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ABSTRACT

Multimodal Retrieval Augmented Generation (mRAG) plays an important role in
mitigating the “hallucination” issue inherent in multimodal large language models
(MLLMs). Although promising, existing heuristic mRAGs typically predefined
fixed retrieval processes, which causes two issues: (1) Non-adaptive Retrieval
Queries. (2) Overloaded Retrieval Queries. However, these flaws cannot be ade-
quately reflected by current knowledge-seeking visual question answering (VQA)
datasets, since the most required knowledge can be readily obtained with a stan-
dard two-step retrieval. To bridge the dataset gap, we first construct Dyn-VQA
dataset, consisting of three types of “dynamic” questions, which require complex
knowledge retrieval strategies variable in query, tool, and time: (1) Questions
with rapidly changing answers. (2) Questions requiring multi-modal knowledge.
(3) Multi-hop questions. Experiments on Dyn-VQA reveal that existing heuris-
tic mRAGs struggle to provide sufficient and precisely relevant knowledge for
dynamic questions due to their rigid retrieval processes. Hence, we further pro-
pose the first self-adaptive planning agent for multimodal retrieval, OmniSearch.
The underlying idea is to emulate the human behavior in question solution which
dynamically decomposes complex multimodal questions into sub-question chains
with retrieval action. Extensive experiments prove the effectiveness of our Om-
niSearch, also provide direction for advancing mRAG.

1 INTRODUCTION

Image to Text Tools
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Based on retrieved information …
<End>
Final Answer: Teng Shen

Figure 1: Bottom: Heuristic mRAG based VQA.
Upper: OmniSearch based VQA.

Multimodal Retrieval Augmented Generation
(mRAG) (Zhao et al., 2024; 2023; Gao et al.,
2023) aims to provide more comprehensive, ac-
curate and up-to-date knowledge from external
sources for AI systems. It has emerged as a key
technology to mitigate the “hallucination” issue
(Liu et al., 2024a; Bai et al., 2024) inherent in
multimodal large language models (MLLMs).

Existing heuristic mRAG methods typically
predefined fixed retrieval processes that ground
all modalities into one primary modality (usu-
ally text), then retrieve for a single time.
Despite the promising results, these retrieval
strategies suffer from two issues: (1) Non-
adaptive Retrieval Queries refer to the fixed
retrieval processes and query structures of heuristic mRAG methods. These inflexible retrieval
strategies fail to adapt to evolving contexts or intermediate findings within a question, hindering
the model from re-retrieving to further comprehend, verify, or rethink the question. For example, in

∗Equal Contribution. ‡Corresponding Author. This work was led by Xinyu Wang at Alibaba Group. The
code and dataset is open-sourced at https://github.com/Alibaba-NLP/OmniSearch.

1

https://github.com/Alibaba-NLP/OmniSearch


Published as a conference paper at ICLR 2025

Question: Who designed this building?
GT Answer: Antonio Barluzzi

Common Two-hop Question in previous VQA datasets Dynamic Questions in Dyn-VQA
a) Question with Rapidly Changing Answers

Question: What his latest film?
GT Answer: Small Things Like These (2024)

l Image Search with Input Image
Cillian Murphy

l Web Search: Cillian Murphy + Latest Film
[1] … include Oppenheimer …
[2] … Small Things Like These, has …

l Web Search: Oppenheimer + Release Date
July 11, 2023

l Web Search: Small Things Like These + Release Date
15 February 2024

b) Question Requiring Multimodal Knowledge

Question: What object is the icon of his team?
GT Answer: A dark yellow ball

l Image Search with Input Image
Kobe Bryant

l Web Search: Kobe Bryant + nba team
Los Angeles Lakers

l Image Search with Textual Query: LA Lakers icon

l Image Search with Input Image
Dominus Flevit Church

l Web Search: Dominus Flevit Church + Designer
Antonio Barluzzi

c) Multi-hop Question

Question: Which one of them grossed more?
GT Answer: Teng Shen, The right one

l Image Search with Input Image
Ling Jia, Teng Shen

l Web Search: Jia Ling + Total Box Office
… exceed 10 billion yuan (US$1.4 billion)

l Web Search: Teng Shen + Total Box Office
… approximately 33.501 billion yuan

Figure 2: Dynamic VQA examples that require different kinds of retrieval strategies.
Figure 2, question (a) asks, “What is his (Cillian Murphy’s) latest film?” A fixed retrieval process
returns multiple relevant films, but heuristic methods fail to construct further retrieval based on the
retrieved content to distinguish between the sequence of different films. (2) Overloaded Retrieval
Queries refer to heuristic retrieval methods refer to heuristic mRAG methods merely format a sin-
gle query by concatenating textual descriptions of objects in images with input questions. A single
query carries multiple retrieval aspects, leading to ambiguous retrieval and influx of superficially
relevant knowledge yet not essential to the question solving. For example, in Figure 2, question (c)
asks, “Which one of them (two actors, Ling Jia, and Teng Shen) grossed more?” Heuristic methods
might generate a single query like “Ling Jia, Teng Shen, Which one of them grossed more?”, which
contains the intent to retrieve box office information for both actors. This mixed query conversely
fails to provide precise knowledge for each individual aspect. Therefore, as shown in Figure 1, when
faced with real-world questions requiring complex knowledge, current heuristic mRAG methods fail
to provide sufficient and precise knowledge, due to their rigidity issues.

Unfortunately, although several knowledge-seeking visual question answering (VQA) datasets
(Chen et al., 2023; Schwenk et al., 2022) are widely utilized as mRAG benchmarks, they cannot
adequately reflect the rigidity issues of heuristic mRAGs in acquiring complex knowledge. Since
most questions in them merely require textual knowledge within two-hop, which can be readily ob-
tained by heuristic mRAGs with a standard two-step retrieval process. As illustrated in the upper
left of Figure 2, the most common type of question inquires about a certain property of an object.

To bridge the mRAG dataset gap, we first construct a challenging dataset, Dyn-VQA, comprising
1,452 dynamic questions that require complex multimodal knowledge retrieval for solution. Dy-
namic questions are defined as questions that require the model to flexibly provide knowledge
retrieval solutions, where the query, tool, and time of retrievals are all variable. These questions
cannot be solved by a predefined retrieval process. Concretely, there types of dynamic questions are
included in Dyn-VQA: (1) Questions with rapidly changing answers. Since the context knowl-
edge of such question updates frequently, the retrieved content may be mixed with outdated and
newer knowledge that is difficult to distinguish. This requires mARG methods to flexibly plan addi-
tional retrievals based on feedback from current retrieved content for further comprehension, rather
than merely a one-time retrieval. (2) Questions requiring multi-modal knowledge. The knowl-
edge necessary by Dyn-VQA spans various modalities. This demands that mRAG methods retrieve
knowledge across diverse modalities with tailored retrieval APIs, differing from most VQA datasets
limited in seeking textual knowledge with multimodal questions. (3) Multi-hop questions. Ques-
tions in Dyn-VQA necessitate varied reasoning hops for solution, which entails that mRAG methods
conduct various retrieval steps. While existing VQA datasets primarily focus on two-hop question,
i.e., identifying visual concepts via text and then answering single-hop textual question.

We evaluated the performance of various mRAG methods combined with leading MLLMs on Dyn-
VQA. Experiments reveal that existing heuristic mRAGs struggle to provide sufficient and precisely
relevant knowledge for dynamic questions in Dyn-VQA, due to their rigid retrieval processes.

To address these issues, we further propose a self-adaptive planning agent for multimodal retrieval,
OmniSearch1. The underlying idea is to emulate the human behavior in question solution which
dynamically decomposes complex multimodal questions into sub-question chains with retrieval ac-

1We aim for OmniSearch to achieve Omnipotent Multimodal Search, solving real-world issues in future.
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tion. At each step, OmniSearch flexibly adjusts the next action according to question-solving state
and retrieved content, with diverse purposes such as deepening comprehension of retrieved con-
tent, modifying retrieval method for current sub-question, proposing the next sub-question, etc. It
is noteworthy that OmniSearch can serve as a plug-and-play RAG module, cooperating with arbi-
trary MLLMs to augment their capability in addressing complex dynamic questions. Two different
versions of OmniSearch are developed based on closed-source GPT-4V (Achiam et al., 2023) and
open-source Qwen-VL-Chat (Bai et al., 2023a), respectively. As far as we know, OmniSearch is the
first multimodal retrieval agent for VQA tasks with self-adaptive planning and scalable submodules.

In summary, our main contributions are fourfold:

• We reveal that current VQA-based mRAG benchmarks don’t reflect real-world needs for dy-
namic knowledge retrieval and propose the Dyn-VQA dataset with three types of dynamic questions.

• We benchmark various mRAG methods with leading MLLMs on Dyn-VQA, demonstrating
their flaw in providing sufficient and relevant knowledge for dynamic questions.

• We propose OmniSearch, a self-adaptive retrieval agent that plans each retrieval action in real-
time according to question solution stage and current retrieval content.

• Extensive experiments prove the effectiveness of our OmniSearch. Detailed analyses are con-
ducted to provide direction for advancing mRAG.

2 RELATED WORKS

2.1 MULTIMODAL RETRIEVAL AUGMENTED GENERATION

The mRAG methods (Zhao et al., 2023; 2024; Gao et al., 2023) aim to provide MLLMs (Lu et al.,
2024b; Ye et al., 2024; Liu et al., 2024b; Du et al., 2022; Chai et al., 2024a) with more compre-
hensive, accurate and up-to-date world knowledge from external sources (Wu et al., 2024; Ji et al.,
2024; Hou et al., 2024). They have been empirically proven to be effective on various VQA datasets,
which can be categorized into two classes based on the retrieval method.

