
A Experiment Details

Table 1 provides additional reference information about our suite of evaluation tasks.

Table 1: Details of our low- and high-level tasks.

Low-Level Task # Instr. Example

GOTO-ROOM (G1) 36 go to a yellow ball

GOTO-MAZE (G2) 42 go to a red key

OPEN-MAZE (O2) 6 open the green door

PICK-MAZE (P2) 36 pick up a red box

High-Level Task # Instr. Example Visualization Gℓ

PUTNEXT-ROOM 306 put the blue key next to
the yellow ball G1

PUTNEXT-MAZE 1440 put the yellow ball next
to a purple key G2

UNLOCK-MAZE 6 open the green door P2

OPEN&PICK-MAZE 216 open the yellow door
and pick up the grey ball O2, G2

COMBO-MAZE 1266 pick up the green ball G2

SEQUENCE-MAZE >1M
open the grey door after
you put the yellow ball
next to a purple key

G2

1



Figure 1: The actor-critic architecture processes an observation and language instruction using a
multimodal encoder based on feature-wise linear modulation (FiLM) [6]. It then uses an LSTM to
recurrently process a history of observations and projects the output onto actor and critic heads.

Figure 2: The relevance classifier consists of a Siamese network that returns a binary prediction of
whether a low-level instruction is relevant to a high-level instruction.

B Training Details

We adapt the PPO implementation from [2] with the default hyperparameters (discount factor of 0.99,
learning rate (via Adam) of 7×10−4, batch size of 2560, minibatch size of 1280, entropy coefficient of
0.01, value loss coefficient of 0.5, clipping-ϵ of 0.2, and generalized advantage estimation parameter
of 0.99). We use the actor-critic architecture from [2] (Figure 1).

B.1 Termination and Relevance Classifiers

The termination classifier hϕ is an adapted version of the architecture in Figure 1 that uses a binary
prediction head instead of the actor and critic heads. Our implementation of hϕ makes predictions
based on single observations; in our BabyAI tasks, final observations are sufficient for evaluating
whether a task has terminated.

To train hϕ, we require positive and negative examples of states at which low-level language instruc-
tions terminate. We use the automated expert built into BabyAI to generate 15K low-level episodes.
For each episode, we use the final observation as a positive example for that episode’s language
instruction and a randomly sampled state from the trajectory as a negative example. Similarly, we
generate 200 episodes for validation data. We augment the datasets with additional negative examples
by sampling 35 mismatching low-level instructions for each terminating observation. We use a batch
size of 2560 and optimize via Adam with a learning rate of 10−4. We train for 5 epochs and use the
iteration that achieves the highest validation accuracy.

We train the relevance classifier fρ online with the architecture described in Figure 2. For an
initialization conducive to deduplication, we initialize fρ to predict that any gℓ is relevant to any g.
To do this, we randomly sample 100 high-level instructions, cross that set with Gℓ, label the pairs
as relevant, and train for 20 epochs. We use a learning rate of 10−4 and a batch size of 10. Online
updates based on the online dataset D involve 3 gradient updates to ρ for every 50 iterations of PPO.
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B.2 LEARN

We will now detail LEARN [3] which we use as a baseline. LEARN rewards trajectories that it
predicts are relevant to a given language instruction. We reimplement LEARN based on an open-
source implementation.1 We collect 15K episodes of BabyAI’s automated expert completing low-level
tasks and process them to create (instruction, action frequency) data. We use this dataset to train the
classifier used in LEARN which predicts whether the action frequencies of the current trajectory are
related to the current instruction. The coefficient on the shaped rewards is a hyperparameter; based
on an informed sweep of values, we set its value to 0.01. We train the classifier for 100 epochs.

An intuition for why LEARN has strong performance in static environments as in [4] but not in our
setting is that the method requires action frequencies to provide a signal about whether the current
trajectory is related to the language instruction. Our environments are dynamic, and so individual
actions are less correlated to language tasks. Additionally, in our setting, the instructions during
RL are high-level instructions which are selected from a different distribution than the low-level
instructions available for training the classifier.

