Neural Fixed-Point Acceleration for Convex Optimization

Shobha Venkataraman^{*} Brandon Amos^{*} Facebook AI Research

* Equal Contribution

Overview

Fixed-point problems are often computational bottleneck in large systems

Acceleration of fixed-point iterations: use knowledge of prior iterates to improve future iterates

Classically done without machine learning, e.g. Anderson Acceleration (AA)

Fixed-point problems repeatedly solved in application likely share structure

Neural fixed-point acceleration: leverage shared structure to accelerate distribution over problem instances using learning

Challenge: Complex fixed-point mappings result in subtleties with interweaving model updates with fixed-point computations, differentiating through mappings

Main Application: Convex Cone Programming

Accelerate Splitting Conic Solver, called SCS (state-of-the-art cone solver)

Neural SCS Design

Model:

- MLPs for initial prediction
- LSTMs/GRUs for prediction of sequence iterates

Differentiating through SCS Fixed-Point Iterations:

- Implicit differentiation for linear system solve
- Cone projection derivatives for zero, non-negative, second-order and PSD cones based on prior work.

Loss function:

• Tau normalization: Removing iterate-scaling factor from loss essential for good solution

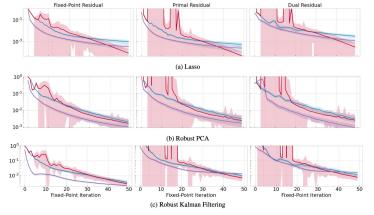
Neural Fixed-Point Acceleration Framework

Algorithm 1 Neural fixed-point acceleration augments standard fixed-point computations with a learned initialization and updates to the iterates.

Inputs: Context ϕ , parameters θ , and fixed-point map f .	
$[x_1,h_1]=g_ heta^{ ext{init}}_ heta(\phi)$	\triangleright Initial hidden state and iterate
for fixed-point iteration $t = 1T$ do	
$ ilde{x}_{t+1} = f(x_t;\phi)$	▷ Original fixed-point iteration
$x_{t+1}, h_{t+1} = g^{ ext{acc}}_{ heta}(x_t, ilde{x}_{t+1}, h_t)$	▷ Acceleration
end for	

Experiments and Visualizations

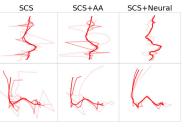
Faster convergence to a good solution than SCS and SCS + Anderson Acceleration (default acceleration) on 3 problems: Lasso, Robust PCA, Robust Kalman Filtering



SCS SCS+AA SCS+Neural

Robust PCA

Robust Kalman Filtering



Iteration: 10 15 20

Solutions visualized after 5, 10, 20, 50 iterations

Visualizing iterates also shows that Neuralaccelerated SCS stabilizes to a solution much faster than SCS/SCS+AA