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11 More Training Details

2 This section gives more training details on MIM pre-training and fine-tuning on downstream tasks,
3 such as ImageNet classification, COCO detection, and ADE20K segmentation. For ImageNet
4 experiments, the base learning rate is based on batch size 256.

5 1.1 Training Details on MIM pre-training.

6 We use the same setting for different sizes RevCol models on MIM pre-training. The detail hyper-
7 parameters are shown in Table 1. Following exists works [1, 2], we do not use stochastic depth [3]
8 and other regularization strategies in MIM pre-training.

config value

optimizer AdamW

base learning rate 1.5e-4

weight decay 0.05

optimizer momentum | (1, $2=0.9,0.95
batch size 4096

learning rate schedule | cosine decay
warmup epochs 40

training epochs 1600

augmentation RandomResizedCrop

Table 1: MIM Pre-training settings.

9 1.2 Details on Image22K intermediate fine-tuning.

o We further intermediately fine-tune RevColV2 models on ImageNet-22K dataset. The fine-tuning
11 details is shown in Table 2. The hyper-parameters generally follow [4, 2].

12 1.3 End-to-end fine-tuning details on ImageNet-1K.

3 We end-to-end fine-tune RevCol variants on ImageNet-1K after MIM pre-training and intermediately
4 fine-tuning on ImageNet-22K. Table 3 shows the detail training settings after MIM pre-training.

5 We also show training settings on ImageNet-1K after ImageNet-22K fine-tuning. Table 4 gives the
6 detailed hyper-parameters.
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config value

optimizer AdamW

base learning rate 2.5e-4

weight decay 0.05

optimizer momentum | (1, $2=0.9,0.999
layer-wise Ir decay 0.8

batch size 4096

learning rate schedule | cosine decay
warmup epochs 5

training epochs 90

augmentation RandAug (9, 0.5)
label smoothing 0.1

mixup 0.8

cutmix 1.0

drop path 0.1 (B), 0.2 (L)
head init 0.001

ema None

Table 2: End-to-end IN-22K intermediate fine-tuning settings.

config value

optimizer AdamW

base learning rate Se-4

weight decay 0.05

optimizer momentum | 1, 52=0.9,0.999
layer-wise Ir decay 0.75

batch size 1024

learning rate schedule | cosine decay
warmup epochs 5

training epochs

100 (B), 50 (L)

augmentation RandAug (9, 0.5)
label smoothing 0.1

mixup 0.8

cutmix 1.0

drop path 0.1

head init 0.001

ema 0.9999

Table 3: End-to-end ImageNet-1K fine-tuning settings

1.4 Details on ADE20K semantic segmentation

For semantic segmentation, we evaluate different backbones on ADE20K dataset. We fine-tune the
pre-trained networks on ADE20K with 160,000 iterations. For UperNet framework [5], the learning
rate is 4e-5 with batch size 16, using AdamW optimizer. The layer-wise learning rate decay rate
is set as 0.65 for both base and large size models. The drop path rate is 0.1. For Mask2Former
framework [6], the learning rate is 2e-5 with batch size 16. The drop path rate is set as 0.3 and the
layer-wise learning decay rate is 0.9.

1.5 Details on COCO object detection and instance segmentation

For object detection and instance segmentation, we evaluate RevColV2 backbones with Mask R-
CNN [7] and Cascade Mask R-CNN [8] detectors. We use ImageNet-1K MIM pre-trained weights
as initialization and fine-tune the models with 50 epochs and a batch size of 32, learning rate le-4
for Mask R-CNN framework. The large scale jittering data augmentation strategy is used with scale
range [0.1, 2.0]. The drop path rates for RevCOIV2 are set as 0.2 (base) and 0.3 (large) and the
layer-wise learning rate decay rates are set as 0.9. For Cascade Mask R-CNN framework, we train
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config value
optimizer AdamW
base learning rate 2.5e-5
weight decay 0.01

optimizer momentum
layer-wise Ir decay
batch size

learning rate schedule
warmup epochs
training epochs
augmentation

label smoothing
mixup

cutmix

drop path

head init

ema

B1, £2=0.9,0.999
0.9

512

cosine decay
None

30

RandAug (9, 0.5)
0.1

None

None

0.1(B), 0.2 (L)
0.001

0.9999

Table 4: End-to-end ImageNet-1K fine-tuning settings (after IN-22K intermediate fine-tuning).

models with 100 epochs following [9] with large scale jittering augmentation strategy. The learning
rate is 1e-4 with batch size 64. We do not use soft-NMS in our experiments.

2 More Results

2.1 Compared with supervised baseline

To verify the effectiveness of RevCol V2 architecture with MIM pre-train, we compare the performance
on ImageNet-1K fine-tune using MIM pre-trained model weights and random initialization. We use
the same setting with [1] in this supervised baseline, except additional 0.999 EMA strategy. The
base/large models achieve 83.1% and 82.6% top-1 accuracy on ImageNet-1K. The MIM pre-trained
RevColV2 models outperform supervised baseline by a large margin (+1.6% and +3.7%).

2.2 Linear probing results

We report the linear probing results on ImageNet-1K after pre-training for RevColV2 models and
other counterparts on Table 5. Following [1], we fix the pre-trained backbone models and train
a classification head for 90 epochs with LARS optimizer. We append this classification head on
the last level of bottom-up columns in RevColV2. The linear probing performance of RevColV2
models surpasses other encoder only models such as SimMIM [10] and autoencoder models such as
MAE [1].

Table 5: Linear probing results on ImageNet-1K dataset.

Model Size Target Params FLOPs LIN
ImageNet-1K pre-train:

BEIT-B [11] 224> DALL-E 87M 18G 56.7
SimMIM-B [10] 2242 Pixel 88M 16G 56.7
RevColV2-B 2242 Pixel 88M 19G 67.7
MAE-L [1] 2242 Pixel 307M 62G 75.8
RevColV2-L 224> Pixel 327IM  67G 79.3
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