with seven sparks from the causal582

revolution. In Y. Chang, C. Zhai, Y. Liu, and Y. Maarek, editors, Proceedings of the Eleventh583

ACM International Conference on Web Search and Data Mining, (WSDM’18), page 3. ACM,584

February 2018.585

13

iclr.cc
iclr.cc

[44] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.586

Wiley Series in Probability and Statistics. Wiley, 1994.587

[45] J. Rajendran, J. Ganhotra, S. Singh, and L. Polymenakos. Learning end-to-end goal-oriented588

dialog with multiple answers. In E. Riloff, D. Chiang, J. Hockenmaier, and J. Tsujii, edi-589

tors, Proceedings of the Conference on Empirical Methods in Natural Language Processing590

(EMNLP’19), pages 3834–3843. Association for Computational Linguistics, 2018.591

[46] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel592

Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement593

learning and demonstrations. In Proceedings of Robotics: Science and Systems, Pittsburgh,594

Pennsylvania, June 2018.595

[47] R. Ramanujan, A. Sabharwal, and B. Selman. On adversarial search spaces and sampling-based596

planning. In R. I. Brafman, H. Geffner, J. Hoffmann, and H. A. Kautz, editors, Proceedings of597

the 20th International Conference on Automated Planning and Scheduling, (ICAPS’10), pages598

242–245. AAAI, 2010.599

[48] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization600

algorithms. arXiv:1707.06347 [cs.LG], 2017.601

[49] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-602

twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,603

N. Kalchbrenner, I. Sutskever, T. P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and604

D. Hassabis. Mastering the game of go with deep neural networks and tree search. Nature,605

529(7587):484–489, 2016.606

[50] Elizabeth S Spelke and Katherine D Kinzler. Core knowledge. Developmental science, 10(1):89–607

96, 2007.608

[51] Jayakumar Subramanian, Amit Sinha, Raihan Seraj, and Aditya Mahajan. Approximate609

information state for approximate planning and reinforcement learning in partially observed610

systems. CoRR, abs/2010.08843, 2020.611

[52] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. The MIT Press, second612

edition, 2018.613

[53] R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal614

abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.615

[54] C. Thornton, F. Hutter, H. Hoos, and K. Leyton-Brown. Auto-WEKA: combined selection and616

hyperparameter optimization of classification algorithms. In I. Dhillon, Y. Koren, R. Ghani,617

T. Senator, P. Bradley, R. Parekh, J. He, R. Grossman, and R. Uthurusamy, editors, The 19th618

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’13),619

pages 847–855. ACM Press, 2013.620

[55] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. Intelligent robotics and autonomous621

agents. MIT Press, 2005.622

[56] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.623

Domain randomization for transferring deep neural networks from simulation to the real world.624

In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017,625

Vancouver, BC, Canada, September 24-28, 2017, pages 23–30. IEEE, 2017.626

[57] E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control. In627

International Conference on Intelligent Robots and Systems (IROS’12), pages 5026–5033. IEEE,628

2012.629

[58] Emma Tosch, Kaleigh Clary, John Foley, and David D. Jensen. Toybox: A suite of environments630

for experimental evaluation of deep reinforcement learning. CoRR, abs/1905.02825, 2019.631

[59] Alexander Matt Turner. Optimal farsighted agents tend to seek power. CoRR, abs/1912.01683,632

2019.633

14

[60] H. van Hasselt. Double q-learning. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and634

A. Culotta, editors, Proceedings of the 24th International Conference on Advances in Neural635

Information Processing Systems (NeurIPS’10), pages 2613–2621, 2010.636

[61] T. Wang, X. Bao, I. Clavera, J. Hoang, Y. Wen, E. Langlois, S. Zhang, G. Zhang, P. Abbeel, and637

J. Ba. Benchmarking model-based reinforcement learning. arXiv:1907.02057 [cs.LG], 2019.638

[62] Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for more efficient reinforcement639

learning experiments. CoRR, abs/1903.03176, 2019.640

[63] Baohe Zhang, Raghu Rajan, Luis Pineda, Nathan Lambert, André Biedenkapp, Kurtland Chua,641

Frank Hutter, and Roberto Calandra. On the Importance of Hyperparameter Optimization for642

Model-based Reinforcement Learning. In Proceedings of the 24th International Conference on643

Artificial Intelligence and Statistics (AISTATS)’21, April 2021.644

[64] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning645

requires rethinking generalization. In 5th International Conference on Learning Representations,646

(ICLR’17). OpenReview.net, 2017.647

Checklist648

1. For all authors...649

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s650

contributions and scope? [Yes] The orthogonal dimension that influence RL agents651

performances are presented and their role in the implemented MDPs is discussed in652

Section 2. We showed that varying these dimensions can provide new insights or653

confirm existing insights (on the toy environments that also hold on more complex654

ones) in Section 4.2. We discussed how our proposed benchmark can aid in designing655

new agents by taking the proposed dimensions into account during the design (see656

Section 4.1). Finally, we discuss how the benchmark can help in debugging agents and657

could be used for continuous integration (see Section 4.3).658

(b) Did you describe the limitations of your work? [Yes] See Section 6.659

(c) Did you discuss any potential negative societal impacts of your work? [Yes]660

(d) Have you read the ethics review guidelines and ensured that your paper conforms to661

them? [Yes]662

2. If you are including theoretical results...663

(a) Did you state the full set of assumptions of all theoretical results? [N/A]664

(b) Did you include complete proofs of all theoretical results? [N/A]665

3. If you ran experiments (e.g. for benchmarks)...666

(a) Did you include the code, data, and instructions needed to reproduce the main ex-667

perimental results (either in the supplemental material or as a URL)? [Yes] See668

https://github.com/automl/mdp-playground and the link is also given in Sec-669

tion 7.670

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they671

were chosen)? [Yes] See Appendix P672

(c) Did you report error bars (e.g., with respect to the random seed after running experi-673

ments multiple times)? [Yes]674

(d) Did you include the total amount of compute and the type of resources used (e.g., type675

of GPUs, internal cluster, or cloud provider)? [Yes] In Section 3 we discussed the676

low-cost execution of experiments on MDP Playground and we provide further details677

along with hardware specifications in the Appendix R.678

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...679

(a) If your work uses existing assets, did you cite the creators? [Yes]680

(b) Did you mention the license of the assets? [N/A]681

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]682

683

15

https://github.com/automl/mdp-playground

(d) Did you discuss whether and how consent was obtained from people whose data you’re684

using/curating? [N/A]685

(e) Did you discuss whether the data you are using/curating contains personally identifiable686

information or offensive content? [N/A]687

5. If you used crowdsourcing or conducted research with human subjects...688

(a) Did you include the full text of instructions given to participants and screenshots, if689

applicable? [N/A]690

(b) Did you describe any potential participant risks, with links to Institutional Review691

Board (IRB) approvals, if applicable? [N/A]692

(c) Did you include the estimated hourly wage paid to participants and the total amount693

spent on participant compensation? [N/A]694

16

A Benchmark Track Checklist695

1. Submission introducing new datasets must include the following in the supplementary696

materials:697

(a) Dataset documentation and intended uses. Recommended documentation frameworks698

include datasheets for datasets, dataset nutrition labels, data statements for NLP, and699

accountability frameworks. [Yes] Available in the platform’s repository: https:700

//github.com/automl/mdp-playground701

(b) URL to website/platform where the dataset/benchmark can be viewed and downloaded702

by the reviewers. [Yes] Available in the platform’s repository: https://github.com/703

automl/mdp-playground704

(c) Author statement that they bear all responsibility in case of violation of rights, etc., and705

confirmation of the data license. [Yes] The license is an Apache license, available in706

the platform’s repository: https://github.com/automl/mdp-playground707

(d) Hosting, licensing, and maintenance plan. The choice of hosting platform is yours, as708

long as you ensure access to the data (possibly through a curated interface) and will709

provide the necessary maintenance. [Yes] The platform’s repository is publicly hosted710

on GitHub and we will actively continue to maintain and develop MDP Playground711

further. We also welcome and support community-driven efforts such as pull request,712

reported issues and forum discussions.713

2. To ensure accessibility, the supplementary materials for datasets must include the following:714

(a) Links to access the dataset and its metadata. This can be hidden upon submission715

if the dataset is not yet publicly available but must be added in the camera-ready716

version. In select cases, e.g when the data can only be released at a later date, this717

can be added afterward. Simulation environments should link to (open source) code718

repositories. [Yes] Available in the platform’s repository: https://github.com/719

automl/mdp-playground720

(b) The dataset itself should ideally use an open and widely used data format. Provide a721

detailed explanation on how the dataset can be read. For simulation environments, use722

existing frameworks or explain how they can be used. [Yes] The documentation is avail-723

able in the platform’s repository: https://github.com/automl/mdp-playground724

(c) Long-term preservation: It must be clear that the dataset will be available for a long time,725

either by uploading to a data repository or by explaining how the authors themselves726

will ensure this. [Yes] The platform will be actively maintained with input from the727

community728

(d) Explicit license: Authors must choose a license, ideally a CC license for datasets,729

or an open source license for code (e.g. RL environments). [Yes] The license is730

an Apache license, available in the platform’s repository: https://github.com/731

automl/mdp-playground732

(e) Add structured metadata to a dataset’s meta-data page using Web standards (like733

schema.org and DCAT): This allows it to be discovered and organised by anyone. If734

you use an existing data repository, this is often done automatically. [N/A]735

(f) Highly recommended: a persistent dereferenceable identifier (e.g. a DOI minted by736

a data repository or a prefix on identifiers.org) for datasets, or a code repository (e.g.737

GitHub, GitLab,...) for code. If this is not possible or useful, please explain why. [Yes]738

GitHub repository: https://github.com/automl/mdp-playground739

3. For benchmarks, the supplementary materials must ensure that all results are easily re-740

producible. Where possible, use a reproducibility framework such as the ML repro-741

ducibility checklist, or otherwise guarantee that all results can be easily reproduced,742

i.e. all necessary datasets, code, and evaluation procedures must be accessible and743

documented. [Yes] The experiments adhere to the ML reproducibility checklist at:744

https://arxiv.org/abs/2003.12206745

4. For papers introducing best practices in creating or curating datasets and benchmarks, the746

above supplementary materials are not required. [N/A]747

17

https://github.com/automl/mdp-playground
https://github.com/automl/mdp-playground
https://github.com/automl/mdp-playground
https://github.com/automl/mdp-playground
https://github.com/automl/mdp-playground
https://github.com/automl/mdp-playground
https://github.com/automl/mdp-playground
https://github.com/automl/mdp-playground
https://github.com/automl/mdp-playground
https://github.com/automl/mdp-playground
https://github.com/automl/mdp-playground
https://github.com/automl/mdp-playground
https://github.com/automl/mdp-playground
https://github.com/automl/mdp-playground
https://github.com/automl/mdp-playground
https://arxiv.org/abs/2003.12206

B Dimensions in MDP Playground748

We list here the dimensions for MDP Playground. Details on each dimension can be found in the749

documentation for the class mdp_playground.envs.RLToyEnv in the accompanying code.750

• Reward Delay751

• Rewardable Sequence Length752

• Reward Sparsity753

• P Noise754

• R Noise755

• Irrelevant Features756

• Transforms for Representation Learning757

• Reward Shift758

• Reward Scale759

• State space size/dimensionality760

• Action space size/dimensionality761

• Terminal State Density762

• Terminal State Reward763

• Relevant Dimensions (for both state and action spaces)764

∗ Only for discrete environments:765

• Diameter766

• Reward Distribution767

• Image Representations768

∗ Only for Image Representations:769

• Shift Quantisation770
• Scale Range771
• Rotation Quantisation772

∗ Only for continuous environments:773

• Target Point774

• Target Radius775

• Time Unit776

• Inertia777

• State Space Max778

• Action Space Max779

• Transition Dynamics Order780

• Reward Function781

∗ Currently fixed dimensions:782

• Initial State Distribution783

B.1 More exposition on the dimensions in MDP Playground784

We also mention here the Q∗-value [38] and use it as an example to argue how violations of785

assumptions may lead to degradation in performance. For a state s and action a, a policy π and rt the786

reward a timestep t, Q∗ is defined as: Q∗(s, a) = max
π

E [
∑∞
t=0 γ

trt|st = s, at = a, π].787

For many environments, in many situations, agents perform an action that is consequential to receiving788

a reward but the agent is only rewarded in a delayed manner [see e.g. 4]. For example, shooting at an789

enemy ship in Space Invaders leads to rewards much later than the action of shooting. Any action790

taken after that is inconsequential to obtaining the reward for destroying that enemy ship. Regarding791

the Q∗ value, this means that if an incorrect information state is used, then updates performed for792

approximating Q∗ will tend to assign partial credit also to inconsequential actions.793

In many environments, a reward is obtained for a sequence of actions taken and not just the information794

state and action. A simple example is executing a tennis serve, where one needs a sequence of actions795

which results in a point, e.g., if an ace was served. In contrast to delayed rewards, rewarding a796

sequence of actions addresses the actions taken which are consequential to obtaining a reward. [53]797

present a framework for temporal abstraction in RL to deal with such sequences. Regarding the798

Q∗ value, this means that if an incorrect information state is used, then updates performed for799

approximating Q∗ will tend to assign partial credit also to incomplete sequences. The agent may not800

realise that a whole sequence of actions is needed to be taken and not just some of them. While agents801

18

can converge asymptotically in the face of both delays and sequences, using the correct information802

state would lead to much better sample efficiency and more stable learning. In MDP Playground, for803

discrete environments, only specific sequences of states of positive integer length n are rewardable.804

Sequences consist of non-repeating states allowing for (|S|−|T |)!
(|S|−|T |−n)! sequences. For the continuous805

environment of moving to a target, n is variable.806

Environments can also be characterised by their reward density. In sparse reward settings [15], the807

supervisory reward signal is 0 throughout the trajectory and then a single non-zero reward is received808

at its end. This also holds true for the example of the tennis serve above.809

The diameter of an MDP, i.e., the maximum distance between 2 states, is another significant dimension810

affecting performance and reachability of states [23, 41]. If rewarding states are very far apart, then811

an agent would get less reward on average. In MDP Playground, for discrete environments, for812

diameter = d, the set of states is set to be a d-partite graph, where, if we order the d sets as 1, 2, .., d,813

states from set n will have actions leading to states in set n+ 1, with the final set d having actions814

leading to states in set 1. The number of actions for each state will, thus, be (number of states)/(d).815

This gives the discrete environments a grid-world like structure. For continuous environments, setting816

the dimension state space max sets the bounds of the environment to ±state space max and the817

diameter = 2
√

2 state space max.818

Further, an additional dimensions for continuous control problems we implement is target radius for819

the task of reaching a target: we have target radius [see, e.g., 28], a measure of the distance from the820

target within which we consider the target to have been successfully reached.821

We now mathematically highlight some of our dimensions of hardness to aid understanding. The822

information state of an agent to compute an optimal policy would need to stack the previous n+ d823

observation and action pairs from the environment where n denotes a sequence length and d denotes824

a delay, i.e., a sequence of actions needs to be followed to obtain a reward which may be delayed by825

a certain number of steps. Reward density controls the fraction of elements in Sn that are rewardable.826

Additionally, the continuous control dimensions can mathematically be described as follows. The827

target radius sets T = {s | ‖s − st‖2 < target radius}, where st is the target point. The action828

range sets A ⊂ Ra where a is the action space dimensionality. The time unit, t, sets P (s, a) =829

s +
∫
t
Pcont(s, a) dt where Pcont is the underlying continuous dynamics function. The transition830

dynamics order, n, sets P to be in Cn, the set of functions differentiable n times.831

B.2 Additional density option for sequences832

With regard to density, recall the tennis serve again. The point received by serving an ace would be a833

sparse reward. We as humans know to reward ourselves for executing only a part of the sequence834

correctly. Rewards in continuous control tasks to reach a target point [e.g. in Mujoco, 57], are usually835

dense (such as the negative squared distance from the target). This lets the algorithm obtain a dense836

signal in space to guide learning, and it is well known [52] that it would be much harder for the837

algorithm to learn if it only received a single reward at the target point. The environments in MDP838

Playground have a configuration option, make_denser, to allow this kind of reward shaping to make839

the reward denser and observe the effects on algorithms. To achieve this, when make_denser is840

True, the environment gives a fractional reward if a fraction of a rewardable sequence is achieved in841

discrete environments. For continuous environments, for the move to a target point reward function,842

this option toggles between giving a dense reward as described in the main paper and giving a sparse843

reward when the agent is within the target radius.844

19

C Algorithm for generating MDPs845

Algorithm 1 Automatically Generated MDPs with MDP Playground

1: Input:
2: reward delay d,
3: rewardable sequence length n,
4: transition noise t_n or σt_n,
5: reward noise σr_n,
6: reward_scale,
7: reward_shift,
8: term_state_reward,
9: make_denser,

10: relevant_dimensions
11: . Dimensions specific to discrete environments
12: number of states |S|,
13: diameter,
14: reward density rd,
15: terminal_state_density,
16: reward distribution reward_dist
17: . Dimensions specific to continuous environments
18: target_point,
19: target_radius,
20: transition_dynamics_order,
21: time_unit,
22: inertia
23:
24: function INIT_TRANSITION_FUNCTION():
25: if discrete environment then
26: Set |A| = |S|/diameter
27: Divide S into independent sets Si with |A| elements in each with i = 1, 2, ..., diameter
28: for each independent set Si do
29: for each state s in Si do
30: Set possible successor states: S′ = Si+1

31: for each action a do
32: Set P (s, a) = s′ sampled uniformly from S′ and remove s′ from S′

33: if irrelevant features then
34: Generate dynamics Pirr of irrelevant part of state space as was done for P
35: else
36: Do nothing as continuous environments have a fixed parameterisation
37:
38: function INIT_REWARD_FUNCTION(n):
39: if discrete environment then
40: Randomly sample rd ∗ (|S|−|T |)!

(|S|−|T |−n)! and store in rewardable_sequences with corre-
sponding reward sampled according to reward_dist if enabled

41: . The actual formula is more complicated because of the diameter
42: . Only those sequences are sampled which are legal according to P
43: else
44: Do nothing as continuous environments have fixed options for the reward function
45:

20

46: function TRANSITION_FUNCTION(s, a):
47: if discrete environment then
48: s′ = P (s, a)
49: if U(0, 1) < t_n then
50: s′ = a random state in S \ {P (s, a)} . Inject noise
51: Observation o = s′

52: if irrelevant features then
53: Execute dynamics Pirr of irrelevant part of state space and concatenate with s′ to get

observation o
54: if representation learning then
55: o = image of corresponding polygon(s) with applied selected transforms
56: else
57: Set n = transition_dynamics_order
58: Set an = a . Superscript n represents nth derivative
59: Set sn = an/inertia . Each state dimension is controlled by each action dimension
60: for i in reversed(range(n)) do

61: Set sit+1 =
n−i∑
j=0

si+jt · 1
j! · time_unit

j . t is current time step.