One category employs visual encoding model for direct image representation, and then retrieves the
knowledge from knowledge base with the highest feature similarity. For instance, KAT (Gui et al.,
2022) and Revive (Lin et al., 2022) both use the image encoder of CLIP (Radford et al., 2021) for
retrieval. The other category (Hu et al., 2023; Yang et al., 2022; Lin et al., 2024) first transforms the
input image into textual representation utilizing off-the-shelf tools and then performs text retrieval.
For example, RA-VQA (Lin & Byrne, 2022) and RA-VQA-v2 (Lin et al., 2024) first use existing
object detection and image captioning models to convert images to text, and than perform dense
passage retrieval to fetch relevant text documents. Several studies (Yao et al., 2023; Xu et al., 2023)
have preliminarily explored into agentic RAG, but their primary focus was on the text domain. Chen
et al. (2024a) proposed a causality-enhanced agent framework focus on unimodal biases in MLLMs,
while it lacks plug-and-play capabilities.

The purpose of OmniSearch aligns with previous works to furnish pertinent and accurate knowledge
for MLLMs, but diverging in three aspects: (1) OmniSearch plans multiple retrieval actions for the
each question with diverse retrieval tools, supplementing the missing knowledge of each modal-
ity. (2) OmniSearch dynamically adjusts subsequent retrieval actions based on retrieved content,
diverging from methods formulate query solely with input questions and images. (3) OmniSearch’s
retrieval scope extends to the entire Internet, offering intricate yet more comprehensive knowledge.

3 DYN-VQA DATASET

In this section, we curated a novel dataset, Dyn-VQA, designed to evaluate the performance of
existing mRAG methods in addressing questions requiring dynamic retrieval.

3.1 DYN-VQA CONSTRUCTION

To guarantee the dataset quality, we explain the overall goal of the dataset to the annotators, who
are all professional AI researchers. A straightforward construction strategy might directly request
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the annotators to write more visual questions after showing them the various types of VQA cases in
Figure 2. However, in the preliminary annotation, we found that this overloaded single-step strategy
is quite impractical. Annotators often found themselves in a dilemma of searching an image first,
then laboriously devising a corresponding question while keeping various criteria, e.g., changing
speed, and reasoning steps in their mind. Therefore, we optimize the strategy and divide them into
three steps:

Step 1. Textual Question Writing. First, annotators are required to craft textual questions and
categorize them using a three-dimensional schema based on answer update frequency (fast, slow,
never), whether requiring external visual knowledge (yes, no), and reasoning steps (≤ 2-hop, > 2-
hop). The annotation of fast or slow is determined by whether the updating occurs on yearly basis.
Whether seeking visual knowledge beyond input images is also considered to separate questions
emphasizing on different modalities. Meanwhile, multi-hop questions are delineated by a 2-hop
cutoff, as previous VQA datasets typically focus on 2-hop. Annotators are prompted to compose
questions incorporating newly emerged concepts from the past six months. The annotation difficulty
is significantly reduced since visual information is not considered. Besides, English QA instances
from FreshQA (Vu et al., 2023) are also included.

Step 2. Multimodal Rewriting. The annotator transforms textual questions from the first step
into multimodal ones by replacing visual concepts with co-references (e.g., ”Kobe Bryant” to ”this
player”) and pairing the revised question with a relevant image found on Google. Images sourced
from commonly used pre-trained corpus such as Wikipedia and Baidu Encyclopedia are forbidden.

Step 3. Chinese-English Translation. This step aligns Chinese and English parts of the Dyn-
VQA for side-by-side language comparison. Chinese and English VQA instances are translated into
each other using Google Translate API, followed by manual checks and corrections to guarantee
accuracy, especially for proper nouns. Instances that are intractable to translate or not applicable
to Chinese/English contexts are filtered. Additionally, each question is annotated with the golden
query, which simplifies the question by focusing solely on the last-hop question. This means that
references to visual concepts and complex intermediate reasoning are omitted from the questions.

3.2 DYN-VQA ANALYSIS
Table 1: Comparison of knowledge-seeking VQA datasets.

Dataset Knowledge Type Ans. Change Freq. Reasoning
Step

External
Visual-Seek

Human
Annotation # {I, Q, A} Len. of

Q/A Lang. Const.
Year

VQAv2(Goyal et al., 2017) common never change ≤ 2-hop % ! 614K 6.2/1.1 en 2017
OK-VQA (Marino et al., 2019) factoid never change 2-hop % ! 14K 8.1/1.3 en 2019
S3VQA (Jain et al., 2021) factoid never change 2-hop % % 7.5K 12.7/2.8 en 2021
ViQuAE (Lerner et al., 2022) fixed kb never change 2-hop % % 3.6K 10.9/2.4 en 2022
A-OKVQA (Schwenk et al., 2022) common/factoid never change 2-hop % ! 24.9K 8.8/1.3 en 2022
InfoSeek (Chen et al., 2023) fixed kb never change 2-hop % % 1.35M 9.0/1.6 en 2023

Dyn-VQA real world fast/slow/never change > 2-hop ! ! 1.5K 12.5/4.3 zh/en 2024

Table 2: Statistics of Dyn-VQA.
Statistic Number
Total Questions 1452
Domain 9
English questions 715 (49.2%)
Chinese questions 737 (50.8%)

Questions with fast updating answers 385 (26.5%)
&& requiring > 2-hop reasoning 112 (7.7%)
&& requiring external visual knowledge 178 (12.3%)

Questions with slow updating answers 494 (34.0%)
Questions with never updating answers 573 (39.5%)

Questions requiring > 2-hop reasoning 387 (26.7%)
&& requiring external visual knowledge 237 (16.3%)

Questions requiring ≤ 2-hop reasoning 1065 (73.3%)

Questions requiring external visual knowledge 865 (59.6%)
Questions not requiring external visual knowledge 587 (40.4%)

Average question length 12.5
Max question length 60
Average answer length 4.3
Max answer length 73

Dataset Statistics Dyn-VQA is the first dataset
specifically proposed for assessing the efficacy of
mRAG systems. As shown in Table 2, it contains
∼1.5K questions in 9 domains, covering 3 types
of question requiring complex dynamic retrieval:
questions with rapidly changing answers, questions
requiring multi-modal knowledge, multi-hop ques-
tions.

Comparative analysis between Dyn-VQA and other
knowledge-seeking VQA datasets is also presented
in Table 1. It is evident that while other datasets also
emphasize the necessity of external knowledge in the
question solving, their knowledge typically pertains
to only one category. In contrast, each question in
Dyn-VQA originates from the real world, encom-
passing a broader and more heterogeneous range of
knowledge types, and featuring more open-ended answer styles. Reflecting in the length of ques-
tions and answers, Dyn-VQA exhibits the longest entries compared to other datasets. Furthermore,
Dyn-VQA employs a more systematic question categorization schema, ensuring its challenging.
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Table 3: Human performances on different VQA datasets.
Dataset Search Count Performance

Web Search Image Search
with I. I.

Image Search
with T. Q.

VQAv2 0.05 0 0 74.31
A-OKVQA 0.18 0.06 0 60.19
InfoSeek 0.87 0.75 0 63.67

Dyn-VQA 1.57 0.89 0.65 55.12

Unlike other datasets, which are primarily constructed through templated and automated processes,
Dyn-VQA is meticulously curated by humans and requires ongoing human input to maintain the
dataset with dynamically updated answers. Consequently, while Dyn-VQA may not match other
datasets in scale, it far surpasses them in terms of quality, difficulty, and the cost of each instance.
More details of Dyn-VQA can be found in Appendix.

Dataset Difficulty Questions in Dyn-VQA require more complex external knowledge, whose re-
trieval process is not fixed. The inherent dynamism of Dyn-VQA naturally ensures its difficulty.
To illustrate more intuitively, we also conducted a quantitative comparison of human performance
on different datasets. As shown in Table 3, the questions in existing VQA datasets can typically be
resolved within two reasoning steps, resulting in an average search count of less than 2 per question.
Besides, image search with textual query is not performed at all in other datasets, since the question
therein do not require additional visual knowledge except the textual description of the object in
image. In terms of overall accuracy, humans achieved the lowest performance on Dyn-VQA, further
demonstrating the challenges it presents.

4 RETRIEVAL BASELINES AND OMNISEARCH

In this section, we establish several heuristic mRAG baselines and develop our OmniSearch to ad-
dress dynamic questions that require complex retrieval. Retrieval tools in all methods are Google-
based, including web search (textual web content retrieval with textual queries), image search with
input images, and image search with textual query.

4.1 BASELINES

Single-hop heuristic mRAG baselines. The first heuristic baseline is to retrieve images with
input images, which provides similar images alongside descriptive captions. This method augments
MLLMs with visual knowledge about the objects depicted in the input images. Similarly, the second
heuristic baseline conducts web search with input textual questions and provides MLLMs with
the top-k retrieved content as supplementary knowledge. It is acknowledged that these two methods
may not furnish precise supportive knowledge, since them only leverage partial modality of the input
question as search query. Nonetheless, these baselines are still established to explore the benefits
from uni/cross-modality retrieval.

Two-hop heuristic mRAG baselines. Typically, existing mRAG methods can be generalized into
two primary steps: first, converting the visual concepts in input images into text, and then combining
the obtained text with input questions as search queries to retrieve related textual knowledge. For the
first step, we employed the caption of the top-1 image retrieved by the input image and the output
of the image caption model as textual representations of the input images, respectively. Subse-
quently, the web search API is utilized to extract relevant knowledge from the Internet. Compared
to single-step mRAG methods, two-step mRAG methods can provide knowledge more precisely
related to questions. However, they still encounter the limitation of a fixed retrieval process.

Estimated Upper Bound. We estimate the upper bound of mRAGs by the annotation of golden
query, which simplifies the question to a last-hop question. Depending on whether the question
requires external visual knowledge, either web search or image search API is called. We believe that
in this simplified setting, the heuristic mRAG method can provide accurate information to MLLMs.

Descriptions of other baselines are available at Appendix.
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Figure 3: Left: overall framework of OmniSearch. Right: running example of OmniSearch.

