
[Supplementary File]
Personalized Subgraph Federated Learning

Organization This supplementary file is organized as follows. In Section A, we first describe the
algorithms of our FEDerated Personalized sUBgraph learning (FED-PUB) framework, on both server-
and client-sides. Then, we provide the detailed experimental setups including datasets, models and
hyperparameters in Section B, as well as the additional experimental results in Section C. After that,
we finally discuss the limitations and potential societal impacts of our work in Section D.

A Algorithms

In this section, we algorithmically describe where the proposed subgraph similarity estimation and
adaptive weight masking are performed in our FED-PUB framework, which is shown in Algorithm 1
for the client and in Algorithm 2 for the server.

Algorithm 1 FED-PUB Client Algorithm
1: R: number of rounds, E: number of epochs, K:

number of clients, Dk: local data for client k, fk:
model function for client k, θk: model parame-
ters for client k, µk: weight masking parameters
for client k, S(·): similarity matching function, τ :
scaling factor for similarity matching.

2: Function RunClient(θ̄k)
3: θk ← θ̄k ⊗ µk

4: for each local epoch e from 1 to E do
5: θk ← θk − η∇L(Dk;θk,µk)
6: end for
7: return θk

Algorithm 2 FED-PUB Server Algorithm
1: Function RunServer()
2: initialize θ̄

(0)

3: for each round r = 1, 2, . . . , R do
4: for fk∀k in parallel do
5: if r = 1 then
6: θ

(r+1)
k ← RunClient(θ̄(r)

)
7: else
8: θ̄

(r)
k ←

∑K
i=0

exp(τ ·S(k,i))∑K
j=0 exp(τ ·S(k,j))

θi

9: θ
(r+1)
k ← RunClient(θ̄(r)

k )
10: end if
11: end for
12: end for

B Experimental Setups

In this section, we first provide the descriptions of six different benchmark datasets that we use, with
their preprocessing setups and statistics in Subsection B.1. Then, we introduce the baselines and our
proposed FED-PUB in detail in Subsection B.2. After that, we further describe the implementation
details of the experiments on synthetic and real-world graphs in Subsection B.3.

B.1 Datasets

We report the statistics of six different benchmark datasets (i.e., Cora, CiteSeer, Pubmed, and ogbn-
arxiv for citation graphs; Computer and Photo for amazon product graphs) [15, 6, 11, 16] that we
use in our experiments for both the overlapping and non-overlapping node scenarios, in Table 1.
Specifically, we report the number of nodes, edges, classes, and clustering coefficient for each
subgraph, as well as the heterogeneity among all the subgraphs. Note that clustering coefficients,
which are the measure of how much nodes tend to cluster together, are calculated by the average
of clustering coefficients [17] of all nodes. On the other hand, we calculate the heterogeneity
by measuring the median Jenson-Shannon divergence of label distributions between all pairs of
subgraphs. For dataset splits, we randomly select 20% nodes for training, 35% for validation, and
35% for testing, for all datasets except for the arxiv dataset. As the arxiv dataset has relatively larger
numbers of nodes as shown in Table 1, we randomly select 5% nodes for training, the remaining half
of the nodes for validation, and the other nodes for testing.
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Table 1: Statistics of datasets, where we report the number of nodes, edges, classes, clustering coefficient, and
heterogeneity for both the original graph and its splitted subgraphs on overlapping and non-overlapping node
scenarios. Ori denotes the original graph, and Cli denotes the number of clients.

Overlapping node scenario

Cora CiteSeer Pubmed

Ori 10 Cli 30 Cli 50 Cli Ori 10 Cli 30 Cli 50 Cli Ori 10 Cli 30 Cli 50 Cli

# Classes 7 6 3
# Nodes 2,485 621 207 124 2,120 530 177 106 19,717 4,929 1,643 986
# Edges 10,138 1,249 379 215 7,358 889 293 170 88,648 10,675 3,374 1,903
Clustering Coefficient 0.238 0.133 0.129 0.125 0.170 0.088 0.087 0.096 0.060 0.035 0.034 0.035
Heterogeneity - 0.297 0.567 0.613 - 0.278 0.494 0.547 - 0.210 0.383 0.394

ogbn-arxiv Amazon-Computer Amazon-Photo

Ori 10 Cli 30 Cli 50 Cli Ori 10 Cli 30 Cli 50 Cli Ori 10 Cli 30 Cli 50 Cli

# Classes 40 10 8
# Nodes 169,343 42,336 14,112 8,467 13,381 3,345 1,115 669 7,487 1,872 624 374
# Edges 2,315,598 282,083 83,770 44,712 491,556 59,236 16,684 8,969 238,086 29,223 8,735 4,840
Clustering Coefficient 0.351 0.337 0.348 0.359 0.410 0.380 0.391 0.410 0.226 0.177 0.185 0.191
Heterogeneity - 0.327 0.577 0.614 - 0.306 0.696 0.684 - 0.315 0.606 0.615