B.3 RIDE

As an additional comparison point to ELLA, we reimplement the RIDE method [7] based on an
open-source implementation.2 RIDE rewards “impactful” changes to the state; we discuss the
method further in Appendix D. We use the same architectures as the original work for the forward
dynamics model, inverse dynamics model, and state embedding model. For comparability with our
implementation of ELLA with PPO, we adapt RIDE to the on-policy setting by updating the dynamics
models once per batch of on-policy rollouts. For hyperparameters, we use the values published in the
code repository for the coefficients on forward dynamics loss and inverse dynamics loss (10 and 0.1
respectively), as well as the published value for learning rate of 10−4. We tune the intrinsic reward
coefficient (which we call λR) within the set {0.1, 0.5, 1}.

C Algorithm (Expanded)

Algorithm 1 breaks down ELLA in detail.

1https://github.com/prasoongoyal/rl-learn
2https://github.com/facebookresearch/impact-driven-exploration
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Algorithm 1 Reward Shaping with ELLA
1: Input: Initial policy parameters θ0, relevance classIfier parameters ρ0, update rate n, low-level

bonus λ, and on-policy RL optimizer OPTIMIZE
2: Initialize D ← {(g : Gℓ) for all g in G}
3: for k = 0, 1, . . . do
4: Collect trajectories Dk = {τi} using πθ

k.
5: for τ ∈ Dk do
6: Set N ← length of τ
7: Set (r′1:N , Ŝ)← SHAPE(τ )
8: if U(τ) > 0 then ▷ If trajectory was successful
9: Set r′N ← NEUTRALIZE(r′1:N )

10: Set D[g]← UPDATEDECOMP(D, Ŝ)
11: Update θk+1 ← OPTIMIZE(r′1:N ).
12: if k is a multiple of n then
13: D′ ← Sample positive and negative examples of relevant pairs (g, gℓ) from D
14: Update ρk+1 ← Optimize cross entropy loss on D′

15:
16: function SHAPE(τ )
17: Set Ŝ← ∅
18: for gℓ ∈ Gℓ do
19: for g, (st, rt) ∈ τ do
20: if hϕ(st, gℓ) = 1 and gℓ ̸∈ Ŝ then ▷ If gℓ has terminated for the first time
21: Update Ŝ← Ŝ ∪ {gℓ} ▷ Record gℓ in the decomposition
22: if fρ(g, gℓ) = 1 then ▷ If gℓ is relevant
23: Set r′t = rt + λ ▷ Apply low-level bonus
24: return (r′1:N , Ŝ)
25:
26: function NEUTRALIZE(r′1:N )
27: Set TS ← {t | 1 ≤ t ≤ N, r′t > 0} ▷ Get time steps at which rewards were shaped
28: return r′N −

∑
t∈TS

γt−Nλ ▷ Final reward neutralizes shaped rewards (Section 4.3)
29:
30: function UPDATEDECOMP(D Ŝ))
31: Set S← D[g]
32: if S ∩ Ŝ = ∅ then
33: return Ŝ
34: else
35: return S ∩ Ŝ
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Figure 3: Learning curves for PPO (no shaping), ELLA, RIDE, and ELLA+RIDE in the SEQUENCE-
MAZE task. For PPO, ELLA, and ELLA+RIDE, translucent regions show standard deviation of
return over three random seeds.

D Relation to Intrinsic Motivation

As mentioned in Section 2, curiosity and intrinsic motivation methods use reward shaping to incen-
tivize exploration to novel, diverse, or unpredictable parts of the state space [1, 5, 7, 8]. We adapt
RIDE [7], an intrinsic motivation method, to our setting and discuss one way in which ELLA could
be combined with intrinsic motivation methods.

RIDE rewards actions that produce “impactful” changes to its representation of the state. The
state representation function is learned via a forward dynamics model and inverse dynamics model.
Intuitively, such a representation contains information only relevant to environment features that
the agent can control and features that can have an effect on the agent. RIDE does not consider
goal-conditioning, so we do not include language instructions in the observation provided to RIDE.