62: st+1 + = N (0, σ2
t_n)

63: o = st+1

64: return o
65:
66: function REWARD_FUNCTION(s, a):
67: r = 0
68: if irrelevant features then
69: s = s[relevant_dimensions] . Select the part of state space relevant to reward
70: if discrete environment then
71: if not make_denser then
72: if state sequence ss of n states ending d steps in the past is in
rewardable_sequences then

73: r = rewardable_sequences[ss]
74: else
75: for i in range(n) do
76: if sequence of i states ending d steps in the past is a prefix sub-sequence of a

sequence in rewardable_sequences then
77: r+ = i/n
78: else
79: r = Distance moved towards the target_point
80: r + = N (0, σ2

r_n)
81: r ∗ = reward_scale
82: r + = reward_shift
83: if reached terminal state then
84: r + = term_state_reward
85: return r
86:
87: function MAIN():
88: INIT_TERMINAL_STATES() . Set T according to terminal_state_density
89: INIT_INIT_STATE_DIST() . Set ρo to uniform distribution over non-terminal states
90: INIT_TRANSITION_FUNCTION()
91: INIT_REWARD_FUNCTION()

21

D More on Related Work846

Many of the other benchmarks mentioned in the main paper are largely vision-based, which means847

that a large part of their problem solving receives benefits from advances in the vision community848

while our benchmarks try to tackle pure RL problems in their most toy form. This also means that849

our experiments are extremely cheap, making them a good platform to test out new algorithms’850

robustness to different challenges in RL.851

A parallel and independent work along similar lines as the MDP Playground, which was released a852

month before ours on arXiv, is the Behaviour Suite for RL (bsuite, [42]). In contrast to our generated853

benchmarks, that suite collects simple RL benchmarks from the literature that are representative854

of various types of problems which occur in RL and tries to characterise RL algorithms. Unlike855

their framework, where currently there is no toy environment for Hierarchical RL (HRL) algorithms,856

the rewardable sequences that we describe also fits very well with HRL. Additionally, we also857

have toy continuous environments whereas bsuite currently only has discrete environments. They858

also do not generate completely random P and R for their environments like we do, which would859

help avoid algorithms overfitting to certain benchmarks. An important distinction between the two860

platforms could be summed up by saying that they try to characterise algorithms while we try to861

characterise environments with the aim that new adaptable algorithms can be developed that can862

tackle environments of desired difficulty.863

[36] defines a novel theoretical metric for defining hardness of MDPs. It captures difficulties within864

MDPs when the true state of the MDP is known. However, a large part of the hardness in our MDPs865

comes from the agent not knowing the optimal information state to use. It’d be interesting to design a866

metric which captures this aspect of hardness as well.867

Our platform allows formulating problems in terms of the identified dimensions and we feel this is a868

very human-understandable way of defining problems or specifying tasks. [35] defines a Geometric869

Linear Temporal Logic (GLTL) specification language to formally specify tasks for MDPs and RL870

environments. They also share our motivation in making it easier and more natural to specify tasks.871

For some readers, it might feel obvious that injecting many of these dimensions causes difficulties872

for agents. However, to the best of our knowledge, no other work has tried to collect all orthogonal873

dimensions in one place and study them comprehensively and what aspects transfer from toy to more874

complex environments.875

The nature of the toy environments is one of high bias. We believe that the transfer of the hardness876

dimensions from toy to complex environments occurs because the algorithms we have tested are877

environment agnostic and usually do not take aspects of the environment into account. Q-learning for878

instance is based on TD-errors and the Bellman equation. The equation is agnostic to the environment879

and while adding deep learning may help agents learn representations better, it does not remove the880

problems inherent in deep learning. While it’s nice to have general algorithms that may be applied in881

a black box fashion, by studying the dimensions we have listed and their effects on environments, we882

gain deeper insights into what is needed to design better agents.883

An additional comment can be made about comparing the continuous and discrete complex environ-884

ments comparisons to the toy benchmarks. The "noise" in comparing the toy and complex discrete885

environments was higher compared to the continuous toy and complex environments and we believe886

this is due to the discrete environments being much more sparse and having many more lucky areas887

that can be exploited as with the qbert bug and breakout strategy mentioned. In comparison, continu-888

ous environments usually employ a dense reward formulation in which case the value functions are889

likely to be continuous.890

Algorithms like DQN [38] have been applied to many varied environments and produce very variable891

performance across these. In some simple environments, DQN’s performance exceeds human892

performance by large amounts, but in other environments, such as Montezuma’s revenge, performance893

is very poor. For some of these environments, e.g. Montezuma’s revenge, we need a very specific894

sequence of actions to get a reward. For others, there are different delays in rewards. A problem895

with evaluating on these environments is that we have either no control over their difficulty or little896

control such as having different difficulty levels. But even these difficulty levels, do not isolate the897

confounding factors that are present at the same time and do not allow us to control the confounding898

factors individually. We make that possible with our dimensions.899

22

MDP Playground in relation to MNIST MNIST [32] captured some key difficulties required for900

computer vision (CV) which made it a good testbed for designing and debugging CV algorithms - even901

the webpage for the dataset mentions some distortions to inject hardness for MNIST: distortions are902

random combinations of shifts, scaling, skewing, and compression. [39] captures 15 such distortions903

to benchmark out-of-distribution robustness in computer vision. However, being a good testbed does904

not mean that MNIST can be used to directly learn models for much more specific CV applications905

such as classification of plants or medical image analysis. It captures many aspects that are general to906

CV problems but not specific ones.907

When designing the platform, we went over the components of an MDP and tried to exhaustively908

add as many parameterisable dimensions as possible with the condition that they are all orthogonal909

and can be applied independently of each other. In a sense, this is an attempt to capture fundamental910

dimensions of hardness in the same way that human cognition is founded, in part, on four different911

systems and endow humans with abstract reasoning abilities [50]. We don’t try to capture, say credit912

assignment or generalisation as dimensions. These are to be dealt with at a higher level the same way913

that intelligent behaviour and reasoning arise from the interplay of different underlying cognitive914

systems which process objects or space at a lower sensory level.915

E More on Designing New agents916

Varying action range Since the insights into the environments for this dimension were similar to the917

insights for the time unit, the design ideas for an agent robust to this dimension follow a similar vein918

as for the time unit. An ideal adaptive agent design would set the action range in an online manner.919

A new basic agent design could do this once at the beginning of training and set its optimal action920

range.921

Varying reward delay Since it’s clear (see Figure 12 and discussion in Appendix J) that not having922

the Markov state as the information state can lead to a significant drop in performance, a simple923

tabular agent design could incorporate delays into its formulation. For instance, one could formulate924

the Q-value as being over multiple possible previous states and actions and then take the estimate of925

delay to be the value for which the Q-values are maximised for different state-action pairs.926

Varying transition noise Noise also has an adverse effect on the performance of agents (see Figure927

13 and discussion in Appendix J). A simple model-based RL agent design that learns a probabilistic928

model could adaptively estimate the noise in the transitions by repeatedly measuring the same state-929

action pair’s transitions. This would give it an estimate of the aleatoric uncertainty. The agent could930

then choose to stop learning its dynamics model once the uncertainty in its model is close to the931

estimated aleatoric uncertainty. This would save it from further computational expenses.932

F More on Debugging Agents933

We discuss here further the 2 examples of how the toy environments helped us debug RL algorithms934

in practice.935

When merging some of our environments into bsuite, we noticed that when we varied sparsity, the936

performance of their DQN agent would go down in proportion to the environment’s sparsity. This did937

not occur for other agents. This seemed to suggest something different for the DQN agent and when938

we looked at DQN’s hyperparameters we realised that it had a fixed ε schedule. While that may be939

desirable in some situations, we felt it hurt DQN’s performance because it was not allowed to explore940

enough early on nor exploit what it learnt fully later. When we use regular structured environments,941

the agent performances are freed of the "noise" that is present due to irregular transition functions942

and this makes it easy to see high-level trends.943

When we were performing the complex environment experiments for Atari (using Ray 0.9.0 as944

explained in Appendix P), we noticed that there was no learning for Rainbow even though DQN945

learned. We debugged this by ablating the various additions to Rainbow when compared to DQN. We946

ran these ablations on the image representations toy environment of MDP Playground and observed947

(see Figure 5) that all ablations, apart from turning noisy nets off, performed poorly. This let us948

quickly debug that noisy nets was broken in Ray 0.9.0.949

23

none noisy double dueling prio_repl0

20

40

60

Figure 5: Ablations of Rainbow on image representations environments. Note the different y-axis
scales.

Another example of how hard it can be to debug RL agents can be found in this GitHub issue for950

bsuite: https://github.com/deepmind/bsuite/issues/20951

G Design Decisions952

Discrete environment generation Once the values for the dimensions are set, for the case of auto-953

generated discrete environments, P is generated by selecting for each state s in independent set i,954

for each action a, a random successor state s′ from independent set i+ 1. This results in a regular955

grid-world like structure for P . For R, we select the numr rewardable sequences randomly for a956

given reward density rd based on all the sequences possible under the generated P . The main reason957

for unit testing in this manner is that all the RL agents we are aware of do not themselves take the958

structure of the environment into account and are designed for general P s and Rs. Because of this,959

once the toy environment’s dimensions are set, the structure of the environment is set and the agents960

should show similar behaviour on all such environments and this is exactly what we observed in our961

experiments when run with different seeds for the environment generation.962

A second reason a regular structure is imposed on P is that it is always possible to design adversarial963

P s [40, 47] which can be made arbitrarily hard to solve. Suppose there is an environment where a964

large reward is placed in an unknown and deliberately unexpected location. Then, evaluating an agent965

on such an environment clearly does not give us a proper measure of the agent’s performance. This966

is, in some cases, also a problem with many complex environments, e.g., HalfCheetah has a bug that967

allows the agent to reach infinite speed and obtain enormous rewards [63]. qbert has a bug which968

allows the agent to achieve a very large number of points [9]. breakout has a scenario where, if an969

agent creates a hole through the bricks, it can achieve a very large number of points. Even though the970

latter can be a sign of desired behaviour, it skews the distribution of rewards and introduces variance971

in the evaluation. There is the additional danger that the blackbox nature of complex environments972

can lead researchers to draw inferences that may be biased by their intuition [27]. For example, the973

agent strategy of creating a tunnel to target bricks in the top for breakout has been challenged multiple974

times [5, 58]. As [21] sums it up: If my reinforcement learning code does no better than random, I975

have no idea if it’s a bug, if my hyperparameters are bad, or if I simply got unlucky. Thus, having976

a very complex P or R itself can introduce "noise" into the evaluation of agents and require many977

iterations of training before we can see the agent learning. We leave this for complex benchmarks to978

capture as they are closer to real world use cases. For unit testing, especially, one needs quick insights979

on vanilla environments and thus, it is beneficial to have what we term high bias environments to test980

whether agents are learning.981

The third reason a more regular structure is imposed as opposed to the usual gridworld is that, though,982

semantically meaningful, such gridworlds have small irregularities around edges which makes them983

hard to keep consistent with all the other dimensions and begins to introduce the kind of "noise" that984

was discussed for more complex environments above.985

Dimensions While the aim is to be as objective as possible while selecting the dimensions, a few986

subjective ones were included such as action loss weight, which penalises action magnitudes in987

continuous environments and is a very common use-case [8].988

As some subjective design decisions were imposed on the auto-generated environments, users can989

also define their own P s and Rs, e.g., as transition matrices or Python functions. However, it is990

24

https://github.com/deepmind/bsuite/issues/20

important to note here that the user does not need to take care of injecting the dimensions in this case,991

as these are handled by MDP Playground, wherever possible.992

25

H Effect of dimensions on more complex benchmarks993

Table 1: Spearman Rank Correlations for performance on toy and complex environments across
different amounts of the dimension injected: transition noise

Environment/Agent DQN Rainbow A3C

beam_rider r=0.9, pvalue=0.037 r=0.7, pvalue=0.188 r=0.9, pvalue=0.037
breakout r=1.0, pvalue=1e-24 r=1.0, pvalue=1e-24 r=0.9, pvalue=0.037

qbert r=0.9, pvalue=0.037 r=0.9, pvalue=0.037 r=0.7, pvalue=0.188
space_invaders r=0.9, pvalue=0.037 r=0.7, pvalue=0.188 r=0.9, pvalue=0.037

Table 2: Spearman Rank Correlations for performance on toy and complex environments across
different amounts of the dimension injected: reward delay

Environment/Agent DQN Rainbow A3C

beam_rider r=0.8, pvalue=0.104 r=0.4, pvalue=0.504 r=0.6, pvalue=0.284
breakout r=0.0, pvalue=1.0 r=0.3, pvalue=0.623 r=0.8, pvalue=0.104

qbert r=0.6, pvalue=0.284 r=0.4, pvalue=0.504 r=0.9, pvalue=0.037
space_invaders r=0.9, pvalue=0.037 r=0.9, pvalue=0.037 r=0.8, pvalue=0.104

Table 3: Spearman Rank Correlations for performance on toy and complex environments across
different amounts of the dimension injected: reward noise

Environment/Agent DQN Rainbow A3C

beam_rider r=0.9, pvalue=0.037 r=0.9, pvalue=0.037 r=0.7, pvalue=0.188
breakout r=0.8, pvalue=0.104 r=0.9, pvalue=0.037 r=0.9, pvalue=0.037

qbert r=0.4, pvalue=0.504 r=0.5, pvalue=0.391 r=0.5, pvalue=0.391
space_invaders r=0.9, pvalue=0.037 r=0.7, pvalue=0.188 r=0.7, pvalue=0.188

0 2 4 8 16 32
Num. of irrelevant dimensions

0

2500

5000

7500

10000

Re
wa

rd

(a) SAC irr. dims.
HalfCheetah

0.1 0.25 0.5 1.0 2.0
action_space_max

0

10000

Re
w

ar
d

(b) SAC action range

0.1 0.25 0.5 1.0 2.0 4.0
action_space_max

0

10000

Re
w

ar
d

(c) DDPG action range

0.1 0.25 0.5 1.0 2.0 4.0 8.0
action_space_max

10000
0

R
e
w

a
rd

(d) TD3 action range

0.2 0.4 1.0 2.0 4.0
time_unit

0

10000

Re
w

ar
d

(e) SAC time unit

0.2 0.4 1.0 2.0 4.0
time_unit

0

5000

Re
wa

rd

(f) TD3 time unit

Figure 9: AUC of episodic reward at the end of training on HalfCheetah
varying action range or time unit. Error bars represent 1 standard
deviation. Note the different y-axis scales.

26

0 1 2 4 8
delay

0

500

Re
wa

rd

(a) DQN beam_rider

0 1 2 4 8
delay

0

50

Re
wa

rd

(b) DQN breakout

0 1 2 4 8
delay

0

1000

Re
wa

rd

(c) DQN qbert

0 1 2 4 8
delay

0

250

Re
wa

rd

(d) DQN space_invaders

0.0 0.01 0.02 0.1 0.25
transition_noise

0

500

Re
wa

rd

(e) DQN beam_rider

0.0 0.01 0.02 0.1 0.25
transition_noise

0

50

Re
wa

rd

(f) DQN breakout

0.0 0.01 0.02 0.1 0.25
transition_noise

0

1000

Re
wa

rd

(g) DQN qbert

0.0 0.01 0.02 0.1 0.25
transition_noise

0

200

Re
wa

rd

(h) DQN space_invaders

0.0 0.01 0.05 0.1 0.25
reward_noise

0

1000

Re
wa

rd

(i) DQN beam_rider

0.0 0.01 0.05 0.1 0.25
reward_noise

0

20
Re

wa
rd

(j) DQN breakout

0.0 0.01 0.05 0.1 0.25
reward_noise

0

1000

Re
wa

rd

(k) DQN qbert

0.0 0.01 0.05 0.1 0.25
reward_noise

0

250

Re
wa

rd

(l) DQN space_invaders

Figure 6: AUC of episodic reward for DQN on various environments at the end of training. Error
bars represent 1 standard deviation. Note the different y-axis scales.

0 1 2 4 8
delay

0

1000

Re
wa

rd

(a) Rainbow beam_rider

0 1 2 4 8
delay

0

100

Re
wa

rd

(b) Rainbow breakout

0 1 2 4 8
delay

0

2500

Re
wa

rd

(c) Rainbow qbert

0 1 2 4 8
delay

0

250

Re
wa

rd

(d) Rain. space_invaders

0.0 0.01 0.02 0.1 0.25
transition_noise

0

1000

Re
wa

rd

(e) Rainbow beam_rider

0.0 0.01 0.02 0.1 0.25
transition_noise

0

100

Re
wa

rd

(f) Rainbow breakout

0.0 0.01 0.02 0.1 0.25
transition_noise

0

2500

Re
wa

rd

(g) Rainbow qbert

0.0 0.01 0.02 0.1 0.25
transition_noise

0

250
Re

wa
rd

(h) Rain. space_invaders

0.0 0.01 0.05 0.1 0.25
reward_noise

0

1000

Re
wa

rd

(i) Rainbow beam_rider

0.0 0.01 0.05 0.1 0.25
reward_noise

0

20

Re
wa

rd

(j) Rainbow breakout

0.0 0.01 0.05 0.1 0.25
reward_noise

0

2500

Re
wa

rd

(k) Rainbow qbert

0.0 0.01 0.05 0.1 0.25
reward_noise

0

500

Re
wa

rd

(l) Rain. space_invaders

0 1 2 4 8
delay

0

1000

Re
wa

rd

(m) A3C beam_rider

0 1 2 4 8
delay

0

100

Re
wa

rd

(n) A3C breakout

0 1 2 4 8
delay

0

2000

Re
wa

rd

(o) A3C qbert

0 1 2 4 8
delay

0

250

Re
wa

rd

(p) A3C space_invaders

0.0 0.01 0.02 0.1 0.25
transition_noise

0

1000

Re
wa

rd

(q) A3C beam_rider

0.0 0.01 0.02 0.1 0.25
transition_noise

0

50

Re
wa

rd

(r) A3C breakout

0.0 0.01 0.02 0.1 0.25
transition_noise

0

2000

Re
wa

rd

(s) A3C qbert

0.0 0.01 0.02 0.1 0.25
transition_noise

0

250

Re
wa

rd

(t) A3C space_invaders

0.0 0.01 0.05 0.1 0.25
reward_noise

0

1000

Re
wa

rd

(u) A3C beam_rider

0.0 0.01 0.05 0.1 0.25
reward_noise

0

100

Re
wa

rd

(v) A3C breakout

0.0 0.01 0.05 0.1 0.25
reward_noise

0

2000

Re
wa

rd

(w) A3C qbert

0.0 0.01 0.05 0.1 0.25
reward_noise

0

250

Re
wa

rd

(x) A3C space_invaders

Figure 7: AUC of episodic reward for agents at the end of training for A3C and Rainbow. Error bars
represent 1 standard deviation. Note the different y-axis scales.