Non-overlapping node scenario

Cora CiteSeer Pubmed

Ori 5 Cli 10 Cli 20 Cli Ori 5 Cli 10 Cli 20 Cli Ori 5 Cli 10 Cli 20 Cli

# Classes 7 6 3
# Nodes 2,485 497 249 124 2,120 424 212 106 19,717 3,943 1,972 986
# Edges 10,138 1,866 891 422 7,358 1,410 675 326 88,648 16,374 7,671 3,607
Clustering Coefficient 0.238 0.250 0.259 0.263 0.170 0.175 0.178 0.180 0.060 0.063 0.066 0.067
Heterogeneity - 0.590 0.606 0.665 - 0.517 0.541 0.568 - 0.362 0.392 0.424

ogbn-arxiv Amazon-Computer Amazon-Photo

Ori 5 Cli 10 Cli 20 Cli Ori 5 Cli 10 Cli 20 Cli Ori 5 Cli 10 Cli 20 Cli

# Classes 40 10 8
# Nodes 169,343 33,869 16,934 8,467 13,381 2,676 1,338 669 7,487 1,497 749 374
# Edges 2,315,598 410,948 182,226 86,755 491,556 84,480 36,136 15,632 238,086 43,138 19,322 8,547
Clustering Coefficient 0.351 0.385 0.398 0.418 0.410 0.437 0.457 0.477 0.226 0.247 0.259 0.269
Heterogeneity - 0.604 0.612 0.647 - 0.684 0.681 0.751 - 0.593 0.615 0.637

We then describe how to partition the original graph into multiple subgraphs, whose counts are the
same as the number of clients. In general, we use the METIS graph partitioning algorithm [7] to
divide the original graph into multiple subgraphs, which can control the number of disjoint subgraphs
as parameters. Thus, in the non-overlapping node scenario, the disjoint subgraphs for each client
are directly obtained by the output of the METIS algorithm (i.e., if we set the parameter value for
METIS as 10, then we can obtain the 10 different disjoint subgraphs, each of which is given to
each client). On the other hand, in the overlapping node scenario where nodes are duplicated across
different subgraphs, we first divide the original graph into 2, 6, and 10 disjoint subgraphs for 10
clients, 30 clients, and 50 clients, respectively, with the METIS algorithm. After that, in the one
disjoint subgraph, we randomly sample half of the nodes and their associated edges, and then use
them as the subgraph for one particular client. This procedure is performed five times to generate five
different yet overlapped subgraphs for five clients, per one split subgraph obtained from METIS.

B.2 Baselines and Our Model

1. FedAvg: This method [12] is the FL baseline, where each client locally updates a model and then
sends it to a server, while the server aggregates the locally updated models with respect to their
number of training samples and then transmits the aggregated one back to the clients.

2. FedProx: This method [10] is the FL baseline, which regularizes the local model to not drift too
much to the local data by minimizing the weight differences between local and global models.

3. FedPer: This method [1] is the personalized FL baseline, which shares only the base layers, while
keeping the personalized classification layers in the local side.

4. FedGNN: This method [18] is the subgraph FL baseline, which expands the local subgraph by
exactly augmenting the relevant nodes from the other clients. The relevant nodes are selected
based on the similarity between the nodes in the local client and the other nodes in other clients.

5. FedSage+: This method [20] is the subgraph FL baseline, which expands the local subgraph
by estimating the nodes from the local graph generator that is trained with the information of
nodes in the other clients. Specifically, to train the graph generator, it first transmits the local node
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representations to other clients, and then calculates the gradient of the distance between received
node representations and local node representations, which are transmitted back to the local client.