4.2 OMNISEARCH FRAMEWORK

Heuristic mRAG encounter the issues posed by rigid retrieval processes. A more flexible model that
can plan the retrieval strategy tailored to the specific question and dynamically adjusts it throughout
the process is desired. Therefore, we propose a self-routing framework called OmniSearch for re-
trieval planning. The underlying idea behind is to mimic the human of incrementally decomposing
the complex question into a sequence of solution actions. As illustrated in Figure 3, overall frame-
work consists of three module. The planning agent is the core module that formulates sub-questions
and plans the subsequent retrieval action based on real-world feedback (i.e., retrieved content or
solver output). Actual retrieval action is execute by the retriever. Then, sub-question solver gener-
ates feedback on sub-question based on the retrieval content and update it to the planner.

Planning Agent. Each planned action comprises four critical part: self-thought<ST>, sub-question
<SQ>, retrieval API <R>, and API query <Q>. In each step, planning agent comprehends the
given question and the real-world feedback in self-thought, then carefully determines the follow-up
sub-question to tackle. Meanwhile, different retrieval APIs with query are invoked, depending on
the knowledge type required for the sub-question. In a manner akin to human cognitive processes
during question-solving, planning agent autonomously generates various potential actions, includ-
ing: posing additional question to clarify ambiguous or conflicting parts of the retrieved content;
refining the retrieval query to acquire more supplementary knowledge; modifying the phrasing of
sub-questions; verifying the response to the current sub-question; presenting the next sub-questions;
concluding the final answer, etc.

Retriever executes actual retrieval operations. In our experiments, web search, image search with
text and image retrieval with images are included. More retrieval tools can be considered in future.

Sub-question Solver summarizes the retrieved content and endeavors to address the sub-question
accordingly. The feedback generated by the solver is then provided to the agent. Notably, the solver
is compatible with arbitrary MLLMs or even the planning agent itself, i.e., directly returning the
retrieved information to the planner. Depending on computational resources, MLLMs with larger or
smaller sizes can be employed. Such pluggable and scalable feature is desired in industrial scenarios,
which facilitates the flexible control of GPU cost.

The above process is fully automatic, with OmniSearch performing iterative actions until it believes
it has retrieved sufficient knowledge to output a final answer. We trained two versions of OmniSearch
based on different MLLMs: proprietary GPT-4V and open-source Qwen-VL-Chat. For GPT-4V, we
employed prompt engineering to stimulate its dynamic planning and decision-making capabilities.
To facilitate Qwen-VL-Chat’s ability to plan and utilize retrieval APIs, we constructed a retrieval
API training dataset, leveraging the GPT-4V synthetic data and the existing Infoseek dataset. We
train the MLLM in a multi-round conversation mode. Additionally, general instruction data is also
utilized to keep the general conversation capability of trained Agent.

The proposal of OmniSearch is inspired by Chain-of-Thought (CoT) Wei et al. (2022), but differs
from it essentially. The fundamental distinction between OmniSearch, as a multimodal agent, and
CoT is its ability to utilize tools, interact with the environment, and response to the environment
Zhang et al. (2023). In contrast, CoT methods primarily stimulate the model’s inherent logical
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reasoning capabilities through prompts. The CoT approach is unable to decouple intermediate pro-
cesses, therefore can not be integrated with retrieval tools.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Backbone MLLMs for heuristic mRAGs. We select several advanced MLLMs as backbone
model to show their effectiveness equipped with heuristic mRAGs. Qwen-VL-7B-Chat is a large vi-
sual language model with strong visual and text recognition abilities proposed by Bai et al. (2023b).
GPT-4V and Qwen-VL-Max2 are also selected as representatives of the closed-source models to
show how the larger MLLMs will affect the results. Additionally, Qwen-7B-Chat is included in
our experiments, which is a text-only LLM. We use this model to assess how multimodal RAG can
solve the visual problem for textual LLM.

Evaluation Metric. The automated metric F1-Recall is utilized as the evaluation metric. We
calculate the ratio of common tokens between model-generated responses and ground truth. Specif-
ically, we first segment the generated text and golden text into token lists using word segmentation
tools3, then calculate the ratio of tokens generated by models belonging to the golden token list.

5.2 MAIN RESULTS

Table 4: Main results on Dyn-VQA.
Model Answer Update Frequency Reasoning Steps Visual-Seeking Language all

fast slow never ≤ 2-hop > 2-hop no yes zh en

Original (M)LLMs
Qwen-VL-Chat 13.69 14.20 17.27 15.56 14.49 15.50 15.13 16.92 13.58 15.28
Qwen-7B-Chat 5.63 7.86 15.97 10.48 10.43 11.05 10.08 10.48 10.46 10.47
Qwen-VL-Max 15.11 30.44 39.51 30.22 29.21 31.10 29.18 22.81 37.32 29.96
GPT-4V 17.63 27.80 40.82 30.80 28.74 31.71 29.26 26.44 34.18 30.25

+ Heuristic mRAG: Retrieving Images with Input Images
Qwen-VL-Chat 15.74 17.12 25.74 20.52 19.14 22.68 18.44 22.06 18.19 20.16
Qwen-7B-Chat 10.97 15.04 25.91 18.76 16.86 24.18 14.23 16.80 19.75 18.25
Qwen-VL-Max 24.04 28.99 45.49 34.22 34.08 41.54 29.19 31.07 37.39 34.19
GPT-4V 20.18 33.21 50.00 35.94 35.65 42.63 31.33 30.90 40.32 35.87

+ Heuristic mRAG: Retrieving Web Pages with Input Questions
Qwen-VL-Chat 20.78 18.27 27.61 22.76 22.20 23.34 22.07 26.66 17.94 22.59
Qwen-7B-Chat 14.65 15.47 24.98 19.14 18.66 19.99 18.34 17.93 20.12 19.01
Qwen-VL-Max 26.71 27.37 35.84 30.65 30.22 31.14 30.13 30.27 30.82 30.54
GPT-4V 22.48 30.92 40.84 33.00 31.47 34.32 31.42 31.10 34.13 32.59

+ Heuristic Two-Step mRAG: Retrieving Image First, then Retrieving Web Pages with Question appended to Retrieved Caption
Qwen-VL-Chat 19.17 20.02 28.54 23.33 22.68 23.84 22.69 24.11 22.17 23.16
Qwen-7B-Chat 15.27 17.33 28.53 21.70 19.83 26.65 17.50 20.47 21.96 21.20
Qwen-VL-Max 24.44 30.75 43.21 34.03 33.91 38.26 31.10 32.04 36.01 33.99
GPT-4V 20.37 33.98 48.46 36.12 36.04 40.19 33.32 32.99 39.30 36.10

+ Heuristic Two-Step mRAG: Image Caption First, then Retrieving Web Pages with Question appended to Caption
Qwen-VL-Chat 22.05 25.87 31.84 27.58 26.21 27.44 27.06 28.81 25.57 27.21
Qwen-7B-Chat 14.65 21.16 28.66 22.89 21.02 23.64 21.55 16.57 28.39 22.39
Qwen-VL-Max 24.27 32.93 44.03 35.04 34.97 35.16 34.92 31.10 39.05 35.02
GPT-4V 24.90 36.74 45.76 37.23 36.94 37.82 36.70 31.65 42.81 37.15

Generative Search Engine
Bing Chat 27.71 32.77 32.99 31.67 30.80 35.44 28.64 29.62 32.74 31.44
Perplexity AI 29.62 34.69 34.88 33.67 32.81 37.46 30.67 31.59 34.80 33.51
Gemini 36.17 32.86 42.84 38.75 34.78 46.39 31.82 35.77 39.69 37.69

Ours
OmniSearch (Qwen-VL-Chat) 35.16 40.89 45.52 41.34 40.81 42.56 40.28 39.22 43.23 41.20
OmniSearch (GPT-4V) 44.04 49.58 54.45 50.38 49.06 50.49 49.73 46.96 53.21 50.03
Estimated Upper Bound: + Retrieving Web Pages with Gloden Query
Qwen-VL-Chat 37.46 46.52 52.18 46.73 45.28 47.94 45.27 43.88 48.90 46.35
Qwen-7B-Chat 39.69 47.27 57.76 49.53 49.02 50.94 48.36 46.02 52.88 49.40
Qwen-VL-Max 42.19 53.01 56.60 51.91 50.58 52.97 50.60 49.83 53.33 51.56
GPT-4V 45.59 54.23 60.78 55.15 52.81 54.53 54.51 51.08 58.07 54.52

Human Performance 51.63 60.02 53.19 54.12 58.31 57.86 53.20 51.96 58.36 55.12

The performance of various MLLMs with different mRAG methods are shown in Table 4, from
which we can find that:

2Our evaluation was conducted up to July 1, 2024.
3Jieba (https://github.com/fxsjy/jieba) for Chinese, and NLTK (https://www.nltk.

org/) for English.
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(1) Our OmniSearch (GPT-4V) significantly outperforms other models, encompassing both state-of-
the-art MLLMs with heuristic mRAGs and commercial generative search engines. Even Qwen-VL-
Chat-based OmniSearch surpasses the considerably larger GPT-4V equipped with two-step heuristic
mRAG. We attribute this to two aspects: on the one hand, the OmniSearch decomposes a complex
question into a sequence of sub-questions, reducing the retrieval burden in a single step. On the other
hand, it rethinks the retrieved content and sub-questions to ensure the accuracy of the sub-answers,
mitigating the risk of error propagation.

(2) Regarding overall performance, the OmniSearch closely parallel human and GPT-4V enhanced
with content retrieved via gold query, highlighting its superior abilities. Nevertheless, a significant
gap remains between the OmniSearch and human performance on questions belong to the three most
challenging subcategories (fast-changing, >2-hop, requiring external visual knowledge), which in-
dicates substantial room for improvement in agent-based mRAG for real-world questions. How to
generate more human-like search logic is a promising direction for future research.

(3) Despite achieving more than 50% performance, Dyn-VQA remains a formidable challenge for
both AI systems and humans. It is observed that for questions necessitating multi-step retrieval or ad-
ditional visual knowledge, all models consistently underperform compared to other questions within
the same classification schema. Especially for questions with different answer update frequencies,
the variance in model performance is high. We can conclude that questions requiring rapidly chang-
ing knowledge pose the most intractable challenge, as such knowledge cannot be internalized by
MLLMs.