RIDE’s intrinsic rewards are equal to the L2 norm of the difference in this state representation
between time steps, scaled by a coefficient λR. We find that λR can have a sizeable effect on the
performance of RIDE, so we tune this hyperparameter as discussed in Section B.3.

We experiment with RIDE in several of the BabyAI tasks, and examine the SEQUENCE-MAZE task
as a case-study below. In Figure 3, we compare RIDE with various values of λ to ELLA. The
SEQUENCE-MAZE task is extremely sparse, and the language instructions are highly diverse. Both
RIDE, which rewards impactful state changes, and ELLA, which rewards completion of low-level
tasks, have a positive effect on sample efficiency. We additionally test how ELLA+RIDE can be
combined; to do this, we simply sum the shaped rewards via ELLA and RIDE at each time step.
For this task, we see that the combination of subtask-based exploration (based on an online-learned
model of language abstractions) and impact-based exploration (based on online-learned dynamics
models) leads to a further increase in sample efficiency.

While these two methods reward different aspects of exploration, and combining them has the
potential to improve upon the individual methods, a limitation of this approach is that we must
resort to ad hoc methods for tuning shaped reward weights in the combined version. The discussion
in Section 4.3 on selecting ELLA’s λ hyperparameter does not apply to reward functions that are
non-sparse, which occurs when additional intrinsic rewards are included.

In SEQUENCE-MAZE, tuning λ and λR for ELLA and RIDE in isolation and then adding the shaped
rewards was effective, but this does not hold for all of the environments. As a representative example
of this case, Figure 3 compares a tuned version of ELLA+RIDE in with λ = 0.1 and λR = 0.05
for the Unlock-Maze task. Here, summing the methods did not significantly outperform either
individual method. We observe similar behavior in the PUTNEXT-ROOM environments. Future work
could examine how best to fuse subtask-based exploration with intrinsic motivation, or how to weigh
different types of intrinsic rewards.
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Figure 4: Learning curves in the OPEN&PICK-MAZE environment for vanilla PPO and ELLA with
different data budgets for the termination classifier.
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Figure 5: An ablation of ELLA’s relevance classifier, where it is replaced with an oracle, in comparison
to ELLA and PPO (no shaping).

E Ablations

Our approach has two learned components: the termination classifier hϕ, which we train offline
using annotated examples of low-level termination states, and the relevance classifier fρ, which is
trained online during RL. To understand how these two modules impact performance, we perform
ablations on the termination classifier (by varying its offline data budget) and the relevance classifier
(by replacing the online version with an oracle).

E.1 Termination Classifier

One of the assumptions of our method is that examples of low-level termination states are inexpensive
to collect. As noted in Section B.1, we train the termination classifier in ELLA with 15K positive and
negative examples, such that it achieves 99% accuracy on a balanced validation set. We perform an
ablation on the termination classifier by training the termination classifier with lower data budgets,
and find that we can reduce the data budget to 2K without affecting ELLA’s performance. However,
with a data budget as low as 500, ELLA’s performance declines. With a data budget of 100, the
termination classifier has an accuracy of only 66%, and the shaped rewards are noisy enough that the
overall learning curve is degenerate.
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E.2 Relevance Classifier

The relevance classifier is trained online using the relevance datasetD. As an ablation for this module,
we replace the relevance classifier with an oracle. To mimic the way that the relevance classifier is
initialized to predict that all low-level tasks are relevant to a high-level instruction, we reward all
low-level tasks for the first 2.5 million frames before switching to the oracle predictions. This initial
phase incentivizes low-level task completion generally, as ELLA does, and is empirically beneficial.

Figure 5 shows learning curves for PPO (no shaping), ELLA, and ELLA with the oracle relevance
classifier. The oracle version slightly outperforms ELLA for three of the four tasks and performs
similarly on the SEQUENCE-MAZE task. This task has over 106 instructions and remains challenging
even with low-level bonuses.