6. GCFL: This method [19] is the graph FL baseline, which targets completely disjoint graphs
(e.g., molecular graphs) as in image tasks. In particular, this method uses the bi-partitioning
scheme, which divides a set of clients into two disjoint client groups based on their similarity
of gradients. Then, the model weights are only shared between grouped clients having similar
gradients, after partitioning. Note that this bi-partitioning scheme is similar to the scheme proposed
in clustered-FL [14] for image classification, and we adopt this for our subgraph FL.

7. Local: This method is the non-FL baseline, which only locally trains the model for each client,
and does not share weights between clients.

8. FED-PUB: This is our FEDerated Personalized sUBgraph learning (FED-PUB) framework,
which not only estimates the similarity between client subgraphs with their models’ functional
embeddings for detecting subgraph community structures, but also adaptively masks received
weights from the server for selecting only the subgraph-relevant parameters.

B.3 Implementation Details

Common Implementation Details For all experiments, we stack two layers of Graph Convolutional
Network (GCN) [9] and one linear classifier layer. Also, the number of hidden dimensions is set to
128, the learning rate is set to 0.001, and all clients participate in federated training for every round.
Then, all models are optimized with Adam optimizer [8]. To obtain functional embeddings in our
FED-PER framework, we randomly generate a community graph from a stochastic block model [5].
Specifically, we sample five different graphs each of which has 100 nodes, where the probability of
edges within the single graph is 0.1, while the probability of edges between the different graphs is
0.0. The node features for the sampled community graph are randomly initialized from the normal
distribution. Note that the randomly sampled graphs are initialized at the server-side and the server
distributes such graphs to all clients, while the client calculates its model’s functional embedding
and then transmits the obtained embedding to the server. Furthermore, for all experiments about
our FED-PUB, we set the λ1 and λ2 for L1 and L2 losses for sparsity and proximal terms as 0.001.
Notably, while we can tune such two scaling hyperparameters, we observe that those two values show
satisfactory performances across all datasets without further specific tuning to each dataset.

Implementation Details on Synthetic Graphs We perform two experiments on synthetic graphs,
which are shown in Figure 1 and Figure 3 of the main paper. In particular, in the experiment of
Figure 1, there are three communities that have different label distributions (e.g., the nodes in the first
community have label 0, whereas the nodes in the last community have label 2), and each community
has 5/5/40 non-overlapped subgraphs. Also, there are 50 clients, and each client has one of 50
subgraphs. Each subgraph consists of 30 nodes, and the edges between two nodes are sampled from
the probability of 0.5. Also, in the experiment of Figure 3, there are two communities that have
different label distributions, and each community has 5/15 non-overlapped subgraphs. Also, there
are 20 clients, and each client has one of 20 subgraphs. Each subgraph consists of 30 nodes, and
the edges between two subgraphs within the same community are sampled from the probability of
0.7, whereas the edges between two subgraphs from different communities are sampled from the
probability of 0.01. For all experiments, the number of local epochs is set to 3, and the number of
total rounds is set to 100. In our FED-PER including its variants of using parameter and gradient, the
scaling hyperparameter for calculating the similarity in equation 4 (i.e., τ ) is set to 10.

Implementation Details on Real-World Benchmark Graphs For small datasets, namely Cora,
CiteSeer and PubMed, we set the number of local training epoch as 1, and the number of total rounds
as 100. Also, for larger datasets, such as Computer, Photo and arxiv, we set the number of total rounds
as 200, while the number of local epochs is set to 2 for Photo and arxiv, and set to 3 for Computer. In
the overlapping node scenario, we set the similarity scaling hyperparameter (i.e., τ ) as 5 for all our
models. Meanwhile, we set the similarity scaling hyperparameter (i.e., τ ) as 3 in the non-overlapping
node scenario for all our models. We generally observe that, the larger τ value works better for the
overlapping node scenario, in which different subgraphs are easily grouped together, compared to
the non-overlapping node scenario. Finally, we report the test performance of all models at the best
validation epoch, and the performance is measured by the node classification accuracy.
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λ1 λ2 Accuracy [%] Sparsity [%]

3e-1 1e-3 79.62 ± 0.23 28.93 ± 0.52
5e-1 1e-3 79.42 ± 0.37 42.38 ± 0.35
7e-1 1e-3 78.68 ± 0.59 56.94 ± 0.29
9e-1 1e-3 77.36 ± 0.99 74.87 ± 0.34

λ1 λ2 Accuracy [%] Sparsity [%]

7e-1 1e-3 78.68 ± 0.59 56.94 ± 0.29
7e-1 1e-2 78.56 ± 0.05 56.61 ± 0.32
7e-1 1e-1 79.46 ± 0.41 57.41 ± 1.33
7e-1 1e-0 79.31 ± 0.45 57.28 ± 0.16

Figure 1: Analysis on hyperparameters λ1 and λ2, with corresponding model sparsity and performance.