(4) For two-step heuristic mRAGs, leveraging image caption model to transform visual concepts
brings more gain to the original MLLMs, which provides a more detailed image description for
the next retrieval step. However, this advantage reverses for questions that do not require additional
visual knowledge, primarily because the majority of them are 2-hop (74%) and do not demand visual
knowledge beyond the concepts presented in the image itself. Supplementary information from the
image caption model does not substantially benefit the model.

(5) Commercial generative search engines generally perform poorly on Dyn-VQA. Even the best-
performing engine, Gemini, only matching the performance of GPT-4V with two-step mRAG. Fur-
ther case analysis reveals these generative search engines lack essential grounding capabilities: they
fail to associate “it” in the question with objects in the image, nor can integrate multimodal infor-
mation effectively. This suggests that questions in Dyn-VQA represent the real demand in industrial
scenarios.

(6) Comparing Qwen-7B-Chat and Qwen-VL-Chat, we observe that the performance gap between
the models is reduced once equipped with mRAG. This phenomenon indicates that mRAG can assist
pure text LLMs in addressing multi-modal issues.

Due to space constraints, more analysis experiments are placed in the appendices in the Supple-
mentary Material, and they are highly recommended to the reader.

Table 5: Experiments on OmniSearch paired with different MLLMs as sub-question solvers. Om-
niSearch (G) and OmniSearch (Q) refer to OmniSearch implementations based on GPT-4V and
Qwen-VL-Chat, respectively.

Planning Model Sub-question Solver Answer Update Frequency Reasoning Steps Visual-Seeking Language all
fast slow never ≤ 2-hop > 2-hop no yes zh en

OmniSearch (Q) OmniSearch (Q) 35.16 40.89 45.52 41.34 40.81 42.56 40.28 39.22 43.23 41.20
OmniSearch (Q) GPT-4V 37.14 42.82 47.48 43.29 42.78 44.46 42.26 41.21 45.15 43.15
OmniSearch (Q) GPT-4V + GPT-4 38.98 44.52 49.18 45.03 44.52 46.20 44.00 42.97 46.87 44.89
OmniSearch (Q) Qwen-VL-Chat 34.10 39.88 44.50 40.32 39.77 41.53 39.25 38.18 42.22 40.17

OmniSearch (G) OmniSearch (G) 44.04 49.58 54.45 50.38 49.06 50.49 49.73 46.96 53.21 50.03
OmniSearch (G) Qwen-VL-Chat 38.65 44.68 52.25 46.56 44.72 49.40 43.80 41.63 50.64 46.07

5.3 ANALYSIS EXPERIMENTS ON OMNISEARCH

In this section, we conduct extensive analysis experiments to answer the following questions on our
OmniSearch:

How different models as sub-question solvers affect overall performance? As shown in Table
5, several observations can be made regarding the performance of OmniSearch when paired with
different MLLMs as sub-question solvers:
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Table 6: Comparison of token costs and expenses for different models.
Planning Model Sub-question Solver # Input Tokens # Output Tokens Expenses (×10−3$) Performance
Two-Step mRAG GPT-4V 1454.0 (G) 132.5 (G) 18.5 37.15
Two-Step mRAG Qwen-VL-Chat 749.9 (Q) 28.6 (Q) 0.2 27.21

OmniSearch (G) OmniSearch (G) 3028.5 (G) 476.9 (G) 44.6 50.03
OmniSearch (G) Qwen-VL-Chat 1217.2 (G) + 2073.4 (Q) 386.0 (G) + 124.8 (Q) 24.4 46.07
OmniSearch (Q) OmniSearch (Q) 9578.3 (Q) 572.5 (Q) 3.2 41.20
OmniSearch (Q) GPT-4V 2371.5 (G) + 992.2 (Q) 281.0 (G) + 551.4 (Q) 32.8 43.15

(1) In the case of the Qwen-VL-Chat Based OmniSearch, employing the larger model GPT-4V as
the sub-question solver significantly enhances the performance of the OmniSearch, indicating the
continued validity of scaling laws for sub-question solver. Meanwhile, substituting the sub-question
solver of the GPT-4V Based OmniSearch with the smaller Qwen-VL-Chat leads to a predictable
decrease in model performance. Nonetheless, it still outperforms Qwen-VL-Chat with two-step
heuristics mRAG from Table 4.

(2) we also explored a more complex invocation strategy for the sub-question solving model: lever-
aging GPT-4V for sub-questions entailing multimodal contexts, and employing GPT-4 for those
involving purely textual contexts, which is considered to be more capable on text-only questions
compared to GPT-4V. This approach contributes further to performance enhancement. More refined
invocation strategies is also worthy to be explored, such as having the sub-question solver output
bounding boxes for certain objects in the image to guide more precise retrieval. We leave this topic
in the future work.

(3) To assess whether the OmniSearch with retrieval path planning learning has been impaired in
its question solving ability, we replaced the sub-question solver of the Qwen-VL-Chat Based Om-
niSearch with the original Qwen-VL-Chat. Comparison of rows 1 and 4 in Table 5 reveals that
employing the OmniSearch as the sub-question solver instead improves question-solving ability.
This enhancement demonstrate that the learning of retrieval path planning also involves the abil-
ity to understand and reason about retrieval knowledge, potentially enhancing the model’s problem
solving ability and yielding cross-task gains.

How different models as sub-question solvers affect token and expenses? In Table 6, we further
examine the token costs and actual expenses4 brought by different sub-question solvers. Although
more costly, the enhancement provided by the OmniSearch relative to the heuristic mRAG is con-
siderably substantial. The correlation between the performance of the OmniSearch and the actual
expenses is proportional, yet not linear. When substituting GPT-4V with Qwen-VL-Chat as the sub-
question solver (rows 3 and 4), the absolute performance declines by under 4 points, approximately
7.9%, while the expenditure is nearly halved, demonstrating the excellent scalability of OmniSearch.
The results also indicate that sub-question reasoning is not the bottleneck of current methods, rather
the retrieval strategy of complex questions presents a more urgent challenge. This conclusion is
further supported by comparing the enhancements achieved by substituting the planning model (row
6 to 5) and sub-question solver (row 6 to 7) of the OmniSearch (Q) with GPT-4V. The benefits
realized by the former are more pronounced. Consequently, when computational resources are con-
strained, priority should be given to ensuring that retrieval planning model can utilize a larger model
as backbone.

6 ANALYSIS EXPERIMENTS ON DYN-VQA DATASET

6.1 PERFORMANCE COMPARISON ON DIFFERENT DOMAINS

Figure 4 illustrates the performance of Qwen-VL-Chat and GPT-4V equipped with different mRAG
methods across various domains. We can intuitively observe that each mRAG method enhances
the efficacy of the original model. The coverage of both original models is notably broadened
by the mRAG methods, particularly for the smaller Qwen-VL-Chat. However, in several domains,
such as transportation, the Qwen-VL-Chat-based OmniSearch instead exhibits superior performance

4We refer https://azure.microsoft.com/zh-cn/pricing/details/cognitive-services/openai-service/ for GPT-4V
price.
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Figure 5: Pairwise overlap between correctly
answered questions of different models. 0-8:
Qwen-VL-Chat, Qwen-7B-Chat, Deepseek-VL-
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7B, mPLUG-Owl2.1, InstructBLIP-Vicuna-7B,
Qwen-VL-Max, GPT-4V.

compared to the GPT-4V-based one. Further analysis reveals that this phenomenon is primarily
attributed to the long-tail property of transportation domain, which contains only 10 VQA instances,
with the majority comprising 2-hop questions or questions that do not involve changing knowledge.
In these cases, GPT-4V-based OmniSearch tends to over-retrieve, e.g., it has retrieved the necessary
information but over-cautiously continues to gather additional information to validate the answer,
resulting in the correct answer being obscured within a large volume of retrieved information. This
underscores the need for ongoing enhancements to the robustness of our OmniSearch.

6.2 PREDICTION OVERLAP

In this subsection, we investigate the overlap of questions correctly answered by different models.
Firstly, we observed that no questions in the Dyn-VQA were correctly answered by all models,
and 31% of the questions did not receive a correct prediction from any model. Figure 5 illustrates
the degree of pairwise overlap in correctly answering questions on Dyn-VQA. Each row indicates
the proportion of questions correctly answered by the corresponding model that were also correctly
answered by other models. Overall, the two highest-performing models, Qwen-VL-Max and GPT-
4V, exhibited relatively high overlap, but still hover around 60%. Furthermore, looking at heat blocks
(6, 8), we find that even for InstructBLIP-Vicuna-7B, which demonstrated the weakest performance
(12.33 overall F1 recall, as detailed in Table 11 in the Appendix), 26.87% (100 - 73.13) of the
questions it successfully answered could not be correctly answered by the best-performing GPT-
4V. This indicates substantial differences in model behavior and shows that although some models
generally outperform others, their superiority is not attributable to correctly answering the “hard”
questions while consistently getting the “easy” ones right. The varied challenges presented by Dyn-
VQA affect models differently, highlighting ensemble-based and self-consist-based approaches as
promising directions for future research.

7 CONCLUSION

In this paper, we study the multimodal retrieval augmented generation (mRAG). We argue that
existing heuristic mRAGs typically predefined fixed retrieval processes, which causes two issues:
(1) Non-adaptive Retrieval Queries. (2) Overloaded Retrieval Queries. However, these rigidity is-
sues cannot be adequately reflected by current knowledge-seeking visual question answering (VQA)
datasets. Therefore, we first construct Dyn-VQA dataset, consisting of three types of “dynamic”
questions, which require complex knowledge retrieval strategies variable in query, tool, and time.
Furthermore, OmniSearch is proposed as the first self-adaptive planning agent for multimodal re-
trieval. Extensive experiments prove the effectiveness of our OmniSearch, also highlight the chal-
lenges posed by Dyn-VQA.
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A MORE DETAILS ON DYN-VQA DATASET

A.1 STATISTICS

Figure 6 illustrates the data distribution across various domains and the answer change frequencies
in Dyn-VQA. Among the 9 domains, Sports and Recreation, and Companies and Products consti-
tute approximately 50% of the data. The distribution of questions with fast, slow, and never answer
changes is relatively balanced within the classes and does not exhibit a long tail, reflecting a distri-
bution that closely aligns with real-world scenarios.
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Figure 6: Data distribution of different domains and answer change frequencies on the Dyn-VQA
dataset.