27

0.05 0.1 0.25 0.5 1.0 2.0 4.0
action_space_max

50

0

Re
wa

rd

(a) SAC action range
Pusher

0.2 0.4 1.0 2.0 4.0
time_unit

25

0

Re
wa

rd

(b) SAC time unit Pusher

0.025 0.05 0.1 0.25 0.5 1.0 2.0 8.0
action_space_max

50
0

Re
wa

rd

(c) SAC action range
Reacher

0.5 1.0 2.5 5.0 10.0
time_unit

50

0

Re
wa

rd

(d) SAC time unit Reacher

0.05 0.1 0.25 0.5 1.0 2.0 4.0
action_space_max

100

0

Re
wa

rd

(e) DDPG action range
Pusher

0.2 0.4 1.0 2.0 4.0
time_unit

50

0

Re
wa

rd

(f) DDPG time unit Pusher

0.025 0.05 0.1 0.25 0.5 1.0 2.0
action_space_max

20

0

Re
wa

rd

(g) DDPG action range
Reacher

0.5 1.0 2.5 5.0 10.0
time_unit

20

0

Re
wa

rd

(h) DDPG time unit
Reacher

0.05 0.1 0.25 0.5 1.0 2.0 4.0
action_space_max

100

0

Re
wa

rd

(i) TD3 action range
Pusher

0.2 0.4 1.0 2.0 4.0
time_unit

100

0

Re
wa

rd

(j) TD3 time unit Pusher

0.025 0.05 0.1 0.25 0.5 1.0 2.0
action_space_max

20

0

Re
wa

rd

(k) TD3 action range
Reacher

0.5 1.0 2.5 5.0 10.0
time_unit

50

0
Re

wa
rd

(l) TD3 time unit Reacher

Figure 8: AUC of episodic reward at the end of training on Pusher and Reacher environments varying
action max and time unit. Error bars represent 1 standard deviation. Note the different y-axis scales.

28

I Sample states used for Representation Learning994

(a) No transforms (b) Shift (c) Scale (d) Rotate

(e) No transforms (f) Flip (g) All transforms

Figure 10: When using the dimension representation learning in discrete environments, each cate-
gorical state corresponds to an image of a polygon (if the states were numbered beginning from 0,
each state n corresponds to a polygon with n+ 3 sides). Various transforms can be applied to the
polygons randomly at each time step. Samples shown correspond to states 3 and 0

.

(a) Cont. env. (b) Cont. env. (c) Cont. env.

Figure 11: When using the dimension representation learning in continuous environments, the agent
is shown as a blue circle, the target point as a green circle and terminal states are black

.

29

J More Experiments and Additional Reward Plots995

We continue with the experiments and results from the main paper here.996

J.1 Discrete environments997

0 1 2 4 8
delay

0

50

Re
wa

rd

(a) DQN delay

0 1 2 4 8
delay

0

50

Re
wa

rd

(b) Rainbow delay

0 1 2 4 8
delay

0

50

Re
wa

rd

(c) A3C delay

1 2 3 4
sequence_length

0

50
Re

wa
rd

(d) DQN seq len

1 2 3 4
sequence_length

0

50

Re
wa

rd

(e) Rainbow seq len

1 2 3 4
sequence_length

0

50

Re
wa

rd

(f) A3C seq len

Figure 12: AUC of episodic reward at the end of training for different
agents for varying delays (top) and sequence lengths (bottom). Error
bars represent 1 standard deviation. Note the reward scales.

Varying reward delay998

Figures 12a-c, depict999

the mean and standard1000

deviation over 10 runs1001

for various delays. One1002

run consists of 10 random1003

seeds for the algorithm1004

but uses a fixed seed for1005

the environment. We1006

plot the Area Under the1007

Curve (AUC) which takes1008

the mean over previous1009

training rewards. As can1010

be seen from the figure,1011

all algorithms perform1012

very well in the vanilla1013

environment where the1014

MDP is fully observable as the information state of the agent is equal to the MDP’s state. For all1015

algorithms, performance degrades in environments where the information state is non-Markov.1016

Performance clearly degrades more as the information state needed to compute the optimal policy1017

requires more observations to be stacked. It is interesting (and expected) that Rainbow DQN is1018

somewhat more robust than DQN. The plots also show that DQN variants are more robust to delay as1019

compared to A3C variants.1020

Varying rewardable sequence length Results here are qualitatively similar to the ones for delay.1021

However, we observe in Figures 12d-f that sequence length has a more drastic effect in terms1022

of degradation of performance. The improvements of Rainbow DQN over DQN are also more1023

pronounced for these harder problems.1024

Results for varying transition and reward noises

0.0 0.01 0.02 0.1 0.25
transition_noise

0

50

Re
wa

rd

(a) DQN

0.0 0.01 0.02 0.1 0.25
transition_noise

0

50

Re
wa

rd

(b) Rainbow

0.0 0.01 0.02 0.1 0.25
transition_noise

0

50

Re
wa

rd

(c) A3C

0.0 0.01 0.02 0.1 0.25
transition_noise

0

50

Re
wa

rd

(d) A3C + LSTM

Figure 13: Mean episodic reward at the end of training for the different algorithms when varying
transition noise. Error bars represent 1 standard deviation. Note the different reward scales.

1025

0 1 5 10 25
reward_noise

0

50

Re
wa

rd

(a) DQN

0 1 5 10 25
reward_noise

0

50

Re
wa

rd

(b) Rainbow

0 1 5 10 25
reward_noise

0

50

Re
wa

rd

(c) A3C

0 1 5 10 25
reward_noise

0

50

Re
wa

rd

(d) A3C + LSTM

Figure 14: Mean episodic reward at the end of training for the different algorithms when varying
reward noise. Error bars represent 1 standard deviation. Note the different reward scales.

We see a similar trend during training, as for delays and sequences, when we vary the transition noise1026

in Figure 13 and the reward noise in Figure 14. Performance degrades gradually as more and more1027

noise is injected. It is interesting that, during training, all the algorithms seem to be more sensitive to1028

noise in the transition dynamics compared to the reward dynamics: transition noise values as low as1029

30

0.02 lead to a clear handicap in learning while for the reward dynamics (with the reward scale being1030

1.0) reward noise standard deviation of σr_n = 1 still resulted in learning progress.1031

0.0 0.01 0.02 0.1 0.25
transition_noise

0

50

Re
wa

rd

(a) DQN

0.0 0.01 0.02 0.1 0.25
transition_noise

0

50

Re
wa

rd

(b) Rainbow

0.0 0.01 0.02 0.1 0.25
transition_noise

0

50

Re
wa

rd

(c) A3C

0.0 0.01 0.02 0.1 0.25
transition_noise

0

50

Re
wa

rd

(d) A3C + LSTM

Figure 15: Mean episodic reward for evaluation rollouts (limited to 100 timesteps) at the end of
training for the different algorithms when varying transition noise. Error bars represent 1 standard
deviation.

0 1 5 10 25
reward_noise

0

50

Re
wa

rd

(a) DQN

0 1 5 10 25
reward_noise

0

50
Re

wa
rd

(b) Rainbow

0 1 5 10 25
reward_noise

0

50

Re
wa

rd

(c) A3C

0 1 5 10 25
reward_noise

0

50

Re
wa

rd

(d) A3C + LSTM

Figure 16: Mean episodic reward for evaluation rollouts (max 100 timesteps) at the end of training
for the different algorithms when varying reward noise. Error bars represent 1 standard deviation.
Note the different reward scales.

Interestingly, when we plot the evaluation performances1 in Figures 15 and 16, we see, on comparing1032

with the training plots, that the training performance of the algorithms is more sensitive to noise in1033

the transition dynamics (Figure 13) than the eventual evaluation performance is (Figure 15). While it1034

is obvious that the mean episodic reward during training would be perturbed when noise is injected1035

into the reward function, it is non-trivial that injecting noise into the transition function still leads1036

to good learning (as displayed in the evaluation rollout plots). An additional seeming anomaly is1037

that the evaluation rollouts for A3C variants especially (and DQN to a small extent), suggest that1038

it performs better in the presence of transition noise. This might indicate that A3C in the presence1039

of no transition noise does not explore enough (as was also conjectured in the unexpected results1040

for varying the sparsity meta-feature) and is actually helped when transition noise is present during1041

training.1042

J.2 Continuous Environments1043

We set the state and action space dimensionalities to 2. The state space range for each dimension1044

was [−10, 10] while the default action space range was [−1, 1]. The task would terminate when an1045

algorithm would reach the target point, or after at most 100 timesteps. We focus on results for DDPG1046

as results for TD3 and SAC are qualitatively similar (see Appendix J).1047

Varying action range We observed that the total reward gets worse for action max > 1. Up until the1048

value of 1, the episode lengths decreased as we would desire (see Figures 17b & 17d). This can be1049

attributed to the fact that the exploration schedules for the studied agents take the max range available1050

and explore based on that. But, as can be seen from these results, tuning these ranges or adapting1051

exploration mechanisms can produce substantially better results.1052

Varying target radius The target radius is a value which is generally set to a small enough value to1053

be able to say that the algorithm has reached the target. However, we noticed that, for small values,1054

all the continuous control agents oscillated around the target to reach it exactly. This can be observed1055

in Figure 17a and 17c, where we note that even though the task was learnt for different target radii,1056

the episode lengths were shorter for larger radii as the agents kept oscillating outside the radius. Even1057

for such a simple task all evaluated algorithms failed to adapt to performing fine-grained control near1058

the target. We hypothesise that the agents did not learn to slow down close to the goal. Given more1059

experience close to the goal, we expect the agents to be able to learn this behaviour.1060

As we mentioned earlier, one of the advantages of our platform is that it allows us to introduce all the1061

hardness dimensions on the same base environment at the same time. This is helpful to understand1062

1Here, for evaluation, and not for training because training is in the noisy environment, we evaluated in the
corresponding environment without noise to assess how well the true learning is proceeding.

31

0.05 0.1 0.25 0.5 1.0
target_radius

0

5

Re
wa

rd

(a) target radius rew.

0.1 0.25 0.5 1.0 2.0 4.0 8.0
action_space_max

0
5

Re
wa

rd

(b) action range rew.

0.05 0.1 0.25 0.5 1.0
target_radius

0

100

ep
iso

de
_le

n_
m

ea
n

(c) target radius len.

0.1 0.25 0.5 1.0 2.0 4.0 8.0
action_space_max

0

100

ep
iso

de
_le

n_
m

ea
n

(d) action range len.

0.1 0.25 0.5 1.0 2.0 4.0 8.0
time_unit

0

100

ep
iso

de
_le

n_
m

ea
n

(e) time unit len.

2 3 4 6 10
state_space_dim

0

50

ep
iso

de
_le

n_
m

ea
n

(f) irr. dims. len.

Figure 17: AUC of episodic reward (top) and lengths (bottom) for DDPG at the end of training. Error
bars represent 1 standard deviation. Note the different y-axis scales.

interaction effects between them. We plot the most interesting interaction effects in Figure 18 where1063

we varied both transition and reward noise over respective grid values. This plot shows that our1064

observation, that transition noise helps A3C out during evaluation, is only clearly valid when the1065

reward noise is not so high (σr_n <= 1) as to disrupt training. The corresponding heatmap plot1066

for training when varying the noises and additional ones for jointly varying delay and rewardable1067

sequence length are present in the Appendix (Figures 37 - 39).

1 5 10
reward_noise

0.01

0.02

0.1

0.25

tra
ns

iti
on

_n
oi

se

0

20

40

60

80

Reward
(a) DQN

1 5 10
reward_noise

0.01

0.02

0.1

0.25

tra
ns

iti
on

_n
oi

se

0

20

40

60

80

Reward

(b) Rainbow

1 5 10
reward_noise

0.01

0.02

0.1

0.25

tra
ns

iti
on

_n
oi

se

0

20

40

60

80

Reward

(c) A3C

1 5 10
reward_noise

0.01

0.02

0.1

0.25

tra
ns

iti
on

_n
oi

se

0

20

40

60

80

Reward

(d) A3C + LSTM

Figure 18: Mean episodic reward for evaluation rollouts (max 100 timesteps) at the end of training
for the different algorithms when varying transition and reward noise.

1068

J.3 Results for varying reward sparsity1069

0.25 0.5 0.75
reward_density

0

50

Re
wa

rd

(a) DQN

0.25 0.5 0.75
reward_density

0

50

Re
wa

rd

(b) Rainbow

0.25 0.5 0.75
reward_density

0

50

Re
wa

rd

(c) A3C

0.25 0.5 0.75
reward_density

0

50

Re
wa

rd

(d) A3C + LSTM

Figure 19: Mean episodic reward at the end of training for the algorithms when varying reward
sparsity. Error bars represent 1 standard deviation. Note the different reward scales.

Figure 19 shows the results of controlling the meta-feature sparsity in the environment. The DQN1070

variants were able to learn the important rewarding states in the environment even when these were1071

sparse while the behaviour of A3C was unexpected. One explanation could be that A3C’s exploration1072

was not very good, in which case increasing reward density would help as in Figure 19c. But1073

adding in an LSTM to the A3C agent seems to show the opposite trend (Figure 19d) as increasing1074

reward density leads to worsening performance. This could indicate that having a greater density of1075

rewarding states makes it harder for the LSTM to remember one state to stick to. This behaviour of1076

A3C warrants more investigation in the future.1077

We have observed A3C is more variant in general than its DQN counterparts and this should be1078

expected as it launches and collects data from several instances of the same environment which1079

induces more variance.1080

32

The make_denser configuration option, makes learning smoother and less variant across different1081

runs of an algorithm, as can be seen in Figure 20a for DQN when compared to Figure 22 for corre-1082

sponding sequence lengths. To evaluate the true learning of algorithms, we turn off themake_denser1083

option in the evaluation rollouts. The learning curves for these can be seen for DQN in Figure 20b.1084

The agent still does not perform as well as might be expected when making the reward signal denser1085

during training. This is probably due to the sequence lengths still violating the complete observability1086

assumption made by the algorithm. The plots for learning curves for the remaining algorithms are1087

present in Figures 70-75. The plots for final mean reward during training and evaluation are given in1088

Figures 19 and 26.1089

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

sequence_length 2

10000 20000
Train Timesteps

0

100

200

300

Re
wa

rd

sequence_length 3

10000 20000
Train Timesteps

0

200

400

600

Re
wa

rd

sequence_length 4

(a) Training Learning Curves

10000 20000
Train Timesteps

0

50

100

150

Re
wa

rd

sequence_length 2

10000 20000
Train Timesteps

0

100

200

300

Re
wa

rd

sequence_length 3

10000 20000
Train Timesteps

0

200

400

600

Re
wa

rd

sequence_length 4

(b) Evaluation Learning Curves

Figure 20: Learning curves for DQN when make_denser is True for rewardable sequences. Please
note the different Y-axis scales and the fact that with longer rewardable sequences, a greater number
of seeds do not learn anything for the evaluation rollouts (reward ≈ 0).

J.4 Further results for varying reward delays and sequences1090

0 1 2 4 8
delay

0

50

Re
wa

rd

(a) A3C + LSTM delay

1 2 3 4
sequence_length

0

50

Re
wa

rd

(b) A3C + LSTM seq len

Figure 21: Mean episodic reward at the end of training for different agents for varying delays (top)
and sequence lengths (bottom). Error bars represent 1 standard deviation. Note the reward scales.

Figure 22: Train Learning Curves for 10 runs with different seeds for DQN when varying sequence lengths.
Please note that each different colour corresponds to one of 10 seeds in each subplot.

Note that we varied delay on a logarithmic scale and sequence length on a linear one which means1091

that this effect is more pronounced than may first appear when looking at the figures. We additionally1092

also plot the learning curves, when varying sequence lengths, in Figure 22. We see how training1093

proceeds much more smoothly and is less variant across different seeds for the vanilla environment1094

(where the sequence length is 1) and that the variance across seeds is very large for sequence length 3.1095

J.5 Selecting Total Timesteps for Runs1096

We ran the experiments and plot the results for DQN variants up to 20 000 environment timesteps1097

and the ones for A3C variants up to 150 000 time steps since A3C took longer2 to learn as can be1098

2In terms of environment steps. Wallclock time used was still similar.

33

103 104 105

Train timesteps
0

50

100

Re
wa

rd

DQN
A3C

Figure 23: Evaluation rollouts (limited to 100 timesteps per episode) for DQN and A3C in the vanilla
environment which shows that DQN learns faster than A3C in terms of the number of timesteps.

seen in Figure 23. We refrain from fixing a single number of timesteps for our environments (as,1099

e.g., bsuite does), since the study of different trends for different families of algorithms will require1100

different numbers of timesteps. Policy gradient methods such as A3C are slower in general compared1101

to value-based approaches such as DQN. Throughout, we always run 10 seeds of all algorithms to1102

obtain reliable results. We repeated many of our experiments with an independent set of 10 seeds and1103

obtained the same qualitative results.1104

0 1 2 4 8
delay

0

50

Re
wa

rd

(a) DQN

0 1 2 4 8
delay

0

50

Re
wa

rd

(b) Rainbow

0 1 2 4 8
delay

0

50

Re
wa

rd
(c) A3C

0 1 2 4 8
delay

0

50

Re
wa

rd

(d) A3C + LSTM

Figure 24: Mean episodic reward for evaluation rollouts (limited to 100 timesteps) at the end of
training for the different algorithms when varying delay. Error bars represent 1 standard deviation.

1 2 3 4
sequence_length

0

50

Re
wa

rd

(a) DQN

1 2 3 4
sequence_length

0

50

Re
wa

rd

(b) Rainbow

1 2 3 4
sequence_length

0

50

Re
wa

rd

(c) A3C

1 2 3 4
sequence_length

0

50

Re
wa

rd

(d) A3C + LSTM

Figure 25: Mean episodic reward for evaluation rollouts (limited to 100 timesteps) at the end of
training for the different algorithms when varying sequence lengths. Error bars represent 1 standard
deviation.

0.25 0.5 0.75
reward_density

0

50

Re
wa

rd

(a) DQN

0.25 0.5 0.75
reward_density

0

50

Re
wa

rd

(b) Rainbow

0.25 0.5 0.75
reward_density

0

50

Re
wa

rd

(c) A3C

0.25 0.5 0.75
reward_density

0

100

Re
wa

rd

(d) A3C + LSTM

Figure 26: Mean episodic reward for evaluation rollouts (limited to 100 timesteps) at the end of
training for the different algorithms when varying reward sparsity. Error bars represent 1 standard
deviation.

34

2 3 4
sequence_length

0

200
Re

wa
rd

(a) DQN

2 3 4
sequence_length

0

250

Re
wa

rd

(b) Rainbow

2 3 4
sequence_length

0

250

Re
wa

rd

(c) A3C

2 3 4
sequence_length

0

200

Re
wa

rd

(d) A3C + LSTM

Figure 27: Mean episodic reward at the end of training for the different algorithms when make_denser
is True for rewardable sequences. Error bars represent 1 standard deviation.