Computing Resources For all experiments, we use PyTorch [13] and PyTorch Geometric [4] as
deep learning libraries. We use two types of GPUs: GeForce RTX 2080 Ti and TITAN XP for training
each model. The runtime of our framework depends on the number of clients, and also workers for
processing clients’ jobs, as well as the number of local epochs and rounds. In general, we use 10 or
20 workers (i.e., simultaneously training 10/20 local models for 10/20 clients), and the single run of
our algorithm for 50 clients with 1 local epoch and 100 total rounds takes less than 2 hours.

C Additional Experimental Results

In this section, we provide additional experimental results on varying hyperparameters, varying graph
partitioning schemes, varying random graph inputs, and varying similarity calculation schemes, as
well as analyses on the distributional shifts, the relations between graph size and heterogeneity, and
the impact of missing edges to task performances.

C.1 Results on Varying λ1 and λ2 Values

In Figure 1, we further explore the effects of hyperparameters λ1 and λ2 on the Cora dataset with the
overlapping node scenario, where the number of local epochs is set as 2 and the number of clients is
set as 10. In particular, λ1 value can control the degree of the model sparsity, thus, to see its efficacy,
we fix λ2 value while varying λ1, and then measure both the model sparsity and performance. As
shown in Figure 1 left, higher λ1 values significantly increase the model sparsity, meanwhile, the
model performance is slightly decreased. The results indicate that we should consider the trade-off
between the sparsity and the model performance, when choosing the λ1 value. On the other hand, λ2

value is designed to prevent the excessive knowledge drift to the local subgraph distributions, and,
to verify its effectiveness, we fix λ1 value while varying λ2. As shown in Figure 1 right, too small
lambda values lead to the performance degeneration, thus choosing the sufficiently large λ2 values
(e.g., 1e-1) would lead to the performance improvement. Also, we further observe that the sparsity
does not depend on λ2 value, thus the effects of λ1 and λ2 are orthogonal and complementary.

C.2 Results on Another Graph Partitioning Algorithm

Table 2: Results on experimental set-
tings of Louvain graph partitioning al-
gorithms, following Zhang et al. [20].

Methods Cora CiteSeer PubMed

Local 78.56 ± 0.27 64.06 ± 0.09 84.07 ± 0.17
FedAvg 71.83 ± 0.40 69.23 ± 0.71 82.47 ± 0.32
FedProx 72.09 ± 0.29 67.66 ± 0.97 82.68 ± 0.34
FedPer 80.13 ± 0.50 66.28 ± 1.22 85.02 ± 0.23
FedGNN 76.59 ± 0.66 61.21 ± 1.46 82.67 ± 0.26
FedSage+ 72.20 ± 0.60 68.40 ± 0.61 82.76 ± 0.09
GCFL 78.55 ± 0.38 64.20 ± 0.31 84.62 ± 0.31

FED-PUB (Ours) 82.68 ± 0.13 69.45 ± 0.75 86.20 ± 0.11

To verify the effectiveness of our FED-PUB on different
graph partitioning settings, we use another experimental setup
from Zhang et al. [20], which uses the Louvain algorithm [2] for
partitioning the entire graph into several subgraphs for clients.
Note that, before explaining experimental results, we would
like to point out that there is a drawback when using the Lou-
vain algorithm presented in Zhang et al. [20], rather than using
the METIS algorithm [7] as ours, for subgraph FL scenarios.
Specifically, since the Louvain algorithm cannot specify the
number of graph partitions, the number of subgraphs on the CiteSeer dataset is 38, where three of
them have less than ten nodes. Then, based on those 38 disjoint subgraphs, to generate the particular
number of clients (e.g., 10), Zhang et al. [20] randomly merge the different subgraphs without
considering their graph properties. Therefore, even though each partitioned subgraph has its unique
structural role/characteristic, the reconstructed 10 subgraphs from the original 38 subgraphs have
mixed properties (i.e., two incompatible subgraphs could be merged), which is suboptimal. However,
as described in the Datasets paragraph of Subsection 5.1, the METIS that we use can specify the
number of partitions, thus more appropriate for making experimental settings for subgraph FL.