A.2 DATASET QUALITY

To ensure dataset quality, following the initial annotation of Dyn-VQA, we employed two qual-
ity control (QC) annotators to re-evaluate the dataset. This re-evaluation included verification of
the answers, domains, answer update frequencies, reasoning steps, and whether require external vi-
sual knowledge for each data instance. Data deemed incorrect by both QC annotators was filtered
out. The agreement between QC annotators #1 and #2 with the initial annotations, as well as the
agreement between the two QC annotators, are presented in Table 7. The inter-annotator agree-
ment measured by Fleiss’s Kappa (Fleiss, 1971) all exceeded 0.8, demonstrating the reliability of
the annotation results.

Table 7: The inter-annotator agreement of QC#1, QC#2 and
initial annotation with each other.

Answer Domain Answer
Update Freq.

Reasoning
Step

External
Visual-Seek

Init. vs. QC#1 81.2 84.4 89.6 84.1 87.9
Init. vs. QC#2 84.2 85.6 85.4 82.3 84.5
QC#1 vs. QC#2 80.1 83.8 86.9 81.7 85.0

Avg. 81.8 84.6 87.3 82.7 85.8

Table 8: Question and answer diver-
sity. Mean pairwise cosine distances
are used as metrics.

Dataset Question Answer
VQAv2 0.8405 0.7606
A-OKVQA 0.8428 0.9078
InfoSeek 0.7569 0.8918

Dyn-VQA 0.8532 0.9135

A.3 DATASET DIVERSITY

To assess the diversity of Dyn-VQA compared with other datasets, we calculated pairwise cosine dis-
tances for each dataset. Following A-OKVQA, we utilized a sentence-transformers5 as the encoder.
As indicated in Table 8, Dyn-VQA exhibits more diverse data types, evidenced by larger cosine
distances. Intuitively, questions in InfoSeek are primarily constructed through templates, resulting

5https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1
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in more homogeneous data format. In contrast, Dyn-VQA is manually curated. Moreover, since
the questions of Dyn-VQA are all from open-ended domains, the answers of them feature longer
response length compared with the same manually constructed VQAv2 and A-OKVQA, which can
essentially be answered with a single word.

A.4 REGULAR UPDATES TO DYN-VQA

The biggest characteristic of Dyn-VQA is that the knowledge required to answer the questions it
contains is dynamically updated over time, that is, the answers to the questions in Dyn-VQA are
constantly changing. Therefore, to ensure that Dyn-VQA can serve as an effective research resource
for the community in the long term, it is necessary for us to dynamically update and maintain Dyn-
VQA’s answer annotation information. In general, based on the analysis of the frequency of
change of Dyn-VQA’s answer, we commit to updating Dyn-VQA’s answer annotation every
three months to ensure its timeliness.

In particular, we plan to implement a semi-automatic data update mechanism in which models and
humans work together. Specifically, For a certain sample in Dyn-VQA, we first retrieve relevant text
knowledge through the search engine, and then we use LLMs such as Qwen1.5-72B to compare the
latest knowledge retrieved with the original answer to determine whether the original answer for the
sample needs to be updated. Note that here we only need LLMs to determine whether the answer
needs to be updated, and do not need them to accurately answer the latest answer, because we think
this is simpler and more friendly for LLMs. After we have the prediction results of LLMs as a basis,
we then carry out the manual update process. We require every human annotator involved in the
data update process to accurately update each sample’s answer based on their common sense, the
results of large model judgments, and the latest relevant knowledge retrieved by the search engines.
We believe that the semi-automatic update mechanism, in which models and humans cooperate, will
not only reduce the workload of manual annotators but also improve the accuracy of data updates.

B RELATED WORKS

B.1 MULTIMODAL LARGE LANGUAGE MODELS

In 2023, with the advent of GPT-4V (Achiam et al., 2023), a series of MLLMs (Bai et al., 2023b;
Lu et al., 2024a; Dai et al., 2023; Liu et al., 2024c; Wang et al., 2023) have been proposed and
demonstrated superior results on a variety of vision-language tasks (Yin et al., 2023; Wu et al., 2023).
Despite promising results, MLLMs tend to haphazardly produce responses that appear plausible yet
contain factual errors when faced with real-world questions. Many prior works explore mitigating
this hallucination issue (Liu et al., 2024a; Bai et al., 2024) by introducing additional knowledge-
enhancing data or tasks into the different training stages of MLLMs, including pre-training (Zhai
et al., 2023), instruction fine-tuning (Chai et al., 2024b; Jain et al., 2024), and RLHF (Sun et al.,
2023; Yu et al., 2024). However, the expensive training cost of MLLMs pose significant challenges
to the scalability of these methods. Therefore, mRAG attracts growing interest as an effective and
efficient alternative.

B.2 MULTIMODAL RETRIEVAL AUGMENTED GENERATION

Besides retrieval from knowledge bases as described in Related Works section in main content,
some work explores retrieval from other knowledge sources. REVEAL (Hu et al., 2023) integrates
knowledge retrieved from multiple sources, including wikidata, wikipedia and other VQA datasets.
PICa (Yang et al., 2022) consider LLMs as implicit knowledge bases and extract relevant information
from GPT-3 (Brown et al., 2020) with image description as prompt.

B.3 VQA DATASETS AS MRAG BENCHMARKS

Knowledge-seeking VQA datasets (Marino et al., 2019; Jain et al., 2021; Schwenk et al., 2022;
Kil et al., 2024; Chen et al., 2024b) are widely employed to evaluate the performance of mRAGs,
which rely on external information to address open-domain visual questions. For instance, the re-
cently introduced Wikipedia-based VQA dataset, InfoSeek (Chen et al., 2023), emphasizes fine-
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grained entity knowledge for open-domain questions. A-OKVQA (Schwenk et al., 2022) is a new
knowledge-based VQA benchmark that necessitates a broad spectrum of commonsense and world
knowledge. As illustrated in Table 1, several knowledge-seeking VQA datasets have been proposed
in recent years.

Nevertheless, the knowledge scope assessed by these datasets is constrained. More critically, the
questions in these datasets often exhibit a fixed format, typically querying a specific property of
the object in image, which is generally textual knowledge available on the internet. Such two-hop
questions can be readily addressed by standard two-step retrieval. The static nature of these datasets
prompts us to propose Dyn-VQA, which requires the retrieval of dynamic knowledge, knowledge
from a more diverse range of modalities, or more complex multi-hop knowledge.

C EXPERIMENTS

C.1 BASELINES

In the main experiment of Table 4, we also introduced generative search engine and human as
baseline models. We describe them following:

Generative Search Engine Among the commercial AI products, LLM-powered generative search
engines like Bing Chat, PerplexityAI, mita.ai, Tongyi, and GPT-4o stand out. For our experiment,
we select Bing Chat, pro-version of PerplexityAI, and Gemini-Advance as representatives of AI
search engines. They have multimodal RAG ability for fair comparison.

Human Performance. We also investigated human performance on Dyn-VQA, employing par-
ticipants with at least a bachelor degree. These participants were not involved in the Dyn-VQA
annotation process.

C.2 OTHER BACKBONE MLLMS FOR HEURISTIC MRAGS

In the Appendix, we supplement the main experiment with more MLLM as backbone for heuris-
tic mRAGs. Deepseek-VL-7B-Chat is an open-source large visual language model introduced by
Lu et al. (2024b). VisualGLM-6B is an open-source, bilingual, multi-modal large visual language
model proposed by Du et al. (2022). Llava-V1.6-Mistral-7B is an open-source large visual lan-
guage model proposed by Liu et al. (2024b), which is trained by fine-tuning LLM on multimodal
instruction-following data based on Jiang et al. (2023). mPLUG-Owl2.1 (Ye et al., 2024) is a large
visual language model trained with a two-stage method for aligning image and text.

C.3 TRAINING DETAILS

OmniSearch (G) is constructed by prompt engineering for GPT-4V, whose prompt template can be
found in the next subsection. OmniSearch (Q) is developed by instruction fine-tuning of Qwen-
VL-Chat. we synthesize instruction data containing planning trajectories by using GPT-4V and raw
InfoSeek data. ∼40K data is synthesized, and then the data is filtered by a sequence of predefined
rules. 13K data is eventually obtained. Additionally, general instruction data from CogVLM-SFT-
311K6 is mixed in a ratio of 1:2 with the planning instruction data. We use LoRA to parameter-
efficient fine-tune Qwen-VL-Chat, with LoRA rank and alpha are 8 and 32. AdamW (Loshchilov
& Hutter, 2019) optimizer is employed for model training, with learning rate set of 1e-4 and weight
decay of 0.1. We utilize a cosine learning rate schedule, warming up over 5% of the training steps.
The model is fine-tuned with 1 epochs, with the batch size per device set to 4 and the gradient
accumulation step set to 8. The maximum sequence length is 8192. The training are run on 4
NVIDIA A100 SXM4 80GB GPUs.

All data is in the form of multi-round conversations. During model training, we expect the model to
learn to generate response given the instruction and input text, thus we compute the loss function by
considering only the response tokens of each round and ignoring the input tokens.

6https://huggingface.co/datasets/THUDM/CogVLM-SFT-311K
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Table 9: Experiments on the impact of using different parts of retrieved content. We report the
performance of OmniSearch (G).