2 3 4
sequence_length

0

250

Re
wa

rd

(a) DQN

2 3 4
sequence_length

0

250

Re
wa

rd

(b) Rainbow

2 3 4
sequence_length

0

250

Re
wa

rd
(c) A3C

2 3 4
sequence_length

0

200

Re
wa

rd

(d) A3C + LSTM

Figure 28: Mean episodic reward for evaluation rollouts (limited to 100 timesteps) at the end of
training for the different algorithms when make_denser is True for rewardable sequences. Error
bars represent 1 standard deviation.

none s S f r sSrf
image_transforms

0

100

Re
wa

rd

(a) A3C + LSTM

(0.81.25)(0.751.3333333333333333)(0.66666666666666661.5)(0.52)
image_scale_range

0

50

Re
wa

rd

(b) DQN scale

2 4 9 18 36
image_ro_quant

0

50

Re
wa

rd

(c) DQN rotate

Figure 29: Mean episodic reward at the end of training for the different algorithms when varying
representation learning. ’s’ represents shift, ’S’ represents scale, ’f’ represents flip and ’r’ represents
rotate in the labels in the first subfigure. scale_range represents scaling ranges in the second subfigure.
image_ro_quant is represents quantisation of the rotations in the third subfigure. Error bars represent
1 standard deviation.

0.05 0.1 0.25 0.5 1.0
target_radius

0.0

2.5

Re
wa

rd

(a) target radius rew.

0.1 0.25 0.5 1.0 2.0 4.0 8.0
action_space_max

0.0
2.5

Re
wa

rd

(b) action max rew.

0.1 0.2 0.5 1.0 2.0 4.0 8.0
time_unit

0

5

Re
wa

rd

(c) time unit rew.

2 3 4 6 10
state_space_dim

0

5

Re
wa

rd

(d) irr. dims. rew.

0.05 0.1 0.25 0.5 1.0
target_radius

0

100

ep
iso

de
_le

n_
m

ea
n

(e) target radius len.

0.1 0.25 0.5 1.0 2.0 4.0 8.0
action_space_max

0

100

ep
iso

de
_le

n_
m

ea
n

(f) action max len.

0.1 0.25 0.5 1.0 2.0 4.0 8.0
time_unit

0

100

ep
iso

de
_le

n_
m

ea
n

(g) time unit len.

2 3 4 6 10
state_space_dim

0

50

ep
iso

de
_le

n_
m

ea
n

(h) irr. dims. len.

Figure 30: Mean episodic reward (above) and lengths (below) for TD3 at the end of training. Error
bars represent 1 standard deviation.

35

0.05 0.1 0.25 0.5 1.0
target_radius

0

5

Re
wa

rd

(a) target radius rew.

0.1 0.25 0.5 1.0 2.0 4.0 8.0
action_space_max

0

5

Re
wa

rd
(b) action max rew.

0.1 0.2 0.5 1.0 2.0 4.0 8.0
time_unit

0

5

Re
wa

rd

(c) time unit rew.

2 3 4 6 10
state_space_dim

0

5

Re
wa

rd

(d) irr. dims. rew.

0.05 0.1 0.25 0.5 1.0
target_radius

0

100

ep
iso

de
_le

n_
m

ea
n

(e) target radius len.

0.1 0.25 0.5 1.0 2.0 4.0 8.0
action_space_max

0

100

ep
iso

de
_le

n_
m

ea
n

(f) action max len.

0.1 0.25 0.5 1.0 2.0 4.0 8.0
time_unit

0

50

ep
iso

de
_le

n_
m

ea
n

(g) time unit len.

2 3 4 6 10
state_space_dim

0

50

ep
iso

de
_le

n_
m

ea
n

(h) irr. dims. len.

Figure 31: Mean episodic reward (above) and lengths (below) for SAC at the end of training. Error
bars represent 1 standard deviation.

0.01 0.1 1.0 5.0 10.0 100.0
action_loss_weight

5
0
5

Re
wa

rd

(a) DDPG episode rew.

0.01 0.1 1.0 5.0 10.0 100.0
action_loss_weight

0

10

Re
wa

rd

(b) TD3 episode rew.

0.01 0.1 1.0 5.0 10.0 100.0
action_loss_weight

0

5

Re
wa

rd

(c) SAC episode rew.

0.01 0.1 1.0 5.0 10.0 100.0
action_loss_weight

0

100

ep
iso

de
_le

n_
m

ea
n

(d) DDPG episode len.

0.01 0.1 1.0 5.0 10.0 100.0
action_loss_weight

0

100

ep
iso

de
_le

n_
m

ea
n

(e) TD3 episode len.

0.01 0.1 1.0 5.0 10.0 100.0
action_loss_weight

0

100

ep
iso

de
_le

n_
m

ea
n

(f) SAC episode len.

Figure 32: Mean episodic reward (above) and lengths (below) at the end of training for evaluation
rollouts for DDPG, TD3 and SAC when varying action_loss_weight. Error bars represent 1 standard
deviation.

36

K Plots for tabular baselines1105

0 1 2 4 8
delay

0

50
Re

wa
rd

(a) Q-Learning

0 1 2 4 8
delay

0

50

Re
wa

rd

(b) SARSA

0 1 2 4 8
delay

0

50

Re
wa

rd

(c) Double Q-Learning

Figure 33: Mean episodic reward (limited to 100 timesteps) at the end of training for three different
tabular baseline algorithms when varying reward delay. Error bars represent 1 standard deviation.

1 2 3 4
sequence_length

0

50

Re
wa

rd

(a) Q-Learning

1 2 3 4
sequence_length

0

50

Re
wa

rd

(b) SARSA

1 2 3 4
sequence_length

0

50

Re
wa

rd

(c) Double Q-Learning

Figure 34: Mean episodic reward (limited to 100 timesteps) at the end of training for three different
tabular baseline algorithms when varying sequence length. Error bars represent 1 standard deviation.

0 1 5 10 25
reward_noise

0

50

Re
wa

rd

(a) Q-Learning

0 1 5 10 25
reward_noise

0

50

Re
wa

rd

(b) SARSA

0 1 5 10 25
reward_noise

0

50

Re
wa

rd

(c) Double Q-Learning

Figure 35: Mean episodic reward (limited to 100 timesteps) at the end of training for three different
tabular baseline algorithms when varying reward noise. Error bars represent 1 standard deviation.

0.0 0.01 0.02 0.1 0.25
transition_noise

0

50

Re
wa

rd

(a) Q-Learning

0.0 0.01 0.02 0.1 0.25
transition_noise

0

50

Re
wa

rd

(b) SARSA

0.0 0.01 0.02 0.1 0.25
transition_noise

0

50

Re
wa

rd

(c) Double Q-Learning

Figure 36: Mean episodic reward (limited to 100 timesteps) at the end of training for three different
tabular baseline algorithms when varying transition noise. Error bars represent 1 standard deviation.

37

L Plots for varying 2 hardness dimensions together1106

2 3
sequence_length

1

2

4

8

de
la

y

0

20

40

60

80

Reward

(a) DQN

2 3
sequence_length

1

2

4

8

de
la

y

0

20

40

60

80

Reward

(b) Rainbow

2 3
sequence_length

1

2

4

8

de
la

y

0

20

40

60

80

Reward
(c) A3C

2 3
sequence_length

1

2

4

8

de
la

y

0

20

40

60

80
Reward

(d) A3C + LSTM

Figure 37: Mean episodic reward at the end of training for the different algorithms when varying
delay and sequence lengths. Please note the different colorbar scales.

2 3
sequence_length

1

2

4

8

de
la

y

0

20

40

60

80

Reward

(a) DQN

2 3
sequence_length

1

2

4

8

de
la

y

0

20

40

60

80

Reward

(b) Rainbow

2 3
sequence_length

1

2

4

8
de

la
y

0

20

40

60

80

Reward

(c) A3C

2 3
sequence_length

1

2

4

8

de
la

y

0

20

40

60

80

Reward

(d) A3C + LSTM

Figure 38: Mean episodic reward for evaluation rollouts (limited to 100 timesteps) at the end of
training for the different algorithms when varying delay and rewardable sequence lengths. Please
note the different colorbar scales.

1 5 10
reward_noise

0.01

0.02

0.1

0.25

tra
ns

iti
on

_n
oi

se

0

20

40

60

80

Reward

(a) DQN

1 5 10
reward_noise

0.01

0.02

0.1

0.25

tra
ns

iti
on

_n
oi

se

0

20

40

60

80

Reward

(b) Rainbow

1 5 10
reward_noise

0.01

0.02

0.1

0.25

tra
ns

iti
on

_n
oi

se

0

20

40

60

80

Reward

(c) A3C

1 5 10
reward_noise

0.01

0.02

0.1

0.25

tra
ns

iti
on

_n
oi

se

0

20

40

60

80

Reward

(d) A3C + LSTM

Figure 39: Mean episodic reward at the end of training for the different algorithms when varying
transition noise and reward noise. Please note the different colorbar scales.

38

2 3
sequence_length

1

2

4

8

de
la

y

0

5

10

15

20Reward Std Dev.

(a) DQN

2 3
sequence_length

1

2

4

8

de
la

y

0

5

10

15

20Reward Std Dev.

(b) Rainbow

2 3
sequence_length

1

2

4

8

de
la

y

0

5

10

15

20Reward Std Dev.

(c) A3C

2 3
sequence_length

1

2

4

8

de
la

y

0

5

10

15Reward Std Dev.

(d) A3C + LSTM

Figure 40: Standard deviation of mean episodic reward at the end of training for the different
algorithms when varying delay and sequence lengths. Please note the different colorbar scales.

2 3
sequence_length

1

2

4

8

de
la

y

0
5
10
15
20
25Reward Std Dev.

(a) DQN

2 3
sequence_length

1

2

4

8

de
la

y

0

5

10

15

20Reward Std Dev.

(b) Rainbow

2 3
sequence_length

1

2

4

8

de
la

y
0

5

10

15

20Reward Std Dev.

(c) A3C

2 3
sequence_length

1

2

4

8

de
la

y

0

5

10

15

Reward Std Dev.

(d) A3C + LSTM

Figure 41: Standard deviation of mean episodic reward for evaluation rollouts (limited to 100
timesteps) at the end of training for the different algorithms when varying delay and rewardable
sequence lengths. Please note the different colorbar scales.

1 5 10
reward_noise

0.01

0.02

0.1

0.25

tra
ns

iti
on

_n
oi

se

0

10

20

30Reward Std Dev.

(a) DQN

1 5 10
reward_noise

0.01

0.02

0.1

0.25

tra
ns

iti
on

_n
oi

se

0

5

10

15

20Reward Std Dev.

(b) Rainbow

1 5 10
reward_noise

0.01

0.02

0.1

0.25

tra
ns

iti
on

_n
oi

se

0

2

4

6

8

Reward Std Dev.

(c) A3C

1 5 10
reward_noise

0.01

0.02

0.1

0.25

tra
ns

iti
on

_n
oi

se

0

5

10

15

20

Reward Std Dev.

(d) A3C + LSTM

Figure 42: Standard deviation of mean episodic reward at the end of training for the different
algorithms when varying transition noise and reward noise. Please note the different colorbar
scales.

1 5 10
reward_noise

0.01

0.02

0.1

0.25

tra
ns

iti
on

_n
oi

se

0

10

20

30

Reward Std Dev.

(a) DQN

1 5 10
reward_noise

0.01

0.02

0.1

0.25

tra
ns

iti
on

_n
oi

se

0

10

20

30Reward Std Dev.

(b) Rainbow

1 5 10
reward_noise

0.01

0.02

0.1

0.25

tra
ns

iti
on

_n
oi

se

0.0

2.5

5.0

7.5

10.0

12.5Reward Std Dev.

(c) A3C

1 5 10
reward_noise

0.01

0.02

0.1

0.25

tra
ns

iti
on

_n
oi

se

0

5

10

15Reward Std Dev.

(d) A3C + LSTM

Figure 43: Standard deviation of mean episodic reward at the end of training for evaluation rollouts
(limited to 100 timesteps) at the end of training for the different algorithms when varying transition
noise and reward noise. Please note the different colorbar scales.

39

0.25 0.5
target_radius

0.02

0.1

0.25

0.5tra
ns

iti
on

_n
oi

se

0

2

4

6

Reward

(a) TD3 episode rew.

0.25 0.5
target_radius

0.02

0.1

0.25

0.5tra
ns

iti
on

_n
oi

se

0

20

40

60

80

episode_len_m
ean

(b) TD3 episode len.

0.25 0.5
target_radius

0.02

0.1

0.25

0.5tra
ns

iti
on

_n
oi

se

0

2

4

6

Reward

(c) SAC episode rew.

0.25 0.5
target_radius

0.02

0.1

0.25

0.5tra
ns

iti
on

_n
oi

se

0

20

40

60

80

episode_len_m
ean

(d) SAC episode len.

Figure 44: Mean episodic reward and lengths at the end of training for the different algorithms when
varying P noise and target radius.

0.02 0.05 0.1
time_unit

0.25

0.5

1.0

ac
tio

n_
sp

ac
e_

m
ax

0

1

2

3

4

Reward

(a) DDPG P Order 2

0.02 0.05 0.1
time_unit

0.25

0.5

1.0

ac
tio

n_
sp

ac
e_

m
ax

0

1

2

3

Reward

(b) DDPG P Order 3

0.02 0.05 0.1
time_unit

0.25

0.5

1.0

ac
tio

n_
sp

ac
e_

m
ax

0

1

2

3

Reward

(c) TD3 P Order 2

0.02 0.05 0.1
time_unit

0.25

0.5

1.0

ac
tio

n_
sp

ac
e_

m
ax

0.0
0.5
1.0
1.5
2.0
2.5

Reward

(d) SAC P Order 2

Figure 45: Mean episodic reward at the end of training for the different algorithms when varying
action space max and time unit for a given P order.

40

M Additional Learning Curves1107

5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd
delay 0, sequence_length 1

5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

delay 0, sequence_length 2

5000 10000 15000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 0, sequence_length 3

5000 10000 15000 20000
Train Timesteps

0

10

20

Re
wa

rd

delay 0, sequence_length 4

5000 10000 15000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

delay 1, sequence_length 1

5000 10000 15000 20000
Train Timesteps

0

20

40

Re
wa

rd

delay 1, sequence_length 2

5000 10000 15000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 1, sequence_length 3

5000 10000 15000 20000
Train Timesteps

0

10

20

Re
wa

rd

delay 1, sequence_length 4

5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

delay 2, sequence_length 1

5000 10000 15000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

delay 2, sequence_length 2

5000 10000 15000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 2, sequence_length 3

5000 10000 15000 20000
Train Timesteps

0

20

40

Re
wa

rd

delay 2, sequence_length 4

5000 10000 15000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

delay 4, sequence_length 1

5000 10000 15000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

delay 4, sequence_length 2

5000 10000 15000 20000
Train Timesteps

0

20

40

60

Re
wa

rd
delay 4, sequence_length 3

5000 10000 15000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 4, sequence_length 4

5000 10000 15000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

delay 8, sequence_length 1

5000 10000 15000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

delay 8, sequence_length 2

5000 10000 15000 20000
Train Timesteps

0

20

40

Re
wa

rd

delay 8, sequence_length 3

5000 10000 15000 20000
Train Timesteps

0

10

20
Re

wa
rd

delay 8, sequence_length 4

Figure 46: Training Learning Curves for DQN when varying delay and sequence lengths. Please note the
different colorbar scales.

41

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

delay 0, sequence_length 1

10000 20000
Train Timesteps

0

50

100
Re

wa
rd

delay 0, sequence_length 2

10000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 0, sequence_length 3

10000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

delay 0, sequence_length 4

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

delay 1, sequence_length 1

10000 20000
Train Timesteps

0

20

40

Re
wa

rd

delay 1, sequence_length 2

10000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 1, sequence_length 3

10000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 1, sequence_length 4

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

delay 2, sequence_length 1

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

delay 2, sequence_length 2

10000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 2, sequence_length 3

10000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 2, sequence_length 4

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

delay 4, sequence_length 1

10000 20000
Train Timesteps

0

50

Re
wa

rd

delay 4, sequence_length 2

10000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 4, sequence_length 3

10000 20000
Train Timesteps

0

20

40

60

Re
wa

rd
delay 4, sequence_length 4

10000 20000
Train Timesteps

0

50

Re
wa

rd

delay 8, sequence_length 1

10000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

delay 8, sequence_length 2

10000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 8, sequence_length 3

10000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 8, sequence_length 4

Figure 47: Evaluation Learning Curves for DQN when varying delay and sequence lengths. Please note the
different colorbar scales.

42

10000 20000
Train Timesteps

0

50
Re

wa
rd

transition_noise 0.0, reward_noise 0

10000 20000
Train Timesteps

0

50

Re
wa

rd

transition_noise 0.0, reward_noise 1

10000 20000
Train Timesteps

0

50

Re
wa

rd

transition_noise 0.0, reward_noise 5

10000 20000
Train Timesteps

0

50

Re
wa

rd

transition_noise 0.0, reward_noise 10

10000 20000
Train Timesteps

50

0

50

Re
wa

rd

transition_noise 0.0, reward_noise 25

10000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

transition_noise 0.01, reward_noise 0

10000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

transition_noise 0.01, reward_noise 1

10000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

transition_noise 0.01, reward_noise 5

10000 20000
Train Timesteps

0

25

50

Re
wa

rd

transition_noise 0.01, reward_noise 10

10000 20000
Train Timesteps

25

0

25

50

Re
wa

rd

transition_noise 0.01, reward_noise 25

10000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

transition_noise 0.02, reward_noise 0

10000 20000
Train Timesteps

0

25

50

75

Re
wa

rd
transition_noise 0.02, reward_noise 1

10000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

transition_noise 0.02, reward_noise 5

10000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

transition_noise 0.02, reward_noise 10

10000 20000
Train Timesteps

20

0

20

Re
wa

rd

transition_noise 0.02, reward_noise 25

10000 20000
Train Timesteps

0

10

20

30

Re
wa

rd

transition_noise 0.1, reward_noise 0

10000 20000
Train Timesteps

0

10

20

30

Re
wa

rd

transition_noise 0.1, reward_noise 1

10000 20000
Train Timesteps

0

10

20

30

Re
wa

rd

transition_noise 0.1, reward_noise 5

10000 20000
Train Timesteps

0

20

Re
wa

rd

transition_noise 0.1, reward_noise 10

10000 20000
Train Timesteps

25

0

25

50

Re
wa

rd

transition_noise 0.1, reward_noise 25

10000 20000
Train Timesteps

0

5

10

Re
wa

rd

transition_noise 0.25, reward_noise 0

10000 20000
Train Timesteps

0

5

10

Re
wa

rd

transition_noise 0.25, reward_noise 1

10000 20000
Train Timesteps

0

5

10

Re
wa

rd

transition_noise 0.25, reward_noise 5

10000 20000
Train Timesteps

0

10

Re
wa

rd

transition_noise 0.25, reward_noise 10

10000 20000
Train Timesteps

10

0

10

20

Re
wa

rd

transition_noise 0.25, reward_noise 25

Figure 48: Training Learning Curves for DQN when varying transition noise and reward noise.