Moreover, we further conduct experiments with the Louvain graph partitioning algorithm [2, 20], on
Cora, CiteSeer, and PubMed datasets with the number of clients as 10, and then report the results in
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Table 2. Then, the results show that our FED-PUB consistently outperforms all the other baselines on
another graph partitioning setting, thus the effectiveness of our FED-PUB becomes more obvious.

C.3 Results on Random Graph Partitioning

Table 3: Results on experimental set-
tings of random graph partitioning.

Methods CiteSeer with 10 Clients

Local 44.27 ± 1.05
FedAvg 60.84 ± 0.80
FedProx 59.38 ± 1.66
FedPer 60.04 ± 0.93
FedGNN 54.64 ± 1.67
FedSage+ 61.03 ± 0.11
GCFL 53.15 ± 1.82

FED-PUB (Ours) 63.63 ± 0.86

Since one might be curious about the results on uniform parti-
tions of graphs, rather than splitting the graph with its partition-
ing algorithms (e.g., METIS and Louvain algorithms), in this
subsection, we explain why this random partitioning setting is
unrealistic, and then show the performances on this setting as
well. Specifically, when we partition the entire graph of the
CiteSeer dataset into different subgraphs uniformly at random,
the number of nodes per subgraph will be larger than the num-
ber of edges (e.g., 211 nodes yet 72 edges per subgraph, thus
some nodes do not have any edges), which is uncommon in
practice. However, to compare the performances of different models, we further perform experiments
on the random split setting with 10 different clients on the CiteSeer dataset, and then report the results
in Table 3. As shown in Table 3, the gap between baselines and our model is reduced compared to
the non-overlapping and overlapping scenarios in Table 1 and Table 2 of the main paper. This is
because there is no specific community structure in this random setting; however, our FED-PUB still
meaningfully outperforms all the other baselines under this setting as well.

C.4 Distribution Shifts between Subgraphs

In this subsection, we measure the label differences (i.e., distributional shifts) between subgraphs with
the Jenson-Shannon divergence, in which the minimum and maximum values are 0 and 2, respectively,
on the Cora dataset with 20 different clients over the overlapping and the non-overlapping scenarios.
Then, the results show that the distance (i.e., divergence value) among the subgraphs within the same
community is 0.384 while the distance among the subgraphs belonging to different communities is
0.639 for the non-overlapping node scenario. On the other hand, the distance among the subgraphs
within the same community is 0.047 while the distance among the subgraphs belonging to different
communities is 0.528 for the overlapping node scenario.

Then, from the results above: heterogeneity of subgraphs within the same community is extremely
larger in the non-overlapping setting (0.384) compared to the overlapping setting (0.047), we can
further confirm that personalized weight aggregation might not be enough in disjoint subgraph FL
problems, since one particular subgraph might not get meaningful weights from the completely
heterogeneous subgraphs. On the other hand, in this extremely heterogeneous case, a personalized
weight masking scheme is clearly helpful, since it can filter out irrelevant information transmitted
from the other heterogeneous subgraphs, while allowing the model to maintain the locally helpful
information in its parameters. This result is also aligned with the results in Figure 7 (Ablation
studies) of the main paper that, the personalized weight masking scheme brings huge performance
improvements in the non-overlapping setting with high heterogeneity, whereas the personalized
weight aggregation scheme is helpful in the overlapping setting with low heterogeneity.

C.5 Additional Analyses on Local Graph Size vs Heterogeneity

Table 4: Results on Cora, CiteSeer, and
PubMed with the number of clients as
3 over the non-overlapping scenario.