F Proof of Policy Invariance

In this section, we sketch the proof of the policy invariance of our reward transformation. We
begin with the goal-conditioned MDPM = (S,A, T,R,G, γ), where T : S ×A× S → [0, 1] and
R : S × A × S × G → [0, Rmax]. R is sparse. Let M̃ be an augmented MDP (S̃,A, T̃ , R̃,G, γ)
which stores state histories: that is, s̃t = (st, h0:t−1). T̃ : S̃ × A × S̃ → [0, 1] is defined as
T (s̃t, at, s̃t+1) = T (st, a, st+1) · 1[h0:t = (h0:t−1, st)]. R̃ is defined similarly to reflect consistency
between histories. The transformation fromM to M̃ does not affect optimal policies because we are
simply appending history information to the state without affecting the dynamics. We now use M̃
(instead ofM) to show policy invariance with a given shaped MDPM′, as we describe below.

Consider a shaped MDPM′ = (S̃,A, T̃ , R′,G, γ) where R′ : S̃ × A × S̃ → [0, 1] is defined as
R′(s̃t, at, s̃t+1) = R̃(s̃t, at, s̃t+1) + ℓ(s̃t, s̃t+1) where ℓ : S̃ × S̃ → R represents the low-level task
bonuses (or neutralization penalty) going from state s̃t to s̃t+1 as defined in Section 4.3. We first aim
to show that the transformation from M̃ toM′ does not introduce new optimal policies—that is, any
optimal policy inM′ is also optimal in M̃.

Let π̂M̃(s̃) = π∗
M′(s̃) where π∗

M′ is optimal inM′. We will show this policy is also optimal in M̃:
that is, V π̂M̃

M̃ (s̃t) = V ∗
M̃(s̃t) for all s̃t. Since R̃ is nonnegative and sparse, we only need to consider

states s̃t at which the value could possibly be positive: those from which the task is solvable in at
most H − t steps, where H is the horizon.

Assume the task is solvable in a minimum of k ≤ H − t steps (using an optimal policy in M̃ ). We
can reason about π̂M̃(s̃) = π∗

M′(s̃) by considering the various ways return could be accumulated in
M′, and which of those cases yields the maximum return.

(1) A policy could solve the task in j ≥ k steps while solving subtasks at timesteps TS, and receive a
discounted future return of

∑
t′∈TS;t′≥t γ

t′−tλ+ γj(Rmax −
∑

t′∈TS
γt′−(t+j)λ).

(2) A policy could solve only subtasks at timesteps TS and receive a discounted future return of∑
t′∈TS;t′≥t γ

t′−tλ.

We can simplify the return in case (1) to γjRmax −
∑

t′∈TS;t′<t γ
t′−tλ. The second term does not

depend on actions taken after t; thus, this case is maximized by completing the task in j = k steps.

Note that case (2) always gets smaller return than case (1): the first term,
∑

t′∈TS;t′≥t γ
t′−tλ, is the

same as in case (1), and the second term in case (1) is strictly positive when we use the bound on λ

from Section 4.3: that λ < γHRmax

|Gℓ| .

Therefore, the maximum future return is achieved in case (1), specifically by a policy that solves the
task in k steps, and we know that this policy exists. Thus V π̂M̃

M̃ (s̃t) = γkRmax = V ∗
M̃(s̃t), and so an

optimal policy inM′ is also optimal in M̃. In order to show the reverse, we can use similar logic to
show that any optimal policy in M̃ acts optimally inM′ for any state s̃t where the task is solvable in
a minimum of k ≤ H − t steps; actions towards solving the task most quickly are also optimal in
M′. Together, this shows policy invariance between M̃ andM′ for the set of states s̃t where the
task is solvable.
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(b) Did you include complete proofs of all theoretical results? [Yes] Please see the
supplemental material.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] Yes, code is all
provided in the supplemental.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We specified all hyperparameters where applicable, and especially
for our method, provided a process for how to best choose them (see the Tuning λ
paragraph in Section 4).

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] We ran our main experiments with multiple random seeds
and plotted curves with standard deviations.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] See the last sentence of the
Experimental Setup subsection of Section 5.
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We are including code for our approach in the supplemental.
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using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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