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.0, reward_noise 0

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.0, reward_noise 1

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.0, reward_noise 5

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.0, reward_noise 10

10000 20000
Train Timesteps

0

50

100
Re

wa
rd

transition_noise 0.0, reward_noise 25

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.01, reward_noise 0

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.01, reward_noise 1

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.01, reward_noise 5

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.01, reward_noise 10

10000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

transition_noise 0.01, reward_noise 25

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.02, reward_noise 0

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.02, reward_noise 1

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.02, reward_noise 5

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.02, reward_noise 10

10000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

transition_noise 0.02, reward_noise 25

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.1, reward_noise 0

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.1, reward_noise 1

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.1, reward_noise 5

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.1, reward_noise 10

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.1, reward_noise 25

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.25, reward_noise 0

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.25, reward_noise 1

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.25, reward_noise 5

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.25, reward_noise 10

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.25, reward_noise 25

Figure 49: Evaluation Learning Curves for DQN when varying transition noise and reward noise. Please
note the different Y-axis scales.

43

5000 10000 15000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

delay 0, sequence_length 1

5000 10000 15000 20000
Train Timesteps

0

25

50

75

Re
wa

rd
delay 0, sequence_length 2

5000 10000 15000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 0, sequence_length 3

5000 10000 15000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 0, sequence_length 4

5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

delay 1, sequence_length 1

5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

delay 1, sequence_length 2

5000 10000 15000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 1, sequence_length 3

5000 10000 15000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 1, sequence_length 4

5000 10000 15000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

delay 2, sequence_length 1

5000 10000 15000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

delay 2, sequence_length 2

5000 10000 15000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 2, sequence_length 3

5000 10000 15000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 2, sequence_length 4

5000 10000 15000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

delay 4, sequence_length 1

5000 10000 15000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 4, sequence_length 2

5000 10000 15000 20000
Train Timesteps

0

20

40

Re
wa

rd

delay 4, sequence_length 3

5000 10000 15000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 4, sequence_length 4

5000 10000 15000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

delay 8, sequence_length 1

5000 10000 15000 20000
Train Timesteps

0

20

40

Re
wa

rd

delay 8, sequence_length 2

5000 10000 15000 20000
Train Timesteps

0

20

40

Re
wa

rd

delay 8, sequence_length 3

5000 10000 15000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 8, sequence_length 4

Figure 50: Training Learning Curves for Rainbow when varying delay and sequence lengths. Please note
the different Y-axis scales.

44

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

delay 0, sequence_length 1

10000 20000
Train Timesteps

0

50

100
Re

wa
rd

delay 0, sequence_length 2

10000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

delay 0, sequence_length 3

10000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

delay 0, sequence_length 4

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

delay 1, sequence_length 1

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

delay 1, sequence_length 2

10000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 1, sequence_length 3

10000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 1, sequence_length 4

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

delay 2, sequence_length 1

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

delay 2, sequence_length 2

10000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 2, sequence_length 3

10000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 2, sequence_length 4

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

delay 4, sequence_length 1

10000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 4, sequence_length 2

10000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 4, sequence_length 3

10000 20000
Train Timesteps

0

20

40

60

Re
wa

rd
delay 4, sequence_length 4

10000 20000
Train Timesteps

0

50

Re
wa

rd

delay 8, sequence_length 1

10000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 8, sequence_length 2

10000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 8, sequence_length 3

10000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 8, sequence_length 4

Figure 51: Evaluation Learning Curves for Rainbow when varying delay and sequence lengths. Please note
the different Y-axis scales.

45

10000 20000
Train Timesteps

0

50

Re
wa

rd

transition_noise 0.0, reward_noise 0

10000 20000
Train Timesteps

0

50

Re
wa

rd

transition_noise 0.0, reward_noise 1

10000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

transition_noise 0.0, reward_noise 5

10000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

transition_noise 0.0, reward_noise 10

10000 20000
Train Timesteps

10

0

10

Re
wa

rd

transition_noise 0.0, reward_noise 25

10000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

transition_noise 0.01, reward_noise 0

10000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

transition_noise 0.01, reward_noise 1

10000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

transition_noise 0.01, reward_noise 5

10000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

transition_noise 0.01, reward_noise 10

10000 20000
Train Timesteps

20

0

20

Re
wa

rd

transition_noise 0.01, reward_noise 25

10000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

transition_noise 0.02, reward_noise 0

10000 20000
Train Timesteps

0

25

50

75
Re

wa
rd

transition_noise 0.02, reward_noise 1

10000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

transition_noise 0.02, reward_noise 5

10000 20000
Train Timesteps

0

20

40

Re
wa

rd

transition_noise 0.02, reward_noise 10

10000 20000
Train Timesteps

20

0

20

Re
wa

rd

transition_noise 0.02, reward_noise 25

10000 20000
Train Timesteps

0

10

20

30

Re
wa

rd

transition_noise 0.1, reward_noise 0

10000 20000
Train Timesteps

0

10

20

30

Re
wa

rd

transition_noise 0.1, reward_noise 1

10000 20000
Train Timesteps

0

10

20

30

Re
wa

rd

transition_noise 0.1, reward_noise 5

10000 20000
Train Timesteps

0

10

20

Re
wa

rd

transition_noise 0.1, reward_noise 10

10000 20000
Train Timesteps

10

0

10

Re
wa

rd

transition_noise 0.1, reward_noise 25

10000 20000
Train Timesteps

0

5

10

Re
wa

rd

transition_noise 0.25, reward_noise 0

10000 20000
Train Timesteps

0

5

10

Re
wa

rd

transition_noise 0.25, reward_noise 1

10000 20000
Train Timesteps

0

5

10

Re
wa

rd

transition_noise 0.25, reward_noise 5

10000 20000
Train Timesteps

0

5

Re
wa

rd

transition_noise 0.25, reward_noise 10

10000 20000
Train Timesteps

10

0

10

Re
wa

rd

transition_noise 0.25, reward_noise 25

Figure 52: Training Learning Curves for Rainbow when varying noises. Please note the different Y-axis
scales.

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.0, reward_noise 0

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.0, reward_noise 1

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.0, reward_noise 5

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.0, reward_noise 10

10000 20000
Train Timesteps

0

20

40

60
Re

wa
rd

transition_noise 0.0, reward_noise 25

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.01, reward_noise 0

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.01, reward_noise 1

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.01, reward_noise 5

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.01, reward_noise 10

10000 20000
Train Timesteps

0

20

40

60

Re
wa

rd

transition_noise 0.01, reward_noise 25

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.02, reward_noise 0

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.02, reward_noise 1

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.02, reward_noise 5

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.02, reward_noise 10

10000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

transition_noise 0.02, reward_noise 25

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.1, reward_noise 0

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.1, reward_noise 1

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.1, reward_noise 5

10000 20000
Train Timesteps

0

50

Re
wa

rd

transition_noise 0.1, reward_noise 10

10000 20000
Train Timesteps

0

5

10

15

Re
wa

rd

transition_noise 0.1, reward_noise 25

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.25, reward_noise 0

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.25, reward_noise 1

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.25, reward_noise 5

10000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

transition_noise 0.25, reward_noise 10

10000 20000
Train Timesteps

0

20

40

Re
wa

rd

transition_noise 0.25, reward_noise 25

Figure 53: Evaluation Learning Curves for Rainbow when varying noises. Please note the different Y-axis
scales.

46

50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

delay 0, sequence_length 1

50000 100000 150000
Train Timesteps

0

25

50

75
Re

wa
rd

delay 0, sequence_length 2

50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

delay 0, sequence_length 3

50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

delay 0, sequence_length 4

50000 100000 150000
Train Timesteps

0

50

Re
wa

rd

delay 1, sequence_length 1

50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

delay 1, sequence_length 2

50000 100000 150000
Train Timesteps

0

5

10

Re
wa

rd

delay 1, sequence_length 3

50000 100000 150000
Train Timesteps

0

2

4

6

Re
wa

rd

delay 1, sequence_length 4

50000 100000 150000
Train Timesteps

0

50

Re
wa

rd

delay 2, sequence_length 1

50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

delay 2, sequence_length 2

50000 100000 150000
Train Timesteps

0

5

10

Re
wa

rd

delay 2, sequence_length 3

50000 100000 150000
Train Timesteps

0

2

4

6

Re
wa

rd

delay 2, sequence_length 4

50000 100000 150000
Train Timesteps

0

25

50

75

Re
wa

rd

delay 4, sequence_length 1

50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

delay 4, sequence_length 2

50000 100000 150000
Train Timesteps

0

5

10

Re
wa

rd

delay 4, sequence_length 3

50000 100000 150000
Train Timesteps

0

2

4

6
Re

wa
rd

delay 4, sequence_length 4

50000 100000 150000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 8, sequence_length 1

50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

delay 8, sequence_length 2

50000 100000 150000
Train Timesteps

0

5

10

Re
wa

rd

delay 8, sequence_length 3

50000 100000 150000
Train Timesteps

0.01

0.02

0.03

0.04

Re
wa

rd

delay 8, sequence_length 4

Figure 54: Training Learning Curves for A3C when varying delay and sequence lengths. Please note the
different Y-axis scales.

47

50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

delay 0, sequence_length 1

50000 100000 150000
Train Timesteps

0

50

Re
wa

rd
delay 0, sequence_length 2

50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

delay 0, sequence_length 3

50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

delay 0, sequence_length 4

50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

delay 1, sequence_length 1

50000 100000 150000
Train Timesteps

0

10

20

30

Re
wa

rd

delay 1, sequence_length 2

50000 100000 150000
Train Timesteps

0

5

10

15

Re
wa

rd

delay 1, sequence_length 3

50000 100000 150000
Train Timesteps

0.0

2.5

5.0

7.5

Re
wa

rd

delay 1, sequence_length 4

50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

delay 2, sequence_length 1

50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

delay 2, sequence_length 2

50000 100000 150000
Train Timesteps

0

5

10

15

Re
wa

rd

delay 2, sequence_length 3

50000 100000 150000
Train Timesteps

0.0

2.5

5.0

7.5

Re
wa

rd

delay 2, sequence_length 4

50000 100000 150000
Train Timesteps

0

25

50

75

Re
wa

rd

delay 4, sequence_length 1

50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

delay 4, sequence_length 2

50000 100000 150000
Train Timesteps

0

5

10

Re
wa

rd

delay 4, sequence_length 3

50000 100000 150000
Train Timesteps

0

2

4

6

Re
wa

rd
delay 4, sequence_length 4

50000 100000 150000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 8, sequence_length 1

50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

delay 8, sequence_length 2

50000 100000 150000
Train Timesteps

0

5

10

Re
wa

rd

delay 8, sequence_length 3

50000 100000 150000
Train Timesteps

0.0

0.2

0.4

Re
wa

rd

delay 8, sequence_length 4

Figure 55: Evaluation Learning Curves for A3C when varying delay and sequence lengths. Please note the
different Y-axis scales.

48

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.0, reward_noise 0

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.0, reward_noise 1

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.0, reward_noise 5

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.0, reward_noise 10

0 50000 100000 150000
Train Timesteps

20

0

20

Re
wa

rd

transition_noise 0.0, reward_noise 25

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.01, reward_noise 0

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.01, reward_noise 1

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.01, reward_noise 5

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.01, reward_noise 10

0 50000 100000 150000
Train Timesteps

0

20

Re
wa

rd

transition_noise 0.01, reward_noise 25

0 50000 100000 150000
Train Timesteps

0

50

Re
wa

rd

transition_noise 0.02, reward_noise 0

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.02, reward_noise 1

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.02, reward_noise 5

0 50000 100000 150000
Train Timesteps

0

50

Re
wa

rd

transition_noise 0.02, reward_noise 10

0 50000 100000 150000
Train Timesteps

20

0

20

Re
wa

rd

transition_noise 0.02, reward_noise 25

0 50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

transition_noise 0.1, reward_noise 0

0 50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

transition_noise 0.1, reward_noise 1

0 50000 100000 150000
Train Timesteps

0

20

40
Re

wa
rd

transition_noise 0.1, reward_noise 5

0 50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

transition_noise 0.1, reward_noise 10

0 50000 100000 150000
Train Timesteps

20

0

20

Re
wa

rd

transition_noise 0.1, reward_noise 25

0 50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

transition_noise 0.25, reward_noise 0

0 50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

transition_noise 0.25, reward_noise 1

0 50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

transition_noise 0.25, reward_noise 5

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

transition_noise 0.25, reward_noise 10

0 50000 100000 150000
Train Timesteps

20

0

20

Re
wa

rd

transition_noise 0.25, reward_noise 25

Figure 56: Training Learning Curves for A3C when varying noises. Please note the different Y-axis scales.

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.0, reward_noise 0

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.0, reward_noise 1

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.0, reward_noise 5

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.0, reward_noise 10

0 50000 100000 150000
Train Timesteps

0

1

2
Re

wa
rd

transition_noise 0.0, reward_noise 25

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.01, reward_noise 0

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.01, reward_noise 1

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.01, reward_noise 5

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.01, reward_noise 10

0 50000 100000 150000
Train Timesteps

0

1

2

3

Re
wa

rd

transition_noise 0.01, reward_noise 25

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.02, reward_noise 0

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.02, reward_noise 1

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.02, reward_noise 5

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.02, reward_noise 10

0 50000 100000 150000
Train Timesteps

0

1

2

Re
wa

rd

transition_noise 0.02, reward_noise 25

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.1, reward_noise 0

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.1, reward_noise 1

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.1, reward_noise 5

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.1, reward_noise 10

0 50000 100000 150000
Train Timesteps

0

1

2

Re
wa

rd

transition_noise 0.1, reward_noise 25

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.25, reward_noise 0

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.25, reward_noise 1

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.25, reward_noise 5

0 50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

transition_noise 0.25, reward_noise 10

0 50000 100000 150000
Train Timesteps

0

1

2

Re
wa

rd

transition_noise 0.25, reward_noise 25

Figure 57: Evaluation Learning Curves for A3C when varying noises. Please note the different Y-axis scales.

49

0 50000 100000 150000
Train Timesteps

0

50

Re
wa

rd

delay 0, sequence_length 1

0 50000 100000 150000
Train Timesteps

0

20

40
Re

wa
rd

delay 0, sequence_length 2

0 50000 100000 150000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 0, sequence_length 3

0 50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

delay 0, sequence_length 4

0 50000 100000 150000
Train Timesteps

0

25

50

75

Re
wa

rd

delay 1, sequence_length 1

0 50000 100000 150000
Train Timesteps

0

20

Re
wa

rd

delay 1, sequence_length 2

0 50000 100000 150000
Train Timesteps

0

5

10

15

Re
wa

rd

delay 1, sequence_length 3

0 50000 100000 150000
Train Timesteps

0

5

10

15

Re
wa

rd

delay 1, sequence_length 4

0 50000 100000 150000
Train Timesteps

0

25

50

75

Re
wa

rd

delay 2, sequence_length 1

0 50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

delay 2, sequence_length 2

0 50000 100000 150000
Train Timesteps

0

5

Re
wa

rd

delay 2, sequence_length 3

0 50000 100000 150000
Train Timesteps

0

2

4

Re
wa

rd

delay 2, sequence_length 4

0 50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

delay 4, sequence_length 1

0 50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

delay 4, sequence_length 2

0 50000 100000 150000
Train Timesteps

0

5

10

Re
wa

rd

delay 4, sequence_length 3

0 50000 100000 150000
Train Timesteps

0

2

4

Re
wa

rd
delay 4, sequence_length 4

0 50000 100000 150000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 8, sequence_length 1

0 50000 100000 150000
Train Timesteps

0

5

10

15

Re
wa

rd

delay 8, sequence_length 2

0 50000 100000 150000
Train Timesteps

0.0

2.5

5.0

7.5

Re
wa

rd

delay 8, sequence_length 3

0 50000 100000 150000
Train Timesteps

0

1

2

3

Re
wa

rd

delay 8, sequence_length 4

Figure 58: Training Learning Curves for A3C with LSTM when varying delay and sequence lengths. Please
note the different Y-axis scales.

50

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

delay 0, sequence_length 1

0 50000 100000 150000
Train Timesteps

0

20

40
Re

wa
rd

delay 0, sequence_length 2

0 50000 100000 150000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 0, sequence_length 3

0 50000 100000 150000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 0, sequence_length 4

0 50000 100000 150000
Train Timesteps

0

50

Re
wa

rd

delay 1, sequence_length 1

0 50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

delay 1, sequence_length 2

0 50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

delay 1, sequence_length 3

0 50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

delay 1, sequence_length 4

0 50000 100000 150000
Train Timesteps

0

50

Re
wa

rd

delay 2, sequence_length 1

0 50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

delay 2, sequence_length 2

0 50000 100000 150000
Train Timesteps

0

5

10

Re
wa

rd

delay 2, sequence_length 3

0 50000 100000 150000
Train Timesteps

0

2

4

6

Re
wa

rd

delay 2, sequence_length 4

0 50000 100000 150000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 4, sequence_length 1

0 50000 100000 150000
Train Timesteps

0

10

20

30

Re
wa

rd

delay 4, sequence_length 2

0 50000 100000 150000
Train Timesteps

0

5

10

Re
wa

rd

delay 4, sequence_length 3

0 50000 100000 150000
Train Timesteps

0

2

4

6

Re
wa

rd
delay 4, sequence_length 4

0 50000 100000 150000
Train Timesteps

0

20

40

60

Re
wa

rd

delay 8, sequence_length 1

0 50000 100000 150000
Train Timesteps

0

10

20

Re
wa

rd

delay 8, sequence_length 2

0 50000 100000 150000
Train Timesteps

0

5

10

Re
wa

rd

delay 8, sequence_length 3

0 50000 100000 150000
Train Timesteps

0

2

4

6

Re
wa

rd

delay 8, sequence_length 4

Figure 59: Evaluation Learning Curves for A3C with LSTM when varying delay and sequence lengths.
Please note the different Y-axis scales.