Methods Cora CiteSeer PubMed

Local 81.73 ± 0.44 68.16 ± 0.25 84.81 ± 0.40
FedAvg 78.77 ± 0.13 69.34 ± 0.23 85.29 ± 0.20
FedProx 78.91 ± 0.21 69.54 ± 0.27 85.59 ± 0.18
FedPer 82.29 ± 0.13 69.80 ± 0.33 85.34 ± 0.16
FedGNN 82.36 ± 0.62 67.79 ± 0.49 85.57 ± 0.13
FedSage+ 77.79 ± 1.96 69.35 ± 0.12 85.63 ± 0.22
GCFL 82.67 ± 0.74 68.85 ± 0.58 86.20 ± 0.15

FED-PUB (Ours) 84.45 ± 0.23 70.66 ± 0.34 86.74 ± 0.16

To see how much heterogeneity issues are severe in terms of the
number of clients, we first analyze the exact amount of hetero-
geneities by varying the number of clients, and then provide the
results on the small number of clients (i.e., the heterogeneity
issue is less severe). At first, following the reported statistics
in Table 1, when we increase the number of clients on the
non-overlapping node scenario, the heterogeneity across sub-
graphs becomes more severe and problematic for personalized
subgraph FL, and thus becomes an important issue to tackle.

While we already provide the results that our FED-PUB is effective when the number of clients is
large (i.e., heterogeneous issues are severe) in Table 1 and Table 2 of the main paper, one might be
curious about whether our FED-PUB is still effective, when the heterogeneity issue is less significant.
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To see the results for this, we further conduct the experiment in the setting where the number of
clients is smaller than 5 (i.e., 3) on the Cora, CiteSeer, and PubMed datasets of the non-overlapping
node scenario. As shown in Table 4, compared to the results in Table 2 of the main paper with
numbers of clients as 5, 10, and 20, the performance gaps between our FED-PUB and baselines are
much reduced. However, we can clearly observe that our FED-PUB meaningfully (i.e., statistically)
outperforms all the other baselines even when the number of clients is small, since there still exists
incompatible knowledge across clients, which our FED-PUB effectively tackles with personalized
weight aggregation and local weight masking schemes.

C.6 Results on Varying the Random Graph Inputs for Functional Embeddings

Table 5: Results on varying the random
graph inputs for functional embeddings,
over overlapping and non-overlapping
node scenarios with 20 clients on Cora.

Random Graph Overlapping Non-Overlapping

SBM 0.937 0.810
ER 0.920 0.712
One 0.822 0.656
Feature 0.897 0.632

As described in Section B.3 of the supplementary file, to calcu-
late each client model’s functional embedding, we use the same
random graph for all clients, which is initialized by a stochastic
block model [5] with node features initialized by the normal
distribution. Since such randomness does not yield any bias
on the functional space, unlike existing node features for the
certain subgraph, we expect our random graphs are helpful for
effectively capturing the similarities among subgraphs.

In this subsection, to experimentally validate this statement, we compare various schemes used for
calculating the functional embeddings: 1) SBM denotes the random graph generated from the SBM
model like ours; 2) ER denotes the random graph generated from the Erdos-Renyi model [3]; 3)
One denotes the random graph having only one node; 4) Feature denotes the graph where nodes are
initialized by the node features in the client. We then measure the performances of those four schemes
by calculating the correlation coefficients between label distributions and generated similarities of
subgraphs (i.e., the high value means that the similarities from the functional embeddings are similar
to the label distributions) on the Cora dataset of non-overlapping and overlapping node scenarios with
20 clients, which are reported in Table 5. As shown in Table 5, compared to the One scheme that uses
only one node for calculating the functional embeddings, SBM and ER schemes that use more large
numbers of randomly initialized nodes can accurately capture the similarities between subgraphs.
This result confirms that a sufficient amount of randomness is required to identify the model’s
functional space. Also, compared to the Feature scheme that uses existing node representations for
calculating the functional embeddings, SBM and ER random models show superiority in capturing
similarities among subgraphs, which verifies that randomness might help obtain accurate functional
embeddings of the models without incurring bias.

C.7 Results on Varying the Similarity Calculation Schemes

Table 6: Results on varying the similar-
ity calculation schemes: parameter, gra-
dient, label, and our functional embed-
ding, on the overlapping node scenario
with 30 clients of the Cora dataset.

Model 20 40 60 80

FedAvg 29.94 32.69 47.84 52.42

Parameter 29.94 35.89 47.03 52.28
Gradient 33.93 51.09 52.77 58.14
Label 65.97 74.31 76.50 76.82

Function (FED-PUB) 67.82 73.51 74.66 75.90

As shown in Figure 3 of the main paper, compared against the
parameter and gradient similarities, our functional embeddings
are not only effective but also efficient in capturing similarities
between subgraphs. Also, using the label distributions – locally
stored in the client – as the proxy for similarity calculation
might violate the privacy of the user’s data. However, to see
their performance differences in the real-world dataset, we
additionally conduct experiments on the parameter, gradient,
and label similarities, on the Cora dataset of the overlapping
node scenario with the number of clients as 30, and then report
the results on 20, 40, 60, and 80 epochs in Table 6.

