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Overview

Fixed-point problems are often computational bottleneck in large systems

Acceleration of fixed-point iterations: use knowledge of prior iterates to improve future
iterates

Classically done without machine learning, e.g. Anderson Acceleration (AA)
Fixed-point problems repeatedly solved in application likely share structure

Neural fixed-point acceleration: leverage shared structure to accelerate distribution over
problem instances using learning
Challenge: Complex fixed-point mappings result in subtleties with
interweaving model updates with fixed-point computations, differentiating
through mappings

Main Application: Convex Cone Programming

Accelerate Splitting Conic Solver, called SCS (state-of-the-art cone solver)

Neural SCS Design

Model:
e MLPs for initial prediction
* LSTMs/GRUs for prediction of sequence iterates

Differentiating through SCS Fixed-Point Iterations:

* Implicit differentiation for linear system solve

* Cone projection derivatives for zero, non-negative, second-order and PSD cones based
on prior work.

Loss function:
¢ Tau normalization: Removing iterate-scaling factor from loss essential for good solution

Neural Fixed-Point Acceleration Framework

Algorithm 1 Neural fixed-point acceleration augments standard fixed-point computations
with a learned initialization and updates to the iterates.

Inputs: Context ¢, parameters 6, and fixed-point map f.
[z1, h1] = gi() > Initial hidden state and iterate
for fixed-point iteration ¢t = 1..7" do
Frp1 = f(z150)
T4, her = go*°
end for

> Original fixed-point iteration

(x4, Te1, he) > Acceleration

Experiments and Visualizations
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