51

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.0, reward_noise 0

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.0, reward_noise 1

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.0, reward_noise 5

0 50000 100000 150000
Train Timesteps

0

50

Re
wa

rd

transition_noise 0.0, reward_noise 10

0 50000 100000 150000
Train Timesteps

20

0

20

Re
wa

rd

transition_noise 0.0, reward_noise 25

0 50000 100000 150000
Train Timesteps

0

25

50

75

Re
wa

rd

transition_noise 0.01, reward_noise 0

0 50000 100000 150000
Train Timesteps

0

50

Re
wa

rd

transition_noise 0.01, reward_noise 1

0 50000 100000 150000
Train Timesteps

0

50

Re
wa

rd

transition_noise 0.01, reward_noise 5

0 50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

transition_noise 0.01, reward_noise 10

0 50000 100000 150000
Train Timesteps

10

0

10

Re
wa

rd

transition_noise 0.01, reward_noise 25

0 50000 100000 150000
Train Timesteps

0

25

50

75

Re
wa

rd

transition_noise 0.02, reward_noise 0

0 50000 100000 150000
Train Timesteps

0

25

50

75

Re
wa

rd
transition_noise 0.02, reward_noise 1

0 50000 100000 150000
Train Timesteps

0

50

Re
wa

rd

transition_noise 0.02, reward_noise 5

0 50000 100000 150000
Train Timesteps

0

25

50

Re
wa

rd

transition_noise 0.02, reward_noise 10

0 50000 100000 150000
Train Timesteps

0

20

Re
wa

rd

transition_noise 0.02, reward_noise 25

0 50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

transition_noise 0.1, reward_noise 0

0 50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

transition_noise 0.1, reward_noise 1

0 50000 100000 150000
Train Timesteps

0

20

40

Re
wa

rd

transition_noise 0.1, reward_noise 5

0 50000 100000 150000
Train Timesteps

0

20

Re
wa

rd

transition_noise 0.1, reward_noise 10

0 50000 100000 150000
Train Timesteps

20

0

20

Re
wa

rd

transition_noise 0.1, reward_noise 25

0 50000 100000 150000
Train Timesteps

0

5

10

15

Re
wa

rd

transition_noise 0.25, reward_noise 0

0 50000 100000 150000
Train Timesteps

0

5

10

15

Re
wa

rd

transition_noise 0.25, reward_noise 1

0 50000 100000 150000
Train Timesteps

0

10

Re
wa

rd

transition_noise 0.25, reward_noise 5

0 50000 100000 150000
Train Timesteps

5

0

5

Re
wa

rd

transition_noise 0.25, reward_noise 10

0 50000 100000 150000
Train Timesteps

20

0

20

Re
wa

rd

transition_noise 0.25, reward_noise 25

Figure 60: Training Learning Curves for A3C with LSTM when varying noises. Please note the different
Y-axis scales.

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.0, reward_noise 0

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.0, reward_noise 1

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.0, reward_noise 5

0 50000 100000 150000
Train Timesteps

0

20

40

60

Re
wa

rd

transition_noise 0.0, reward_noise 10

0 50000 100000 150000
Train Timesteps

0

1

Re
wa

rd

transition_noise 0.0, reward_noise 25

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.01, reward_noise 0

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.01, reward_noise 1

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.01, reward_noise 5

0 50000 100000 150000
Train Timesteps

0

20

40

60

Re
wa

rd

transition_noise 0.01, reward_noise 10

0 50000 100000 150000
Train Timesteps

0

1

2

Re
wa

rd

transition_noise 0.01, reward_noise 25

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.02, reward_noise 0

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.02, reward_noise 1

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.02, reward_noise 5

0 50000 100000 150000
Train Timesteps

0

20

40

60

Re
wa

rd

transition_noise 0.02, reward_noise 10

0 50000 100000 150000
Train Timesteps

0

1

Re
wa

rd

transition_noise 0.02, reward_noise 25

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.1, reward_noise 0

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.1, reward_noise 1

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.1, reward_noise 5

0 50000 100000 150000
Train Timesteps

0

10

20

30

Re
wa

rd

transition_noise 0.1, reward_noise 10

0 50000 100000 150000
Train Timesteps

0

1

Re
wa

rd

transition_noise 0.1, reward_noise 25

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.25, reward_noise 0

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

transition_noise 0.25, reward_noise 1

0 50000 100000 150000
Train Timesteps

0

25

50

75

Re
wa

rd

transition_noise 0.25, reward_noise 5

0 50000 100000 150000
Train Timesteps

0

1

2

Re
wa

rd

transition_noise 0.25, reward_noise 10

0 50000 100000 150000
Train Timesteps

0

1

2

Re
wa

rd

transition_noise 0.25, reward_noise 25

Figure 61: Evaluation Learning Curves for A3C with LSTM when varying noises. Please note the different
Y-axis scales.

52

5000 10000 15000 20000
Train Timesteps

0

50
Re

wa
rd

reward_density 0.25

5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

reward_density 0.5

5000 10000 15000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

reward_density 0.75

Figure 62: Training Learning Curves for DQN when varying reward sparsity. Please note the different
Y-axis scales.

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

reward_density 0.25

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

reward_density 0.5

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

reward_density 0.75

Figure 63: Evaluation Learning Curves for DQN when varying reward sparsity. Please note the different
Y-axis scales.

5000 10000 15000 20000
Train Timesteps

0

50

Re
wa

rd

reward_density 0.25

5000 10000 15000 20000
Train Timesteps

0

25

50

75

Re
wa

rd

reward_density 0.5

5000 10000 15000 20000
Train Timesteps

0

50
Re

wa
rd

reward_density 0.75

Figure 64: Training Learning Curves for Rainbow when varying reward sparsity. Please note the different
Y-axis scales.

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

reward_density 0.25

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

reward_density 0.5

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

reward_density 0.75

Figure 65: Evaluation Learning Curves for Rainbow when varying reward sparsity. Please note the different
Y-axis scales.

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

reward_density 0.25

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

reward_density 0.5

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

reward_density 0.75

Figure 66: Training Learning Curves for A3C when varying reward sparsity. Please note the different Y-axis
scales.

53

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

reward_density 0.25

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

reward_density 0.5

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

reward_density 0.75

Figure 67: Evaluation Learning Curves for A3C when varying reward sparsity. Please note the different
Y-axis scales.

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

reward_density 0.25

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

reward_density 0.5

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

reward_density 0.75

Figure 68: Training Learning Curves for A3C + LSTM when varying reward sparsity. Please note the
different Y-axis scales.

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

reward_density 0.25

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

reward_density 0.5

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

reward_density 0.75

Figure 69: Evaluation Learning Curves for A3C + LSTM when varying reward sparsity. Please note the
different Y-axis scales.

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

sequence_length 2

10000 20000
Train Timesteps

0

100

200

300

Re
wa

rd

sequence_length 3

10000 20000
Train Timesteps

0

200

400

Re
wa

rd

sequence_length 4

Figure 70: Training Learning Curves for Rainbow when make_denser is True for rewardable sequences.
Please note the different Y-axis scales.

10000 20000
Train Timesteps

0

50

100

Re
wa

rd

sequence_length 2

10000 20000
Train Timesteps

0

100

200

300

Re
wa

rd

sequence_length 3

10000 20000
Train Timesteps

0

200

400

600

Re
wa

rd

sequence_length 4

Figure 71: Evaluation Learning Curves for Rainbow when make_denser is True for rewardable sequences.
Please note the different Y-axis scales.

54

0 50000 100000 150000
Train Timesteps

0

50

Re
wa

rd

sequence_length 2

0 50000 100000 150000
Train Timesteps

0

100

200

Re
wa

rd

sequence_length 3

0 50000 100000 150000
Train Timesteps

0

200

400

Re
wa

rd

sequence_length 4

Figure 72: Training Learning Curves for A3C when make_denser is True for rewardable sequences. Please
note the different Y-axis scales.

0 50000 100000 150000
Train Timesteps

0

50

100

Re
wa

rd

sequence_length 2

0 50000 100000 150000
Train Timesteps

0

100

200

Re
wa

rd

sequence_length 3

0 50000 100000 150000
Train Timesteps

0

200

400

Re
wa

rd

sequence_length 4

Figure 73: Evaluation Learning Curves for A3C when make_denser is True for rewardable sequences.
Please note the different Y-axis scales.

0 50000 100000 150000
Train Timesteps

0

25

50

75

Re
wa

rd

sequence_length 2

0 50000 100000 150000
Train Timesteps

0

100

200

Re
wa

rd

sequence_length 3

0 50000 100000 150000
Train Timesteps

0

200

400

Re
wa

rd

sequence_length 4

Figure 74: Training Learning Curves for A3C + LSTM when make_denser is True for rewardable sequences.
Please note the different Y-axis scales.

0 50000 100000 150000
Train Timesteps

0

50

Re
wa

rd

sequence_length 2

0 50000 100000 150000
Train Timesteps

0

100

200

Re
wa

rd

sequence_length 3

0 50000 100000 150000
Train Timesteps

0

200

400

Re
wa

rd

sequence_length 4

Figure 75: Evaluation Learning Curves for A3C + LSTM when make_denser is True for rewardable se-
quences. Please note the different Y-axis scales.

55

N Learning Curves for Complex environments1108

0.0 0.5 1.0
Train Timesteps 1e7

500

750

1000
Re

wa
rd

delay 0,

0.0 0.5 1.0
Train Timesteps 1e7

400

600

800

Re
wa

rd

delay 1,

0.0 0.5 1.0
Train Timesteps 1e7

250

500

750

1000

Re
wa

rd

delay 2,

0.0 0.5 1.0
Train Timesteps 1e7

250

500

750

Re
wa

rd

delay 4,

0.0 0.5 1.0
Train Timesteps 1e7

400

600

Re
wa

rd

delay 8,

Figure 76: Training Learning Curves for DQN on beam_rider when varying delay. Please note the different
Y-axis scales.

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

100

Re
wa

rd

delay 0,

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

100

200

Re
wa

rd

delay 1,

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

100

200

Re
wa

rd

delay 2,

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

100

200

Re
wa

rd

delay 4,

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

100

200

Re
wa

rd

delay 8,

Figure 77: Training Learning Curves for DQN on breakout when varying delay. Please note the different
Y-axis scales.

0.0 0.5 1.0
Train Timesteps 1e7

0

2000

4000

Re
wa

rd

delay 0,

0.0 0.5 1.0
Train Timesteps 1e7

0

2000

Re
wa

rd

delay 1,

0.0 0.5 1.0
Train Timesteps 1e7

1000

2000

Re
wa

rd

delay 2,

0.0 0.5 1.0
Train Timesteps 1e7

0

1000

2000

Re
wa

rd

delay 4,

0.0 0.5 1.0
Train Timesteps 1e7

0

2000

4000

Re
wa

rd

delay 8,

Figure 78: Training Learning Curves for DQN on qbert when varying delay. Please note the different Y-axis
scales.

56

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

200

400

Re
wa

rd

delay 0,

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

200

400

Re
wa

rd

delay 1,

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

200

400

Re
wa

rd

delay 2,

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

200

400

Re
wa

rd

delay 4,

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

200

300

400

500

Re
wa

rd

delay 8,

Figure 79: Training Learning Curves for DQN on space_invaders when varying delay. Please note the
different Y-axis scales.

0.0 0.5 1.0
Train Timesteps 1e7

400

600

800

Re
wa

rd

transition_noise 0.0

0.0 0.5 1.0
Train Timesteps 1e7

250

500

750

1000

Re
wa

rd

transition_noise 0.01

0.0 0.5 1.0
Train Timesteps 1e7

250

500

750

1000

Re
wa

rd

transition_noise 0.02

0.0 0.5 1.0
Train Timesteps 1e7

400

600

Re
wa

rd

transition_noise 0.1

0.0 0.5 1.0
Train Timesteps 1e7

400

500

600

Re
wa

rd

transition_noise 0.25

Figure 80: Training Learning Curves for DQN on beam_rider when varying transition noise. Please note the
different Y-axis scales.

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

100

200

Re
wa

rd

transition_noise 0.0

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

50

100

Re
wa

rd

transition_noise 0.01

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

50

100
Re

wa
rd

transition_noise 0.02

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

10

20

30

Re
wa

rd

transition_noise 0.1

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

5

10

Re
wa

rd

transition_noise 0.25

Figure 81: Training Learning Curves for DQN on breakout when varying transition noise. Please note the
different Y-axis scales.

0.0 0.5 1.0
Train Timesteps 1e7

0

1000

2000

3000

Re
wa

rd

transition_noise 0.0

0.0 0.5 1.0
Train Timesteps 1e7

0

2000

Re
wa

rd

transition_noise 0.01

0.0 0.5 1.0
Train Timesteps 1e7

0

1000

2000

3000

Re
wa

rd

transition_noise 0.02

0.0 0.5 1.0
Train Timesteps 1e7

0

1000

2000

Re
wa

rd

transition_noise 0.1

0.0 0.5 1.0
Train Timesteps 1e7

500

1000

Re
wa

rd

transition_noise 0.25

Figure 82: Training Learning Curves for DQN on qbert when varying transition noise. Please note the
different Y-axis scales.

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

200

300

400

Re
wa

rd

transition_noise 0.0

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

100

200

300

400

Re
wa

rd

transition_noise 0.01

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

200

300

400

Re
wa

rd

transition_noise 0.02

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

200

300

400

Re
wa

rd

transition_noise 0.1

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

200

300

400

Re
wa

rd

transition_noise 0.25

Figure 83: Training Learning Curves for DQN on space_invaders when varying transition noise. Please note
the different Y-axis scales.

0.0 0.5 1.0
Train Timesteps 1e7

500

1000

1500

Re
wa

rd

delay 0

0.0 0.5 1.0
Train Timesteps 1e7

500

1000

1500

Re
wa

rd

delay 1

0.0 0.5 1.0
Train Timesteps 1e7

500

1000

1500

Re
wa

rd

delay 2

0.0 0.5 1.0
Train Timesteps 1e7

500

1000

1500

Re
wa

rd

delay 4

0.0 0.5 1.0
Train Timesteps 1e7

500

1000

1500

Re
wa

rd

delay 8

Figure 84: Training Learning Curves for Rainbow on beam_rider when varying delay. Please note the different
Y-axis scales.

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

100

200

Re
wa

rd

delay 0

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

100

200

300

Re
wa

rd

delay 1

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

100

200

Re
wa

rd

delay 2

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

100

200

300

Re
wa

rd

delay 4

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

100

200

Re
wa

rd

delay 8

Figure 85: Training Learning Curves for Rainbow on breakout when varying delay. Please note the different
Y-axis scales.

57

0.0 0.5 1.0
Train Timesteps 1e7

0

2500

5000

7500

Re
wa

rd

delay 0

0.0 0.5 1.0
Train Timesteps 1e7

200

300

400

Re
wa

rd

delay 1

0.0 0.5 1.0
Train Timesteps 1e7

0

1000

2000

Re
wa

rd

delay 2

0.0 0.5 1.0
Train Timesteps 1e7

500

1000

1500

Re
wa

rd

delay 4

0.0 0.5 1.0
Train Timesteps 1e7

200

400

600

Re
wa

rd

delay 8

Figure 86: Training Learning Curves for Rainbow on qbert when varying delay. Please note the different
Y-axis scales.

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

200

400

Re
wa

rd

delay 0

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

200

400
Re

wa
rd

delay 1

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

200

400

Re
wa

rd

delay 2

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

200

300

400

500

Re
wa

rd

delay 4

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

200

300

400

Re
wa

rd

delay 8

Figure 87: Training Learning Curves for Rainbow on space_invaders when varying delay. Please note the
different Y-axis scales.

0.0 0.5 1.0
Train Timesteps 1e7

500

1000

1500

Re
wa

rd

transition_noise 0.0

0.0 0.5 1.0
Train Timesteps 1e7

500

1000

1500

Re
wa

rd

transition_noise 0.01

0.0 0.5 1.0
Train Timesteps 1e7

500

1000

1500
Re

wa
rd

transition_noise 0.02

0.0 0.5 1.0
Train Timesteps 1e7

500

1000

1500

Re
wa

rd

transition_noise 0.1

0.0 0.5 1.0
Train Timesteps 1e7

500

1000

1500

Re
wa

rd

transition_noise 0.25

Figure 88: Training Learning Curves for Rainbow on beam_rider when varying transition noise. Please note
the different Y-axis scales.

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

100

200

300

Re
wa

rd

transition_noise 0.0

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

100

200

Re
wa

rd

transition_noise 0.01

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

50

100

150

Re
wa

rd

transition_noise 0.02

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

20

40

Re
wa

rd
transition_noise 0.1

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

5

10

15

Re
wa

rd

transition_noise 0.25

Figure 89: Training Learning Curves for Rainbow on breakout when varying transition noise. Please note
the different Y-axis scales.

0.0 0.5 1.0
Train Timesteps 1e7

0

2500

5000

7500

Re
wa

rd

transition_noise 0.0

0.0 0.5 1.0
Train Timesteps 1e7

0

2000

4000

6000

Re
wa

rd

transition_noise 0.01

0.0 0.5 1.0
Train Timesteps 1e7

0

2000

4000

Re
wa

rd

transition_noise 0.02

0.0 0.5 1.0
Train Timesteps 1e7

0

2000

4000

Re
wa

rd

transition_noise 0.1

0.0 0.5 1.0
Train Timesteps 1e7

1000

2000

3000

Re
wa

rd

transition_noise 0.25

Figure 90: Training Learning Curves for Rainbow on qbert when varying transition noise. Please note the
different Y-axis scales.

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

200

400

Re
wa

rd

transition_noise 0.0

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

200

400

Re
wa

rd

transition_noise 0.01

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

200

400

Re
wa

rd

transition_noise 0.02

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

200

300

400

500

Re
wa

rd

transition_noise 0.1

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

200

300

400

Re
wa

rd

transition_noise 0.25

Figure 91: Training Learning Curves for Rainbow on space_invaders when varying transition noise. Please
note the different Y-axis scales.

0.0 0.5 1.0
Train Timesteps 1e7

0

500

1000

1500

Re
wa

rd

delay 0

0.0 0.5 1.0
Train Timesteps 1e7

0

500

1000

1500

Re
wa

rd

delay 1

0.0 0.5 1.0
Train Timesteps 1e7

0

500

1000

1500

Re
wa

rd

delay 2

0.0 0.5 1.0
Train Timesteps 1e7

0

500

1000

1500

Re
wa

rd

delay 4

0.0 0.5 1.0
Train Timesteps 1e7

0

500

1000

1500

Re
wa

rd

delay 8

Figure 92: Training Learning Curves for A3C on beam_rider when varying delay. Please note the different
Y-axis scales.

58

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

100

200

Re
wa

rd

delay 0

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

100

200

Re
wa

rd

delay 1

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

100

200

Re
wa

rd

delay 2

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

100

200

Re
wa

rd

delay 4

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

100

200

Re
wa

rd

delay 8

Figure 93: Training Learning Curves for A3C on breakout when varying delay. Please note the different
Y-axis scales.

0.0 0.5 1.0
Train Timesteps 1e7

0

2000

4000

Re
wa

rd

delay 0

0.0 0.5 1.0
Train Timesteps 1e7

0

2000

4000

Re
wa

rd

delay 1

0.0 0.5 1.0
Train Timesteps 1e7

0

2000

4000

Re
wa

rd

delay 2

0.0 0.5 1.0
Train Timesteps 1e7

0

2000

4000

Re
wa

rd

delay 4

0.0 0.5 1.0
Train Timesteps 1e7

0

2000

4000

Re
wa

rd

delay 8

Figure 94: Training Learning Curves for A3C on qbert when varying delay. Please note the different Y-axis
scales.