Retrieved Content Using Part Answer Update Frequency Reasoning Steps Visual-Seeking Language all
fast slow never ≤ 2-hop > 2-hop no yes zh en

Image
Image & Caption 44.04 49.58 54.45 50.38 49.06 50.49 49.73 46.96 53.21 50.03
- Caption 41.65 47.23 52.03 48.00 46.67 48.02 47.39 44.57 50.81 47.64
- Image 42.58 48.14 52.97 48.93 47.60 48.98 48.30 45.50 51.74 48.57

Web Snippet
Web Title & Description 44.04 49.58 54.45 50.38 49.06 50.49 49.73 46.96 53.21 50.03
+ Related Knowledge 45.26 50.78 55.68 51.60 50.28 51.75 50.92 48.17 54.43 51.25
- Web Title 42.09 47.66 52.47 48.44 47.11 48.47 47.82 45.01 51.25 48.08

C.4 SUPPLEMENT TO MAIN EXPERIMENTS

Experiment results of using more MLLMs as backbones for heuristic mRAGs are supplemented in
Table 10, from which we can find:

(1) Among all open-sourced MLLMs, Deepseek-VL-7B-Chat exhibits the best performance as
a backbone, achieving the highest overall performance. While heuristic mRAG methods show
the most significant improvements with InstructBLIP-Vicuna-7B, where the average absolute gain
across four heuristic mRAG approaches reaches 16.60, marking an enhancement of 223.1% com-
pared to the baseline performance of InstructBLIP-Vicuna-7B. This substantial increase is likely
attributed to the initially lower performance of the original InstructBLIP-Vicuna-7B.

(2) The performance variance between MLLMs that enhanced by the heuristic mRAG becomes
smaller. For instance, with the incorporation of the image caption-based two-step mRAG method,
the variance in performance among open-source MLLMs reduces from 4.92 to 2.42. Combined with
the analysis in (1), this suggests that for MLLMs with suboptimal foundational capabilities, mRAG
serves as an optimal method to bolster model performance. It is not only less resource-dependent,
but also convenient to deploy.

(3) Although single-step heuristic mRAGs may not retrieve the most precise content, they still ben-
efit the original model capabilities. Retrieving image information with input images enriches the
MLLM with information about the objects in images, whereas web page retrieval with input ques-
tions can also retrieve some relevant information due to certain keywords in the questions. Overall,
web page retrieval yields a greater improvement with an average of 6.78, which might be attributable
to the inherent capacity of MLLMs to recognize some objects depicted in the images. It also in-
dicates that unlike previous VQA datasets, the challenge of Dyn-VQA does not lie solely in the
recognition of objects in images.

D ANALYSIS EXPERIMENTS ON OMNISEARCH

D.1 ANALYSIS EXPERIMENTS ON RETRIEVED CONTENT

Is each part of the retrieved content useful? Table 9 presents the impact of utilizing different
parts of the content returned by the retrieval APIs, from which we can find that each part of the
retrieved content is beneficial to overall performance. Utilizing different single part results in varying
degrees of performance degradation compared to using the entire retrieved content. Notably, image
captions contribute most to final performance. This phenomenon arises primarily because nearly all
questions in Dyn-VQA necessitate object recognition in images, for which captions from retrieved
similar images provide crucial additional information to the model. In contrast, the benefit derived
from incorporating relevant knowledge provided by the search engine is relatively modest. This
is predominantly due to such information typically constituting static background knowledge that
lacks direct relevance to the specific problem at hand.

Is more retrieved content useful? Table 11 explores the impact of varying amounts of retrieved
content on model performance, from which we can find that:

(1) The model incorporating retrieved content consistently surpasses its counterpart without re-
trieval, affirming the inherent advantage of mRAG.
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Table 10: Main results on Dyn-VQA.

Model Answer Update Frequency Reasoning Steps Visual-Seeking Language all
fast slow never ≤ 2-hop > 2-hop no yes zh en

Original (M)LLMs
Qwen-VL-Chat 13.69 14.20 17.27 15.56 14.49 15.50 15.13 16.92 13.58 15.28
Qwen-7B-Chat 5.63 7.86 15.97 10.48 10.43 11.05 10.08 10.48 10.46 10.47
Deepseek-VL-7B-Chat 11.66 18.57 30.16 22.12 19.08 23.26 19.99 19.94 22.73 21.31
VisualGLM-6B 12.05 13.94 20.92 16.63 14.99 18.92 14.34 16.21 16.18 16.19
Llava-V1.6-Mistral-7B 15.39 19.72 28.34 22.65 20.12 23.53 20.92 16.27 27.85 21.97
mPLUG-Owl2.1 8.82 11.25 18.44 13.81 12.44 14.48 12.74 8.05 19.01 13.44
InstructBLIP-Vicuna-7B 6.08 7.40 8.38 7.48 7.33 7.51 7.38 4.65 10.31 7.44
Qwen-VL-Max 15.11 30.44 39.51 30.22 29.21 31.10 29.18 22.81 37.32 29.96
GPT-4V 17.63 27.80 40.82 30.80 28.74 31.71 29.26 26.44 34.18 30.25

+ Heuristic mRAG: Retrieving Images with Input Images
Qwen-VL-Chat 15.74 17.12 25.74 20.52 19.14 22.68 18.44 22.06 18.19 20.16
Qwen-7B-Chat 10.97 15.04 25.91 18.76 16.86 24.18 14.23 16.8 19.75 18.25
Deepseek-VL-7B-Chat 15.95 22.63 36.80 26.49 26.35 32.27 22.50 25.97 26.94 26.45
VisualGLM-6B 15.51 16.69 29.08 21.73 19.99 25.75 18.22 20.84 21.71 21.27
Llava-V1.6-Mistral-7B 17.38 19.74 33.48 25.42 22.10 32.00 19.47 17.01 32.29 24.54
mPLUG-Owl2.1 13.49 16.52 28.14 21.42 17.20 25.84 16.54 13.45 27.36 20.30
InstructBLIP-Vicuna-7B 13.40 15.83 29.02 20.19 19.73 25.15 16.68 13.10 25.05 20.07
Qwen-VL-Max 24.04 28.99 45.49 34.22 34.08 41.54 29.19 31.07 37.39 34.19
GPT-4V 20.18 33.21 50.00 35.94 35.65 42.63 31.33 30.90 40.32 35.87

+ Heuristic mRAG: Retrieving Web Pages with Input Questions
Qwen-VL-Chat 20.78 18.27 27.61 22.76 22.20 23.34 22.07 26.66 17.94 22.59
Qwen-7B-Chat 14.65 15.47 24.98 19.14 18.66 19.99 18.34 17.93 20.12 19.01
Deepseek-VL-7B-Chat 20.34 23.44 32.02 26.13 25.65 27.48 25.01 25.03 27.01 26.00
VisualGLM-6B 20.71 18.02 28.56 23.13 22.23 23.47 22.50 22.53 23.26 22.89
Llava-V1.6-Mistral-7B 20.39 21.62 30.33 24.99 24.01 26.70 23.39 20.96 28.62 24.73
mPLUG-Owl2.1 20.49 24.29 30.93 26.04 25.53 28.42 24.19 21.16 30.79 25.90
InstructBLIP-Vicuna-7B 21.63 18.79 27.65 23.44 21.95 23.07 23.02 19.98 26.19 23.04
Qwen-VL-Max 26.71 27.37 35.84 30.65 30.22 31.14 30.13 30.27 30.82 30.54
GPT-4V 22.48 30.92 40.84 33.00 31.47 34.32 31.42 31.10 34.13 32.59

+ Heuristic Two-Step mRAG: Retrieving Image First, then Retrieving Web Pages with Question appended to Retrieved Caption
Qwen-VL-Chat 19.17 20.02 28.54 23.33 22.68 23.84 22.69 24.11 22.17 23.16
Qwen-7B-Chat 15.27 17.33 28.53 21.70 19.83 26.65 17.50 20.47 21.96 21.20
Deepseek-VL-7B-Chat 18.65 23.51 34.68 26.66 26.54 29.74 24.51 25.70 27.59 26.63
VisualGLM-6B 18.56 19.98 29.43 23.87 21.84 27.07 20.79 22.00 24.70 23.33
Llava-V1.6-Mistral-7B 18.41 20.81 34.70 26.27 23.97 30.49 22.37 19.10 32.41 25.65
mPLUG-Owl2.1 14.10 19.28 30.24 22.77 20.74 26.96 19.02 16.24 28.41 22.23
InstructBLIP-Vicuna-7B 16.22 18.95 30.34 22.96 22.07 25.47 20.86 16.46 29.18 22.72
Qwen-VL-Max 24.44 30.75 43.21 34.03 33.91 38.26 31.1 32.04 36.01 33.99
GPT-4V 20.37 33.98 48.46 36.12 36.04 40.19 33.32 32.99 39.30 36.10

+ Heuristic Two-Step mRAG: Image Caption First, then Retrieving Web Pages with Question appended to Caption
Qwen-VL-Chat 22.05 25.87 31.84 27.58 26.21 27.44 27.06 28.81 25.57 27.21
Qwen-7B-Chat 14.65 21.16 28.66 22.89 21.02 23.64 21.55 16.57 28.39 22.39
Deepseek-VL-7B-Chat 21.12 27.65 36.27 29.41 29.08 29.72 29.05 26.84 31.88 29.32
VisualGLM-6B 19.60 21.75 33.23 25.88 25.23 27.27 24.65 22.95 28.56 25.71
Llava-V1.6-Mistral-7B 21.09 26.41 33.87 28.20 27.25 29.76 26.71 21.66 34.42 27.94
mPLUG-Owl2.1 20.46 26.67 34.91 28.77 26.90 28.31 28.25 20.33 36.47 28.27
InstructBLIP-Vicuna-7B 24.37 28.22 35.62 30.51 29.85 30.77 30.06 22.98 35.57 30.33
Qwen-VL-Max 24.27 32.93 44.03 35.04 34.97 35.16 34.92 31.1 39.05 35.02
GPT-4V 24.90 36.74 45.76 37.23 36.94 37.82 36.70 31.65 42.81 37.15