As shown in Table 6, we can observe that the models, which utilize the parameter and gradient
for calculating the similarities between subgraphs, perform similarly to the FedAvg model and
perform worse than our functional and label similarity schemes. However, even though the label
similarity model uses privacy-sensitive local information (i.e., label distributions of every client), the
performance of our FED-PUB that utilizes the functional embeddings is similar to the performance
of the label model. Therefore, along with the results in Figure 6 of the main paper, this comparison
results on similarity schemes further verify the effectiveness of our functional embedding scheme in
capturing the similarities among subgraphs.
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C.8 Impacts of Missing Edges to Performance Degeneration

Table 7: Results on Non-Overlapping and Overlapping
node scenarios with varying the number of clients on
Cora, including the Oracle model that is not comparable.

Model NonOverlapping-5 NonOverlapping-20 Overlapping-10 Overlapping-50

Oracle 85.07 85.47 85.08 85.28

Local 81.30 80.30 73.98 76.63
FedAvg 74.45 69.50 76.48 53.99
FedGNN 81.51 70.10 70.63 56.91
FedSage+ 72.97 57.97 77.52 55.48

FED-PUB (Ours) 83.70 81.75 79.60 77.84

In this section, we show that, due to the prob-
lem of missing edges, all the FL methods, which
observe edges only within each subgraph, show
inferior performances than the Oracle method,
which trains on the entire graph including miss-
ing edges. In other words, we train the Oracle
model on the connected global graph, and then
evaluate it on disjoint subgraphs over all clients,
on the Cora dataset of both Non-overlapping and Overlapping node scenarios with varying client
numbers. Then, as shown in Table 7, the Oracle model outperforms all the other methods, while
our FED-PUB achieves the closest performance to the Oracle model. The above results bring us to
the following points. First, due to the problem of missing edges, all the FL methods, which observe
edges only within each subgraph, perform poorly than the Oracle method. Also, the missing edge
problem negatively affects the incompatible knowledge issue: since all client models are trained by
the partial subgraphs, which are parts of the larger global graph, the trained parameters in the client
and the aggregated parameters in the server might not capture globally meaningful knowledge or the
knowledge that is helpful to the other clients, which explains why the Oracle performs the best.

D Limitations and Potential Societal Impacts

In this section, we discuss the limitations and potential societal impacts of our work.

Limitations While our personalized subgraph FL framework, namely FED-PUB, is generally
applicable regardless of the types of subgraphs (e.g., unipartite graphs or bipartite graphs), our
experiments are mainly done with unipartite graphs which are the most popular graph representation
learning settings. However, the behaviors of our FED-PUB on the other types of graphs, such as
bipartite graphs, would be interesting to further see, which have but not been explored so far, and we
leave this as future work.

Potential Societal Impacts The FL scheme is important for preserving users’ privacy, and, while
this scheme is actively studied in the image and language domains, it gets little attention for graphs.
In particular, the subgraph FL, which we mainly target, has unique challenges on missing nodes,
edges, and their community structures, and we believe which are sufficiently tackled in our work.

Then, the potential positive impact of our work on society is that, our method affects various domains
that use graphs, such as social networks, recommendation networks, and patient networks, to name a
few. Note that we would like to emphasize the importance of our subgraph FL scheme, especially in
social and recommendation networks. In the current real-world applications, all the user’s interactions
with other users for social networks and with other products for recommendation networks may be
stored in the server. However, this may not preserve the user’s privacy, but also has potential risks of a
leak of user data from the server, such that storing the user’s data in the server is not recommended, for
example, from the data protection regularizations such as GDPR 1. Then, by applying our subgraph
FL framework to this domain, we expect such problems could be resolved by not storing user’s
interaction data to the server, but only sharing the locally trained models with clients.

However, the transmitted model parameters from the client to the server may hold the privacy-
sensitive information, and, while this is not the main focus of this work (i.e., we assume that model
parameters are transmittable without compromising privacy as in many FL works [12, 10, 1]), the
research community may need to put further effort on whether the model parameters are safe, and
how to make them safe if the model parameters contain privacy-sensitive information.

1https://gdpr-info.eu/
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