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

200

400

600

Re
wa

rd

delay 0

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

200

400

600

Re
wa

rd

delay 1

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

200

400

Re
wa

rd
delay 2

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

200

400

Re
wa

rd

delay 4

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

200

400

Re
wa

rd

delay 8

Figure 95: Training Learning Curves for A3C on space_invaders when varying delay. Please note the different
Y-axis scales.

0.0 0.5 1.0
Train Timesteps 1e7

500

1000

1500

Re
wa

rd

transition_noise 0.0

0.0 0.5 1.0
Train Timesteps 1e7

0

500

1000

1500

Re
wa

rd

transition_noise 0.01

0.0 0.5 1.0
Train Timesteps 1e7

0

500

1000

1500

Re
wa

rd

transition_noise 0.02

0.0 0.5 1.0
Train Timesteps 1e7

0

500

1000

1500

Re
wa

rd

transition_noise 0.1

0.0 0.5 1.0
Train Timesteps 1e7

500

1000

Re
wa

rd

transition_noise 0.25

Figure 96: Training Learning Curves for A3C on beam_rider when varying transition noise. Please note the
different Y-axis scales.

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

100

200

Re
wa

rd

transition_noise 0.0

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

25

50

75

Re
wa

rd

transition_noise 0.01

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

100

200

Re
wa

rd

transition_noise 0.02

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

20

40

Re
wa

rd

transition_noise 0.1

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

5

10

15

Re
wa

rd

transition_noise 0.25

Figure 97: Training Learning Curves for A3C on breakout when varying transition noise. Please note the
different Y-axis scales.

0.0 0.5 1.0
Train Timesteps 1e7

0

2000

4000

Re
wa

rd

transition_noise 0.0

0.0 0.5 1.0
Train Timesteps 1e7

0

2000

4000

Re
wa

rd

transition_noise 0.01

0.0 0.5 1.0
Train Timesteps 1e7

0

2000

4000

Re
wa

rd

transition_noise 0.02

0.0 0.5 1.0
Train Timesteps 1e7

0

2000

4000

Re
wa

rd

transition_noise 0.1

0.0 0.5 1.0
Train Timesteps 1e7

0

1000

2000

Re
wa

rd

transition_noise 0.25

Figure 98: Training Learning Curves for A3C on qbert when varying transition noise. Please note the
different Y-axis scales.

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

200

400

600

Re
wa

rd

transition_noise 0.0

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

200

400

600

Re
wa

rd

transition_noise 0.01

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

200

400

600

Re
wa

rd

transition_noise 0.02

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

200

400

600

Re
wa

rd

transition_noise 0.1

0.00 0.25 0.50 0.75 1.00
Train Timesteps 1e7

0

200

400

Re
wa

rd

transition_noise 0.25

Figure 99: Training Learning Curves for A3C on space_invaders when varying transition noise. Please note
the different Y-axis scales.

59

0 1 2 3
Train Timesteps 1e6

0

100

200

Re
wa

rd

action_space_max 0.1,

0 1 2 3
Train Timesteps 1e6

0

500

1000

1500

Re
wa

rd

action_space_max 0.25,

0 1 2 3
Train Timesteps 1e6

0

2000

4000

Re
wa

rd

action_space_max 0.5,

0 1 2 3
Train Timesteps 1e6

0

5000

10000

15000

Re
wa

rd

action_space_max 1.0,

0 1 2 3
Train Timesteps 1e6

0

5000

10000

Re
wa

rd

action_space_max 2.0,

Figure 100: Training Learning Curves for SAC on HalfCheetah when varying action max. Please note the
different Y-axis scales.

0.0 0.5 1.0 1.5
Train Timesteps 1e7

0

5000

10000

15000

Re
wa

rd

time_unit 0.2,

0.0 2.5 5.0 7.5
Train Timesteps 1e6

0

5000

10000

15000
Re

wa
rd

time_unit 0.4,

0 1 2 3
Train Timesteps 1e6

0

5000

10000

15000

Re
wa

rd

time_unit 1.0,

0.0 0.5 1.0 1.5
Train Timesteps 1e6

0

5000

10000

Re
wa

rd

time_unit 2.0,

0 250000 500000 750000
Train Timesteps

0

2000

4000

Re
wa

rd

time_unit 4.0,

Figure 101: Training Learning Curves for SAC on HalfCheetah when varying time unit. Please note the
different Y-axis scales.

0 200000 400000
Train Timesteps

50

40

Re
wa

rd

action_space_max 0.05,

0 200000 400000
Train Timesteps

60

50

40

30

Re
wa

rd

action_space_max 0.1,

0 200000 400000
Train Timesteps

60

40

20

Re
wa

rd

action_space_max 0.25,

0 200000 400000
Train Timesteps

100

75

50

25
Re

wa
rd

action_space_max 0.5,

0 200000 400000
Train Timesteps

200

150

100

50

Re
wa

rd

action_space_max 1.0,

0 200000 400000
Train Timesteps

600

400

200

Re
wa

rd

action_space_max 2.0,

0 200000 400000
Train Timesteps

2000

1000

0

Re
wa

rd

action_space_max 4.0,

Figure 102: Training Learning Curves for SAC on Pusher when varying action max. Please note the different
Y-axis scales.

0 1 2
Train Timesteps 1e6

150

100

50

Re
wa

rd

time_unit 0.2,

0.0 0.5 1.0
Train Timesteps 1e6

150

100

50

Re
wa

rd

time_unit 0.4,

0 200000 400000
Train Timesteps

150

100

50

Re
wa

rd

time_unit 1.0,

0 100000 200000
Train Timesteps

200

150

100

50

Re
wa

rd

time_unit 2.0,

0 50000 100000
Train Timesteps

200

100

Re
wa

rd

time_unit 4.0,

Figure 103: Training Learning Curves for SAC on Pusher when varying time unit. Please note the different
Y-axis scales.

0 200000 400000
Train Timesteps

30

20

10

Re
wa

rd

action_space_max 0.025,

0 200000 400000
Train Timesteps

20

10

Re
wa

rd

action_space_max 0.05,

0 200000 400000
Train Timesteps

30

20

10

Re
wa

rd

action_space_max 0.1,

0 200000 400000
Train Timesteps

20

10

Re
wa

rd

action_space_max 0.25,

0 200000 400000
Train Timesteps

60

40

20

0

Re
wa

rd

action_space_max 0.5,

0 200000 400000
Train Timesteps

200

100

0

Re
wa

rd

action_space_max 1.0,

0 200000 400000
Train Timesteps

750

500

250

0

Re
wa

rd

action_space_max 2.0,

0 200000 400000
Train Timesteps

10000

5000

0

Re
wa

rd

action_space_max 8.0,

Figure 104: Training Learning Curves for SAC on Reacher when varying action max. Please note the different
Y-axis scales.

0.0 0.5 1.0
Train Timesteps 1e6

200

100

0

Re
wa

rd

time_unit 0.5,

0 200000 400000
Train Timesteps

200

100

0

Re
wa

rd

time_unit 1.0,

0 100000 200000
Train Timesteps

200

100

0

Re
wa

rd

time_unit 2.5,

0 50000 100000
Train Timesteps

200

100

0

Re
wa

rd

time_unit 5.0,

0 20000 40000
Train Timesteps

200

100

0

Re
wa

rd

time_unit 10.0,

Figure 105: Training Learning Curves for SAC on Reacher when varying time unit. Please note the different
Y-axis scales.

0 1 2 3
Train Timesteps 1e6

0

100

200

Re
wa

rd

action_space_max 0.1,

0 1 2 3
Train Timesteps 1e6

0

500

1000

1500

Re
wa

rd

action_space_max 0.25,

0 1 2 3
Train Timesteps 1e6

0

2000

4000

Re
wa

rd

action_space_max 0.5,

0 1 2 3
Train Timesteps 1e6

0

2500

5000

7500

Re
wa

rd

action_space_max 1.0,

0 1 2 3
Train Timesteps 1e6

0

5000

10000

Re
wa

rd

action_space_max 2.0,

0 1 2 3
Train Timesteps 1e6

0

5000

10000

15000

Re
wa

rd

action_space_max 4.0,

Figure 106: Training Learning Curves for DDPG when varying action max. Please note the different Y-axis
scales.

60

0.0 0.5 1.0 1.5
Train Timesteps 1e7

0

5000

Re
wa

rd

time_unit 0.2,

0.0 2.5 5.0 7.5
Train Timesteps 1e6

0

5000

10000

Re
wa

rd

time_unit 0.4,

0 1 2 3
Train Timesteps 1e6

0

2500

5000

7500

Re
wa

rd

time_unit 1.0,

0.0 0.5 1.0 1.5
Train Timesteps 1e6

0

2000

4000

Re
wa

rd

time_unit 2.0,

0 250000 500000 750000
Train Timesteps

0

1000

2000

Re
wa

rd

time_unit 4.0,

Figure 107: Training Learning Curves for DDPG when varying time unit. Please note the different Y-axis
scales.

0 200000 400000
Train Timesteps

60

55

50

45

Re
wa

rd

action_space_max 0.05,

0 200000 400000
Train Timesteps

60

50

40
Re

wa
rd

action_space_max 0.1,

0 200000 400000
Train Timesteps

70

60

50

Re
wa

rd

action_space_max 0.25,

0 200000 400000
Train Timesteps

80

60

Re
wa

rd

action_space_max 0.5,

0 200000 400000
Train Timesteps

200

100

Re
wa

rd

action_space_max 1.0,

0 200000 400000
Train Timesteps

400

200

Re
wa

rd

action_space_max 2.0,

0 200000 400000
Train Timesteps

1500

1000

500

0

Re
wa

rd

action_space_max 4.0,

Figure 108: Training Learning Curves for DDPG when varying action max. Please note the different Y-axis
scales.

0 1 2
Train Timesteps 1e6

150

100

50

Re
wa

rd

time_unit 0.2,

0.0 0.5 1.0
Train Timesteps 1e6

150

100

50

Re
wa

rd

time_unit 0.4,

0 200000 400000
Train Timesteps

150

100

50

Re
wa

rd

time_unit 1.0,

0 100000 200000
Train Timesteps

300

200

100

Re
wa

rd

time_unit 2.0,

0 50000 100000
Train Timesteps

150

100

50

Re
wa

rd

time_unit 4.0,

Figure 109: Training Learning Curves for DDPG when varying time unit. Please note the different Y-axis
scales.

0 200000 400000
Train Timesteps

25

20

15

10

Re
wa

rd

action_space_max 0.025,

0 200000 400000
Train Timesteps

25

20

15

10

Re
wa

rd

action_space_max 0.05,

0 200000 400000
Train Timesteps

20

10

Re
wa

rd

action_space_max 0.1,

0 200000 400000
Train Timesteps

20

10

Re
wa

rd

action_space_max 0.25,

0 200000 400000
Train Timesteps

40

20
Re

wa
rd

action_space_max 0.5,

0 200000 400000
Train Timesteps

75

50

25

Re
wa

rd

action_space_max 1.0,

0 200000 400000
Train Timesteps

200

100

0

Re
wa

rd

action_space_max 2.0,

Figure 110: Training Learning Curves for DDPG when varying action max. Please note the different Y-axis
scales.

0.0 0.5 1.0
Train Timesteps 1e6

75

50

25

Re
wa

rd

time_unit 0.5,

0 200000 400000
Train Timesteps

75

50

25

Re
wa

rd

time_unit 1.0,

0 100000 200000
Train Timesteps

75

50

25

Re
wa

rd

time_unit 2.5,

0 50000 100000
Train Timesteps

75

50

25

Re
wa

rd

time_unit 5.0,

0 20000 40000
Train Timesteps

100

50

Re
wa

rd

time_unit 10.0,

Figure 111: Training Learning Curves for DDPG when varying time unit. Please note the different Y-axis
scales.

0 1 2 3
Train Timesteps 1e6

0

20

40

60

Re
wa

rd

action_space_max 0.1,

0 1 2 3
Train Timesteps 1e6

0

500

1000

1500

Re
wa

rd

action_space_max 0.25,

0 1 2 3
Train Timesteps 1e6

0

2000

4000

Re
wa

rd

action_space_max 0.5,

0 1 2 3
Train Timesteps 1e6

0

2500

5000

7500

Re
wa

rd

action_space_max 1.0,

0 1 2 3
Train Timesteps 1e6

0

5000

Re
wa

rd

action_space_max 2.0,

0 1 2 3
Train Timesteps 1e6

0

10000

Re
wa

rd

action_space_max 4.0,

0 1 2 3
Train Timesteps 1e6

20000

0

Re
wa

rd

action_space_max 8.0,

Figure 112: Training Learning Curves for TD3 when varying action max. Please note the different Y-axis
scales.

0.0 0.5 1.0 1.5
Train Timesteps 1e7

0

5000

Re
wa

rd

time_unit 0.2,

0.0 2.5 5.0 7.5
Train Timesteps 1e6

0

5000

10000

Re
wa

rd

time_unit 0.4,

0 1 2 3
Train Timesteps 1e6

0

5000

Re
wa

rd

time_unit 1.0,

0.0 0.5 1.0 1.5
Train Timesteps 1e6

0

2000

4000

6000

Re
wa

rd

time_unit 2.0,

0 250000 500000 750000
Train Timesteps

0

2000

Re
wa

rd

time_unit 4.0,

Figure 113: Training Learning Curves for TD3 when varying time unit. Please note the different Y-axis
scales.

0 200000 400000
Train Timesteps

57.5

55.0

52.5

50.0

Re
wa

rd

action_space_max 0.05,

0 200000 400000
Train Timesteps

60

55

50

45

Re
wa

rd

action_space_max 0.1,

0 200000 400000
Train Timesteps

60

50

Re
wa

rd

action_space_max 0.25,

0 200000 400000
Train Timesteps

80

60

Re
wa

rd

action_space_max 0.5,

0 200000 400000
Train Timesteps

150

100

50

Re
wa

rd

action_space_max 1.0,

0 200000 400000
Train Timesteps

400

200

Re
wa

rd

action_space_max 2.0,

0 200000 400000
Train Timesteps

1500

1000

500

0

Re
wa

rd

action_space_max 4.0,

Figure 114: Training Learning Curves for TD3 when varying action max. Please note the different Y-axis
scales.

61

0 1 2
Train Timesteps 1e6

200

100

Re
wa

rd

time_unit 0.2,

0.0 0.5 1.0
Train Timesteps 1e6

150

100

50

Re
wa

rd

time_unit 0.4,

0 200000 400000
Train Timesteps

150

100

50

Re
wa

rd

time_unit 1.0,

0 100000 200000
Train Timesteps

200

100

Re
wa

rd

time_unit 2.0,

0 50000 100000
Train Timesteps

200

150

100

50

Re
wa

rd

time_unit 4.0,

Figure 115: Training Learning Curves for TD3 when varying time unit. Please note the different Y-axis
scales.

0 200000 400000
Train Timesteps

25.0

22.5

20.0

17.5

Re
wa

rd

action_space_max 0.025,

0 200000 400000
Train Timesteps

25

20

15

Re
wa

rd

action_space_max 0.05,

0 200000 400000
Train Timesteps

25

20

15

10

Re
wa

rd

action_space_max 0.1,

0 200000 400000
Train Timesteps

25

20

15

10

Re
wa

rd

action_space_max 0.25,

0 200000 400000
Train Timesteps

30

20

10

Re
wa

rd

action_space_max 0.5,

0 200000 400000
Train Timesteps

75

50

25

Re
wa

rd

action_space_max 1.0,

0 200000 400000
Train Timesteps

300

200

100

0

Re
wa

rd

action_space_max 2.0,

Figure 116: Training Learning Curves for TD3 when varying action max. Please note the different Y-axis
scales.

0.0 0.5 1.0
Train Timesteps 1e6

75

50

25

Re
wa

rd

time_unit 0.5,

0 200000 400000
Train Timesteps

75

50

25

Re
wa

rd

time_unit 1.0,

0 100000 200000
Train Timesteps

75

50

25

Re
wa

rd

time_unit 2.5,

0 50000 100000
Train Timesteps

80

60

40

Re
wa

rd

time_unit 5.0,

0 20000 40000
Train Timesteps

80

60

40

Re
wa

rd

time_unit 10.0,

Figure 117: Training Learning Curves for TD3 when varying time unit. Please note the different Y-axis
scales.

62

O Hyperparameter Tuning1109

We gained some interesting insights into the significance of certain hyperparameters while tuning1110

them for the different algorithms. Thus, our toy environments might in fact be good test beds for1111

researching hyperparameters in RL, too. For instance, target network update frequency turned out to1112

be very significant for learning and sub-optimal values led to very noisy and unreliable training and1113

unexpected results such as networks with greater capacity not performing well. Once we tuned it,1114

however, training was much more reliable and, as expected, networks with greater capacity did well.1115

We now describe the tuning process and an example insight in more detail.1116

Hyperparameters were tuned for the vanilla environment; we did so manually in order to obtain1117

good intuition about them before applying automated tools. We tuned the hyperparameters in sets,1118

loosely in order of their significance and did 3 runs over each setting to get a more robust performance1119

estimate. We describe a small part of our hyperparameter tuning for DQN next. All hyperparameter1120

settings for tuned agents can be found in Appendix P.1121

We expected that quite small neural networks would already perform well for such toy environments1122

and we initially grid searched over small network sizes (Figure 118a). However, the variance in1123

performance was quite high (Figure 118b). When we tried to tune DQN hyperparameters learning1124

starts and target network update frequency, however, it became clear that the target network update1125

frequency was very significant (Figure 118c and 118d) and when we repeated the grid search over1126

network sizes with a better value of 800 for the target network update frequency (instead of the old1127

80) this led to both better performance and lower variance (Figure 118e and 118f).1128

We then changed the network number of neurons grid to [128, 256, 512] and changed target network1129

update frequency grid to [80, 800, 8000] and continued with further tuning using the grid values1130

specified in Appendix P.1131

(a) Reward (b) Std dev. (c) Reward (d) Std. Dev. (e) Reward (f) Std dev.

Figure 118: Mean episodic reward at the end of training for different hyperparameter sets for DQN.
Please note the different colorbar scales.