Generative Search Engine
Bing Chat 27.71 32.77 32.99 31.67 30.80 35.44 28.64 29.62 32.74 31.44
Perplexity AI 29.62 34.69 34.88 33.67 32.81 37.46 30.67 31.59 34.80 33.51
Gemini 36.17 32.86 42.84 38.75 34.78 46.39 31.82 35.77 39.69 37.69

Ours
OmniSearch (Qwen-VL-Chat) 35.16 40.89 45.52 41.34 40.81 42.56 40.28 39.22 43.23 41.20
OmniSearch (GPT-4V) 44.04 49.58 54.45 50.38 49.06 50.49 49.73 46.96 53.21 50.03
Estimated Upper Bound: + Retrieving Web Pages with Gloden Query
Qwen-VL-Chat 37.46 46.52 52.18 46.73 45.28 47.94 45.27 43.88 48.90 46.35
Qwen-7B-Chat 39.69 47.27 57.76 49.53 49.02 50.94 48.36 46.02 52.88 49.40
Deepseek-VL-7B-Chat 35.89 46.00 54.29 46.84 45.92 49.20 44.81 45.41 47.80 46.59
VisualGLM-6B 36.09 40.09 50.59 43.33 42.75 44.00 42.61 41.98 44.40 43.17
Llava-V1.6-Mistral-7B 39.67 48.56 56.09 49.67 47.80 52.38 47.00 43.90 54.61 49.17
mPLUG-Owl2.1 41.19 48.66 55.83 49.63 49.17 51.77 47.97 44.49 54.68 49.51
InstructBLIP-Vicuna-7B 37.17 43.92 55.53 46.51 45.94 49.22 44.45 41.25 54.05 46.36
Qwen-VL-Max 42.19 53.01 56.6 51.91 50.58 52.97 50.6 49.83 53.33 51.56
GPT-4V 45.59 54.23 60.78 55.15 52.81 54.53 54.51 51.08 58.07 54.52

Human Performance 51.63 60.02 53.19 54.12 58.31 57.86 53.20 51.96 58.36 55.12
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Table 11: Performances of GPT-4V and OmniSearch(G) with different top-k retrieved content.

Model # R.C. Answer Update Frequency Reasoning Steps Visual-Seeking Language all
fast slow never ≤ 2-hop > 2-hop no yes zh en

GPT-4V None 17.63 27.80 40.82 30.80 28.74 31.71 29.26 26.44 34.18 30.25
GPT-4V 1 24.07 32.6 46.11 35.47 34.98 37.98 33.54 32.91 38.02 35.33
GPT-4V 3 26.66 37.7 47.65 39.05 38.02 40.01 37.94 37.37 40.21 38.78
GPT-4V All 24.90 36.74 45.76 37.23 36.94 37.82 36.70 31.65 42.81 37.15

OmniSearch (G) 1 35.16 40.89 45.52 41.34 40.81 42.56 40.28 39.22 43.23 41.20
OmniSearch (G) 3 39.08 49.06 52.87 48.93 45.89 52.38 44.98 48.89 48.23 48.09
OmniSearch (G) All 44.04 49.58 54.45 50.38 49.06 50.49 49.73 46.96 53.21 50.03

Table 12: Consistency of Different Metrics Consistency of Different Metrics Consistency of Differ-
ent Metrics.

Model Recall GPT-based
Eval.

Human
Eval.

Correlation
#1 & #2 #1 & #3 #2 & #3

GPT-4V + mRAG 40.23 37.50 42.00 0.47 0.34 0.66
Qwen-VL-Chat + mRAG 28.46 26.50 25.00 0.49 0.41 0.69
OmniSearch (G) 57.56 54.00 49.00 0.45 0.38 0.63
OmniSearch (Q) 41.39 40.50 39.50 0.43 0.37 0.61

(2) Unlike GPT-4V, which does not exhibit continual improvement with increased retrieval vol-
ume, our OmniSearch demonstrates superior capacity for utilizing extensive retrieved content. This
indicates that despite potential noise contained in the retrieved content that may be harmful to ques-
tion solving, OmniSearch can effectively filters or disregards such disturbances, thereby adequately
leveraging the complex and voluminous retrieved content.

(3) For the English question, the performance of both models continues to grow with the increase of
retrieved content. This is partly due to the fact that both models use GPT-4V as the backbone, which
is inherently more capable in English than in Chinese, and also arises from the fact that Google
search is naturally more inclined towards English websites, leading to better support for English
questions. This inspires us that in the future, more search tools can be introduce based on language
characteristics, such as Bing, Baidu, etc., and even multiple search tools can be utilized to verify or
vote for the final answers.

D.2 CONSISTENCY OF DIFFERENT EVALUATION METRICS

In the main experiment, we employed F1-Recall as an evaluation metric due to its convenience. To
demonstrate that it reliably reflects the true capabilities of models, we introduced two supplemen-
tary metrics: GPT-based Accuracy and Human-based Accuracy. For these metrics, we presented
questions with ground-truth answers to GPT-4V and human evaluators, respectively, asking them
to assess the correctness of the model responses and then compute the percentage of correct an-
swers. Table 12 delineates the scores of the different models across these three metrics, as well as
their correlation, which is quantified by the Pearson correlation coefficient. The Pearson coefficient
ranges from -1 to 1, with 1 signifies a perfect positive correlation and -1 denotes a complete negative
correlation. The trends of the different models across these three metrics are entirely consistent,
with all coefficients exceeding 0, affirming a positive correlation. This demonstrates that F1-Recall
fully reflects model performance. While GPT-based Accuracy and Human-based Accuracy exhibit
stronger consistency, which may prove that they are more reliable, F1-Recall remains advantageous
as an automated metric, offering significantly lower computational costs and better scalability.

D.3 SUPPLEMENTARY ANALYSIS OF COMPUTATIONAL COSTS

In Table 13, we further reported the computational cost of OmniSearch on questions with different
answer update frequencies (fast, slow, never). The results indicate that:
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Table 13: The token cost of OmniSearch on questions with different answer update frequencies.
Planning Model Sub-question

Solver
Fast Slow Never

Input T. Output T. Perf. Input T. Output T. Perf. Input T. Output T. Perf.
OmniSearch (G) OmniSearch (G) 3098.5 (G) 466.3 (G) 44.04 3036.5 (G) 477.0 (G) 49.58 2974.6 (G) 483.9 (G) 54.45

OmniSearch (G) Qwen-VL-Chat 1268.2 (G)
+ 2165.4 (Q)

403.1 (G)
+ 148.4 (Q) 38.65 1214.1 (G)

+ 1925.7 (Q)
358.5 (G)

+ 112.7 (Q) 44.68 1185.6 (G)
+ 2138.8 (Q)

398.2 (G)
+ 119.3 (Q) 52.25

OmniSearch (Q) OmniSearch (Q) 10258.2 (Q) 638.1 (Q) 35.16 9874.8 (Q) 634.2 (Q) 40.89 8866.9 (Q) 475.3 (Q) 45.52

OmniSearch (Q) GPT-4V 2508.8 (G)
+ 933.0 (Q)

269.3 (G)
+ 547.8 (Q) 37.14 2452.5 (G)

+ 1000.9 (Q)
233.6 (G)

+ 490.5 (Q) 42.82 2209.6 (G)
+ 1024 (Q)

329.7 (G)
+ 606.3 (Q) 47.48

Table 14: The average model latency for question in Dyn-VQA.
Planning Model Sub-question Solver Search Time (s/%) Inference Time (s/%) Total Time (s)
OmniSearch (G) OmniSearch (G) 14.1 (44.8%) 18.4 (55.2%) 31.5
OmniSearch (G) Qwen-VL-Chat 12.3 (44.6%) 15.3 (55.4%) 27.6
OmniSearch (Q) OmniSearch (Q) 8.5 (38.3%) 13.7 (61.7%) 22.2
OmniSearch (Q) GPT-4V 11.8 (45.0%) 14.4 (55.0%) 26.2

(1) Overall, OmniSearch consumes more tokens for more complex questions, such as those with fast
or slow answer updates, primarily because these questions inherently require more retrieval steps.

(2) The difference in resource consumption for questions of varying difficulty is more pronounced
for the smaller model OmniSearch (Q). This is due to the behavioral differences between GPT-4V
and Qwen-VL. Specifically, as described in the Section 6.1, GPT-4V tends to be more rigorous in
question-solving, proactively planning verification retrievals to validate final answers, leading to
retrieval processes exceeding three steps even for some relatively easier questions.

(3) By comparing rows 1 and 2 in the Table 13, we can observe that after replacing OmniSearch (G)’s
Sub-question Solver with a smaller Qwen-VL-Chat, the total token consumption of Qwen-VL-Chat
and GPT-4V is stil comparable to the original model. This suggests that OmniSearch (G) effectively
offloads computational burden to smaller models without a significant drop in overall performance.

Additionally, we also reported the average latency for each question in Table 14. The results show
that substituting some modules in OmniSearch with smaller models effectively reduces latency.
Moreover, the ratio of search time to model inference time is roughly 2:3, indicating significant
potential for optimization in both aspects. It is important to note that latency is a complex system
engineering issue that involves not only the model’s complexity but also factors network config-
uration of search APIs, caching strategies for retrieval content, inference model acceleration, and
hardware FLOPS, etc.

E ANALYSIS EXPERIMENTS ON DYN-VQA DATASET

E.1 MODEL PERFORMANCE ON OTHER VQA DATASETS

Table 15 presents the model performances on various VQA datasets, highlighting several observa-
tions:

(1) The original GPT-4V achieves an average performance exceeding 74 on previous datasets, ap-
proaching human-level proficiency in the Table 3. Conversely, its performance poorly on our Dyn-
VQA with a significantly lower F1-reacll of 30.25, substantially lagging behind human capabilities.
This discrepancy primarily arises because MLLMs have internalized much of the knowledge per-
tinent to traditional VQA datasets, where many questions rely on common-sense knowledge. For
instance, VQAv2 frequently poses questions about object properties or intentions behind actions,
which are relatively specialized by GPT-4V.

(2) The performance of the heuristic mRAG method is unstable on different types of questions
(datasets). It impairs the effectiveness of GPT-4V on all previous datasets, especially on the InfoSeek
where the decline is over 10 points. Through case analysis, we found that the heuristic mRAG strug-
gles predominantly with questions of images depicting buildings, specific flora and fauna, which the
image caption model fails to describe accurately. Consequently, the search engine yields “shallow”
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Table 15: Model performance comparison on different VQA datasets. Heuristic mRAG in Table
represents image caption-based mARG.

Model VQAv2 A-OKVQA InfoSeek Dyn-VQA
Original MLLMs
GPT-4V 68.00 83.63 70.44 30.25

+ Heuristic Two-Step mRAG
GPT-4V 65.36 81.00 58.64 37.15

Ours
OmniSearch (G) 70.34 84.12 71.48 50.03

knowledge, i.e., content that is relevant to the question topic but is actually irrelevant to question,
and instead misleads the original model. Moreover, given that InfoSeek is automatically generated
from Wikipedia and characterized by homogenous question types, a substantial proportion of these
problematic questions magnifies the disability of heuristic mRAG. On the contrary, the questions of
VQAv2 and A-OKVQA typically inquire about common-sense knowledge, which is quite different
from the real-world knowledge on the Internet, therefore the retrieved content instead has a minor
(but still present) negative impact on the model.

(3) Our OmniSearch method achieved steady gains on each dataset. Even for datasets such as
VQAv2 and A-OKVQA, which demand less extensive real-world knowledge from the Internet,
OmniSearch still achieved slight growth. Since OmniSearch potentially makes search determina-
tions, allowing it to avoid unnecessary retrieval interference with the intrinsic model understanding
of questions that actually do not benefit from external knowledge augmentation. OmniSearch proves
more adaptable and robust to diverse question types compared to the heuristic mRAG.
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Sports and Recreation - 47.14% Companies and Products - 54.96% Science and Technology - 43.03% Languages and Cultures - 55.74% History - 60.08%
Daily - 39.49% Geography - 63.42% Transportation - 36.50% Miscellaneous - 53.34%

Figure 7: The performance of OmniSearch on different domains. Each category is represented by
7 bars of the same color, representing questions of different categories (in order fast, slow, never,
≤2-hop, >2-hop, no, yes).

E.2 OMNISEARCH PERFORMANCE ON DIFFERENT DOMAINS

Figure 7 displays the performance of OmniSearch across various domains, as an complement to
Figure 4 in the main content. We find that in most domains, the heights of the bars follow a sim-
ilar pattern: 1st bar (fast) < 2nd bar (slow) < 3rd bar (never), 4th bar (less than 2-hop) > 5th bar
(more than 2-hop), 6th bar (not require external visual knowledge) > 7th bar (require external visual
knowledge). This indicates that OmniSearch generally underperforms on questions necessitating
more complex retrieval processes. There are exceptions in data-sparse domains such as Transporta-
tion, where OmniSearch also shows relatively poor performs in these domains.

E.3 CASE STUDY

Figure 8 presents several intriguing case studies. In the first case on the left, the model dynam-
ically adjusted its retrieval strategy multiple times after an initial retrieval failure, demonstrating
OmniSearch’s ability to adapt to complex retrieval environments and actively adjust its strategy
based on environmental feedback. However, the subsequent two cases highlight different challenges
faced by OmniSearch. In the middle example, after the model estimated the current GDP of South
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<Thought>
First, the name of the cartoon needs to be determined. The image shows the main 
characters of the animated series The Simpsons. Next, we need to find out which 
particular episode of The Simpsons featured a deaf actor for the first time.

<Sub-Question>
Which episode of 'The Simpsons' marked the first time a deaf actor appeared on the 
show?

<Search>
Text Retrieval: episodes of The Simpsons that featured deaf actors for the first time.

Which episode of the cartoon marked the first time a deaf actor 
appeared on the show?

... ….
RETRIEVED CONTENT

Omitted for brevity

... ….
RETRIEVED CONTENT

Omitted for brevity

<Thought>
There seems to be a misunderstanding. Due to a lack of clarity in my instructions, the 
information provided was about the appearance of C-3PO in the Star Wars series, not 
about the number of episodes in which the deaf actor first appeared in The Simpsons. I 
need to revisit my search strategy to get the right information. I will try to use more 
specific keywords for my searches.

<Sub-Question>
Which episode in the history of The Simpsons was the first to feature a deaf actor?

<Search>
Text Retrieval : the simpsons deaf actor episode.

......

<Thought>
According to information retrieved, a historic episode of the animated series The 
Simpsons aired on April 10, 2022, titled “The Sound of Bleeding Gums”, which featured 
six Deaf voice actors. John Autry II was the first deaf voice actor. This is the first time in 
the 33 years that The Simpsons has been on the air that a deaf actor has been 
involved. 

<End>
Final Answer: The episode of the animated series “The Simpsons” that marked the first 
appearance of a deaf actor was episode 17 of season 33, titled “The Sound of Bleeding 
Gums”.

✅

<Thought>
First, we need to identify which country the flag in the image represents. 

<Sub-Question>
Which country does this flag represent? 

<Search>
Image retrieval with input image .

Who has a higher GDP, it or Japan?

... ….
RETRIEVED CONTENT

Omitted for brevity

... ….
RETRIEVED CONTENT

Omitted for brevity

<Thought>
The information retrieved from the image suggests that this flag represents South 
Korea. Now that we know the country is South Korea, the next step is to find out what 
the current GDP of South Korea and Japan is so we can compare the size of their 
economies. 

<Sub-Question>
What is the current GDP of South Korea? 

<Search>
Text retrieval : gdp of South Korea in 2024.

<Thought>
Although the retrieved information gives the growth rate of Korea‘s GDP, it does not 
directly give a specific GDP value for 2024. However, the growth rate can be used to 
estimate the approximate value of GDP if we know the value of GDP in the previous 
year. Therefore, the next sub-question should be to find the value of GDP of Korea in 
2023. 

<Sub-Question>
What is the value of Korea's GDP in 2023? 

<Search>
Text retrieval: south korea 2023 gdp.

<Thought>
The content of the document retrieved suggests that South Korea's GDP growth rate 
in 2023 is 1.4%, but does not provide a specific GDP value. However, one of the 
results shows that Korea's GDP in 2023 is $1.71 trillion. Now that we have the GDP 
value for 2023, we next need to combine it with the growth rate to estimate the GDP 
value for 2024. 

<Sub-Question>
Calculate the value of South Korea's GDP in 2024 using the GDP in 2023 and a growth 
rate of 2.2%. 

<End>
Final Answer: by increasing the 2023 GDP of $1.71 trillion by 2.2%, we can estimate 
South Korea's GDP in 2024 to be approximately $1.7482 trillion ($1.71 trillion * 
1.022).

... ….
RETRIEVED CONTENT

Omitted for brevity

❌

<Thought>
First you need to identify the topic of the presentation in the diagram in order to find 
relevant academic or conference information, which may be relevant to the 
researcher's institution. 

<Sub-Question>
What is the topic explored by the researcher in the diagram 

<Search>
Text retrieval : stochastic models for learning control\n\nPlease wait while I provide 
you with the information you need.

At which university is the researcher pictured currently employed?

... ….
RETRIEVED CONTENT

Omitted for brevity

... ….
RETRIEVED CONTENT

Omitted for brevity

<Thought>
The content of the documentation provided does not directly answer the question of 
which university the researchers shown in the original image …… none of which 
pinpointed the current affiliation of the researcher discussing “Stochastic Models of 
Learning Control.”. Therefore, we need to refine our search to find more specific and 
relevant documents that provide insight into the current academic affiliations of the 
individuals in the picture. 
Next we need to look for information more directly related to “Stochastic models for 

learning control” to identify researchers or universities associated with it. 

<Search>
Text search: stochastic models for learning control academic papers or lectures

<Thought>
Since the information provided does not contain detailed information directly pointing 
to the researcher or their institutional affiliation for work related to “Stochastic models 
for learning control”, it seems difficult to identify the university where the researcher in 
the picture is currently located. Given the complexity of this problem, we may need 
more specific information to accomplish this task, such as the researcher's name or 
other identifying information.

<End>
Final Answer: based on the information provided so far, it is not possible to determine 
the college or university where the researcher in the picture is currently located.

❌

......

Figure 8: Case study with successful case and two bad cases.

Korea by changing the direct search strategy to an indirect one with the growth rate and the pre-
vious year’s GDP, it should have proceeded to retrieve Japan’s current GDP. Instead, OmniSearch
abruptly ceased its thought and retrieval. This indicates that OmniSearch struggles with questions
requiring extended reasoning chains and tends to lose track of the original question and preceding
information. In the right case, the initial planned retrieval strategy is incorrect from the start, as the
main body of the image is a PowerPoint slice, and the person involved in the question only occupies
a small space in the bottom right corner of the image. The OmniSearch focuses on the wrong visual
evidence and gets caught in a ”thinking trap”. Ideally, the model should first search the image to find
out that it is a screenshot of a course video, then view the video to find out the name of the speaker,
and further search the web page to find out information about his academic institution. Another
alternative is to get the exact search region, i.e., the bottom-right corner of the image, through image
object recognition and image cropping. Then the person information is obtained based on the cap-
tion of the retrieved image. However, both approaches cannot be perfectly achieved by the current
OmniSearch, which does not support such complex and fine-grained retrieval. These failed cases
bring us significant insights and inspirations: firstly, how to solve the question requiring long con-
text knowledge is worth studying, we analysed 100 error cases, and found that 73 of them encounter
the issue of partially containing the correct answer, but the OmniSearch can’t complete the full re-
trieval process due to the long context. On the one hand, we need to improve the maximum length
of the context window of MLLMs, on the other hand, how to denoise, compress, and summarize
the context is the direction that the sub-problem solver of OmniSearch can be improved. Secondly,
advancing more precise retrieval techniques and incorporating a broader range of retrieval tools is
an urgent research to be carried out.
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