63

P Tuned Hyperparameters1132

The code for corresponding experiments for both discrete and continuous environments can be found1133

in the accompanying code for the paper. The experiments with _tune_hps in the names contain1134

the grid of HPs that were tuned over. In some instances (where _tune_hps experiments do not1135

exist), in order to save costs, we used the default HPs in Ray. The README describes how to run1136

the experiments using config files and which config files correspond to which experiments. Older1137

experiments on the discrete toy environments were run with Ray 0.7.3, while for the newer continuous1138

and complex environments, they were run with Ray 0.9.0. We had to use Ray 0.7.3 for the discrete toy1139

environments and Ray 0.9.0 for the continuous toy ones because we had run the discrete cases for a1140

previous version of the paper on 0.7.3. DDPG was not working and SAC was not implemented in Ray1141

at that time. We tried to use Ray 0.9.0 also for the discrete version but found for the 1st algorithms1142

we tested that, for the same hyperparameters, the results did not transfer even across implementations1143

of the same library. This further makes our point about using our platform to unit test algorithms. For1144

the complex environments, since we had to tune the environments again anyway, we decided to use1145

the newer Ray version.1146

Since we did not save the hyperparameter grids for discrete toy environments in separate files, they1147

are provided here. The names of the hyperparameters for the algorithms will match those used in Ray1148

0.7.3. The hyperparameters for the newer continuous and complex environment experiments can be1149

found in the respective experiment config files in the experiments directory.1150

P.1 DQN1151

num_layerss = [1, 2, 3, 4]1152

layer_widths = [8, 32, 128] # at first1153

layer_widths = [128, 256, 512] # after setting target_net_update_freq = 8001154

showed that 128 was the best number of the old 3, we changed search1155

grid for number of neurons1156

fcnet_activations = ["tanh", "relu", "sigmoid"]1157

learning_startss = [500, 1000, 2000, 4000, 8000]1158

target_network_update_freqs = [8, 80, 800] # at first1159

target_network_update_freqs = [80, 800, 8000] # after seeing1160

target_net_update_freq = 800 is much better than 80, changed the grid1161

for it1162

double_dqn = [False, True]1163

learning_rates = [1e-2, 1e-3, 1e-4, 1e-5, 1e-6]1164

adam_epsilons = [1e-3, 1e-4, 1e-5, 1e-6] # also tried [1e-1, 1e-4, 1e-7, 1e1165

-10]1166

1167

tune.run(1168

"DQN",1169

stop={1170

"timesteps_total": 20000,1171

},1172

config={1173

"adam_epsilon": 1e-4,1174

"beta_annealing_fraction": 1.0,1175

"buffer_size": 1000000,1176

"double_q": False,1177

"dueling": False,1178

"exploration_final_eps": 0.01,1179

"exploration_fraction": 0.1,1180

"final_prioritized_replay_beta": 1.0,1181

"hiddens": None,1182

"learning_starts": 1000,1183

"lr": 1e-4,1184

"n_step": 1,1185

"noisy": False,1186

"num_atoms": 1,1187

64

"prioritized_replay": False,1188

"prioritized_replay_alpha": 0.5,1189

"sample_batch_size": 4,1190

"schedule_max_timesteps": 20000,1191

"target_network_update_freq": 800,1192

"timesteps_per_iteration": 100,1193

"train_batch_size": 32,1194

1195

"env": "RLToy-v0",1196

"env_config": {1197

’dummy_seed’: dummy_seed,1198

’seed’: 0,1199

’state_space_type’: ’discrete’,1200

’action_space_type’: ’discrete’,1201

’state_space_size’: state_space_size,1202

’action_space_size’: action_space_size,1203

’generate_random_mdp’: True,1204

’delay’: delay,1205

’sequence_length’: sequence_length,1206

’reward_density’: reward_density,1207

’terminal_state_density’: terminal_state_density,1208

’repeats_in_sequences’: False,1209

’reward_unit’: 1.0,1210

’make_denser’: False,1211

’completely_connected’: True1212

},1213

"model": {1214

"fcnet_hiddens": [256, 256],1215

"custom_preprocessor": "ohe",1216

"custom_options": {},1217

"fcnet_activation": "tanh",1218

"use_lstm": False,1219

"max_seq_len": 20,1220

"lstm_cell_size": 256,1221

"lstm_use_prev_action_reward": False,1222

},1223

1224

"callbacks": {1225

"on_episode_end": tune.function(on_episode_end),1226

"on_train_result": tune.function(on_train_result),1227

},1228

"evaluation_interval": 1,1229

"evaluation_config": {1230

"exploration_fraction": 0,1231

"exploration_final_eps": 0,1232

"batch_mode": "complete_episodes",1233

’horizon’: 100,1234

"env_config": {1235

"dummy_eval": True,1236

}1237

},1238

},1239

)1240

P.2 Rainbow1241

num_layerss = [1, 2, 3, 4]1242

layer_widths = [128, 256, 512]1243

fcnet_activations = ["tanh", "relu", "sigmoid"]1244

65

learning_rates = [1e-2, 1e-3, 1e-4, 1e-5, 1e-6]1245

learning_startss = [500, 1000, 2000, 4000, 8000]1246

target_network_update_freqs = [80, 800, 8000]1247

double_dqn = [False, True]1248

1249

tune.run(1250

"DQN",1251

stop={1252

"timesteps_total": 20000,1253

},1254

config={1255

"adam_epsilon": 1e-4,1256

"buffer_size": 1000000,1257

"double_q": True,1258

"dueling": True,1259

"lr": 1e-3,1260

"exploration_final_eps": 0.01,1261

"exploration_fraction": 0.1,1262

"schedule_max_timesteps": 20000,1263

"learning_starts": 500,1264

"target_network_update_freq": 80,1265

"n_step": 4,1266

"noisy": True,1267

"num_atoms": 10,1268

"prioritized_replay": True,1269

"prioritized_replay_alpha": 0.75,1270

"prioritized_replay_beta": 0.4,1271

"final_prioritized_replay_beta": 1.0,1272

"beta_annealing_fraction": 1.0,1273

1274

"sample_batch_size": 4,1275

"timesteps_per_iteration": 1000,1276

"train_batch_size": 32,1277

"min_iter_time_s": 1,1278

1279

"env": "RLToy-v0",1280

"env_config": {1281

’dummy_seed’: dummy_seed,1282

’seed’: 0,1283

’state_space_type’: ’discrete’,1284

’action_space_type’: ’discrete’,1285

’state_space_size’: state_space_size,1286

’action_space_size’: action_space_size,1287

’generate_random_mdp’: True,1288

’delay’: delay,1289

’sequence_length’: sequence_length,1290

’reward_density’: reward_density,1291

’terminal_state_density’: terminal_state_density,1292

’repeats_in_sequences’: False,1293

’reward_unit’: 1.0,1294

’make_denser’: False,1295

’completely_connected’: True1296

},1297

"model": {1298

"fcnet_hiddens": [256, 256],1299

"custom_preprocessor": "ohe",1300

"custom_options": {},1301

"fcnet_activation": "tanh",1302

"use_lstm": False,1303

66

"max_seq_len": 20,1304

"lstm_cell_size": 256,1305

"lstm_use_prev_action_reward": False,1306

},1307

"callbacks": {1308

"on_episode_end": tune.function(on_episode_end),1309

"on_train_result": tune.function(on_train_result),1310

},1311

"evaluation_interval": 1,1312

"evaluation_config": {1313

"exploration_fraction": 0,1314

"exploration_final_eps": 0,1315

"batch_mode": "complete_episodes",1316

’horizon’: 100,1317

"env_config": {1318

"dummy_eval": True,1319

}1320

},1321

},1322

)1323

P.3 A3C1324

Grids of value for the hyperparameters over which they were tuned:1325

1326

num_layerss = [1, 2, 3, 4]1327

layer_widths = [64, 128, 256]1328

1329

learning_rates = [1e-2, 1e-3, 1e-4, 1e-5, 1e-6]1330

fcnet_activations = ["tanh", "relu", "sigmoid"]1331

1332

lambdas = [0, 0.5, 0.95, 1.0]1333

grad_clips = [10, 30, 100]1334

1335

vf_loss_coeffs = [0.1, 0.5, 2.5]1336

entropy_coeffs = [0.001, 0.01, 0.1, 1]1337

1338

tune.run(1339

"A3C",1340

stop={1341

"timesteps_total": 150000,1342

},1343

config={1344

"sample_batch_size": 10,1345

"train_batch_size": 100,1346

"use_pytorch": False,1347

"lambda": 0.0,1348

"grad_clip": 10.0,1349

"lr": 0.0001,1350

"lr_schedule": None,1351

"vf_loss_coeff": 0.5,1352

"entropy_coeff": 0.1,1353

"min_iter_time_s": 0,1354

"sample_async": True,1355

"timesteps_per_iteration": 5000,1356

"num_workers": 3,1357

"num_envs_per_worker": 5,1358

1359

"optimizer": {1360

67

"grads_per_step": 101361

},1362

1363

"env": "RLToy-v0",1364

"env_config": {1365

’dummy_seed’: dummy_seed,1366

’seed’: 0,1367

’state_space_type’: ’discrete’,1368

’action_space_type’: ’discrete’,1369

’state_space_size’: state_space_size,1370

’action_space_size’: action_space_size,1371

’generate_random_mdp’: True,1372

’delay’: delay,1373

’sequence_length’: sequence_length,1374

’reward_density’: reward_density,1375

’terminal_state_density’: terminal_state_density,1376

’repeats_in_sequences’: False,1377

’reward_unit’: 1.0,1378

’make_denser’: False,1379

’completely_connected’: True1380

},1381

"model": {1382

"fcnet_hiddens": [128, 128, 128],1383

"custom_preprocessor": "ohe",1384

"custom_options": {},1385

"fcnet_activation": "tanh",1386

"use_lstm": False,1387

"max_seq_len": 20,1388

"lstm_cell_size": 256,1389

"lstm_use_prev_action_reward": False,1390

},1391

1392

"callbacks": {1393

"on_episode_end": tune.function(on_episode_end),1394

"on_train_result": tune.function(on_train_result),1395

},1396

"evaluation_interval": 1,1397

"evaluation_config": {1398

"exploration_fraction": 0,1399

"exploration_final_eps": 0,1400

"batch_mode": "complete_episodes",1401

’horizon’: 100,1402

"env_config": {1403

"dummy_eval": True,1404

}1405

},1406

},1407

)1408

P.4 A3C + LSTM1409

Grids of value for the hyperparameters over which they were tuned:1410

1411

num_layerss = [1, 2, 3, 4]1412

layer_widths = [64, 128, 256]1413

1414

learning_rates = [1e-2, 1e-3, 1e-4, 1e-5, 1e-6]1415

fcnet_activations = ["tanh", "relu", "sigmoid"]1416

1417

68

lambdas = [0, 0.5, 0.95, 1.0]1418

grad_clips = [10, 30, 100]1419

1420

vf_loss_coeffs = [0.1, 0.5, 2.5]1421

entropy_coeffs = [0.001, 0.01, 0.1, 1]1422

1423

lstm_cell_sizes = [64, 256, 512]1424

lstm_use_prev_action_rewards = [False, True]1425

1426

tune.run(1427

"A3C",1428

stop={1429

"timesteps_total": 150000,1430

},1431

config={1432

"sample_batch_size": 10,1433

"train_batch_size": 100,1434

"use_pytorch": False,1435

"lambda": 0.0,1436

"grad_clip": 10.0,1437

"lr": 0.0001,1438

"lr_schedule": None,1439

"vf_loss_coeff": 0.1,1440

"entropy_coeff": 0.1,1441

"min_iter_time_s": 0,1442

"sample_async": True,1443

"timesteps_per_iteration": 5000,1444

"num_workers": 3,1445

"num_envs_per_worker": 5,1446

1447

"optimizer": {1448

"grads_per_step": 101449

},1450

1451

1452

"env": "RLToy-v0",1453

"env_config": {1454

’dummy_seed’: dummy_seed,1455

’seed’: 0,1456

’state_space_type’: ’discrete’,1457

’action_space_type’: ’discrete’,1458

’state_space_size’: state_space_size,1459

’action_space_size’: action_space_size,1460

’generate_random_mdp’: True,1461

’delay’: delay,1462

’sequence_length’: sequence_length,1463

’reward_density’: reward_density,1464

’terminal_state_density’: terminal_state_density,1465

’repeats_in_sequences’: False,1466

’reward_unit’: 1.0,1467

’make_denser’: False,1468

’completely_connected’: True1469

},1470

"model": {1471

"fcnet_hiddens": [128, 128, 128],1472

"custom_preprocessor": "ohe",1473

"custom_options": {},1474

"fcnet_activation": "tanh",1475

"use_lstm": True,1476

69

"max_seq_len": delay + sequence_length,1477

"lstm_cell_size": 64,1478

"lstm_use_prev_action_reward": True,1479

},1480

1481

"callbacks": {1482

"on_episode_end": tune.function(on_episode_end),1483

"on_train_result": tune.function(on_train_result),1484

},1485

"evaluation_interval": 1,1486

"evaluation_config": {1487

"exploration_fraction": 0,1488

"exploration_final_eps": 0,1489

"batch_mode": "complete_episodes",1490

’horizon’: 100,1491

"env_config": {1492

"dummy_eval": True,1493

}1494

},1495

},1496

)1497

70

Q More on Conclusion and Future Work1498

Our benchmark is also designed with long term AGI in mind. Dimensions like identifying delays and1499

sequences may be essential to solving AGI because when these are identified we know the causal1500

actions leading to a reward. Most current algorithms lack such capability because they cannot figure1501

out the causality [43].1502

Among the continuous environments, we have a toy task of moving along a line. Here, we hand1503

out greater rewards the closer a point object is to moving along a line. This is also a better task to1504

test exploration than the completely random discrete environments. It already gave some interesting1505

results and further work will follow. We are in the process of implementing plug and play model-1506

based metrics to evaluate model-based algorithms, such as the Wasserstein metric (likely a sampled1507

version because analytical calculation would be intractable in many cases) between the true dynamics1508

models and the learnt one to keep track of how model learning is proceeding. Our Environments plan1509

to allow using their transition and reward functions to perform imaginary rollouts without affecting1510

the current state of the system.1511

Another significant dimension is reachability in the transition graph. This is currently implemented1512

using diameter. We believe a lot more insights can be gained from graph theory to model toy1513

environments which try to mimic specific real life situations at a very high level. We plan to add1514

random generation of specific types of transition graphs and not just the regularly structured one1515

using the diameter.1516

The fine-grained control of dimensions allows relating these to good hyperparameter choices. So, our1517

playground could also be used to learn a mapping from hardness dimensions to hyperparameters for1518

different types of environments and even to warm-start hyperparameter optimisation for environments1519

with similar hardness dimensions. This holds promise for future meta-learning algorithms. In a1520

similar vein, it could also be used to perform Combined Algorithm Selection and Hyperparameter1521

Optimisation [54], since it’s clear that currently different RL algorithms do well in different kinds of1522

environments.1523

Further interesting toy experiments which are already possible with our platform are varying the1524

terminal state densities to have environments for testing safe RL agents.1525

The states and actions contained in a rewardable sequence could just be a single compound state and1526

compound action if we discretised time in a suitable manner. This brings us to the idea of learning at1527

multiple timescales. HRL algorithms, with formulations like the options framework [53], could try to1528

identify these rewardable sequences at the higher level and then carry out atomic actions at the lower1529

level.1530

We also hope to benchmark other algorithms like PPO3 [48], Rudder [4], MCTS [49], DDPG4 [34]1531

on continuous tasks and table-based agents and to show theoretical results match with practice in toy1532

environments.1533

We also aim to promote reproducibility in RL as in [18] and hope our platform helps with that goal.1534

To this end, we have already improved the Gym Box and Discrete Spaces to allow their seeds to1535

be controlled at initialization time as well.1536

We need different RL agents for different environments. Aside from some basic heuristics such as1537

applying DDPG [34] to continuous environments and DQN to discrete environments, it is not very1538

clear when to use which RL agents. We hope this will be a first step to being able to identify from1539

the environment what sort of algorithm to use and to help build adaptive agents which adapt to the1540

environment at hand. Additionally, aside from being a great platform for designing and debugging RL1541

agents, MDP Playground is also a great didactic tool for teaching how RL agents work in different1542

environments.1543

3We tried PPO but could not get it to learn
4We tried DDPG also but there seemed to be a bug in the implementation and it crashed even on tuned

examples from Ray

71

R CPU specifications1544

Cluster experiments were run on Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz cores for approxi-1545

mately 55000 CPU hours.1546

R.1 CO2 Emission Related to Experiments1547

Experiments were conducted using a private infrastructure, which has a carbon efficiency of 0.4321548

kgCO2eq/kWh. A cumulative of 55000 hours of computation was performed on hardware of type1549

Intel Xeon E5-2699 (TDP of 145W).1550

Total emissions are estimated to be 3445.2 kgCO2eq of which 0 percents were directly offset.1551

Estimations were conducted using the MachineLearning Impact calculator presented in [29].1552

The laptop specification were:1553

processor : 01554

vendor_id : GenuineIntel1555

cpu family : 61556

model : 1581557

model name : Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz1558

stepping : 101559

microcode : 0xb41560

cpu MHz : 900.0551561

cache size : 9216 KB1562

physical id : 01563

siblings : 121564

core id : 01565

cpu cores : 61566

apicid : 01567

initial apicid : 01568

fpu : yes1569

fpu_exception : yes1570

cpuid level : 221571

wp : yes1572

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca1573

cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall1574

nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good1575

nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni1576

pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx161577

xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes1578

xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb1579

invpcid_single pti ssbd ibrs ibpb stibp tpr_shadow vnmi flexpriority1580

ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms1581

invpcid rtm mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec1582

xgetbv1 xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window1583

hwp_epp md_clear flush_l1d1584

bugs : cpu_meltdown spectre_v1 spectre_v2 spec_store_bypass l1tf1585

mds swapgs1586

bogomips : 5184.001587

clflush size : 641588

cache_alignment : 641589

address sizes : 39 bits physical, 48 bits virtual1590

power management:1591

72

https://mlco2.github.io/impact#compute

	Introduction
	Dimensions of MDPs
	MDPs in MDP Playground
	Motivations of Dimensions and Implementations

	MDP Playground
	Using MDP Playground
	Designing New Agents
	Insights into Existing Agents
	Debugging Agents

	Discussion and Related Work
	Limitations of the Approach and its Ethical and Societal Implications
	Conclusion and Future Work
	Benchmark Track Checklist
	Dimensions in MDP Playground
	More exposition on the dimensions in MDP Playground
	Additional density option for sequences

	Algorithm for generating MDPs
	More on Related Work
	More on Designing New agents
	More on Debugging Agents
	Design Decisions
	Effect of dimensions on more complex benchmarks
	Sample states used for Representation Learning
	More Experiments and Additional Reward Plots
	Discrete environments
	Continuous Environments
	Results for varying reward sparsity
	Further results for varying reward delays and sequences
	Selecting Total Timesteps for Runs

	Plots for tabular baselines
	Plots for varying 2 hardness dimensions together
	Additional Learning Curves
	Learning Curves for Complex environments
	Hyperparameter Tuning
	Tuned Hyperparameters
	DQN
	Rainbow
	A3C
	A3C + LSTM

	More on Conclusion and Future Work
	CPU specifications
	CO2 Emission Related to Experiments

