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A APPENDIX

A.1 TRAINING LOSS OF LLMS AND VLMS

To adapt a pretrained LLM or VLM to a specific domain or task, models are typically trained on a
supervised dataset D = (xi,yi)

n
i=1 of input-output pairs. Training is commonly performed using

the standard teacher-forcing objective, which minimizes the negative log-likelihood of the target
sequence:

LSFT(✓) = �
1

n

nX

i=1

ln⇡✓(yi|xi)�
1

n

nX

i=1

|yi|X

k=1

ln⇡✓(yi,k|xi,yi,<k).

This objective maximizes the likelihood that the model generates the correct output sequence con-
ditioned on the input and the ground-truth prefix at each step. The parameters are updated using
gradient descent or its variants:

✓  ✓ � ⌘r✓ LSFT(✓), with ✓t=0 = ✓0,

where ⌘ > 0 is the learning rate. Teacher forcing stabilizes fine-tuning by supplying the true prefix
y<k during training, enabling the model to align its predictions closely with the target data distribu-
tion in the new domain.

A.2 PROOF OF THEOREM 1

In this section, we give the detailed proof of our Theorem 1, we start by proving the following
theorem:

Theorem 2. For a data xv and its generation yv that await valuation, at any time t � 0 of training
using a training data (xi,yi), i 2 [n], the training data exhibits larger value to the valuation data
as the following increases:

|yv|X

k=1

|yi|X

k0=1

↵k,k0(t) ·
D
hxv,yv,<k(t),hxi,yi,<k0 (t)

E
+

|yv|X

k=1

*
wyv,k(t)�

X

z2V
⇡✓(t)(z|xv) ·wz(t), (wyi,k �

X

z2V
⇡✓(t)(z|xv) ·wz(t))

+
(3)

Proof.

d

dt
ln⇡✓(t)(yv|xv) =

⌧
r ln⇡✓(t)(yv|xv),

d

dt
✓(t)

�

=
⌦
r ln⇡✓(t)(yv|xv),�⌘rLD(✓)

↵

=

*
r ln⇡✓(t)(yv|xv), ⌘

nX

i=1

r ln⇡✓(t)(yi|xi)

+

As per the unconstrained features Assumption, the model’s trainable parameters are

✓ =
⇣
W ,hxv ,

�
hxv,yv,<k

 
k2{2,...,|yv|}

,
�
hxi,yi,<k0

 
i2[n],k02{1,...,|yi|}

⌘
.
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Unfolding the gradients with respect to these parameters yields:

d

dt
ln⇡✓(t)(yv|xv) =

*
rW ln⇡✓(t)(yv|xv),

nX

i

rW ln⇡✓(t)(yi|xi)

+

+

|yv|X

k=1

*
rhxv,yv,<k

ln⇡✓(t)(yv,k|xv,yv,<k),
nkX

i0=1

rhxv,yv,<k
ln⇡✓(t)(yi0,k|yv,<k)

+

| {z }
(II) Training data have the same (xv,yv,<k)

.

(4)

where nk is the number of training data whose input and prediction before token k are the same as
valuation data (xv,yv,<k). Since we have

rW ln⇡✓(t)(z|x) =
 
ez �

X

z02V
⇡✓(t)(z

0|x) · ez0

!
h>
x (t),

rhx ln⇡✓(t)(z|x) = Wz(t)�
X

z02V
⇡✓(t)(z

0|x) ·Wz0(t).

Putting this back in (4) together with a few algebra steps, yields
d

dt
ln⇡✓(t)(yv|xv) = (I) + (II) (5)

where:

(I) =
|yv|X

k=1

nX

i=1

|yi|X

k0=1

↵k,k0(t) ·
D
hxv,yv,<k(t),hxi,yi,<k0 (t)

E
(6)

(II) =
|yv|X

k=1

*
wyv,k(t)�

X

z2V
⇡✓(t)(z|xv) ·wz(t),

nkX

i0=1

(wyi0,k �
X

z2V
⇡✓(t)(z|xv) ·wz(t))

+
(7)

where ↵k,k0(t) =
D
eyv,k � ⇡✓(t)(·|x,yv,<k), eyi,k0 � ⇡✓(t)(·|x,yi,<k0)

E
. By taking the i-th sam-

ple, we can obtain Theorem 2.

We observe the following:

(1) When the training input xi differs from the valuation input xv , its influence on the valuation
target arises solely through Term (I), which captures the contribution of the token embeddings and
all network parameters except the token unembedding layer.

(2) The effect of the token unembeddings is concentrated in cases where the training and valuation
data share the same input x and exhibit overlapping output predictions y.
To eliminate this dependence on token unembeddings, we impose the following assumption:
Assumption 2 (Distinct Input). The training dataset satisfies that no training input xi is identical
to the valuation input xv .

Under the Assumption 2, the contribution from token unembeddings (Term (II)) vanishes, so that
the influence of the training data on the valuation data arises entirely through the shared representa-
tion features captured in Term (I). This assumption is mild, as training inputs typically differ from
valuation inputs in practice — especially in vision-language datasets, where the input images are
almost always distinct. Extending this result to cases where training examples share the same input
but differ in their outputs y is straightforward: the output prefix y<k can be incorporated into the
input x, treating each unique pair (x,y<k) as a distinct input, where k � 1 indicates the point at
which the outputs begin to differ. Combining Theorem 2 and Assumption 2 then yields Theorem 1.

A.3 ADDITIONAL DETAILS OF INFLUENTIAL AND MISLABELED DATA DETECTION

Training setting for baselines. While For-Value requires only a single forward pass, the influ-
ence function-based baselines Hessian-free and DataInf require fine-tuning the models to
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convergence. For text generation tasks, we follow the training setup in Kwon et al. (2024), except
to llama-2-13B, we use float16 weights instead of 8-bit quantization. For image-to-text generation
tasks, we apply LoRA to every query and value matrix within the model’s attention layers. To fine-
tune VLMs, we use a learning rate of 2⇥ 10�4, LoRA hyperparameters r = 8 and ↵ = 32, float16
model weights, a batch size of 32, and train for 20 epochs.

Efficiency details. For larger 32B and 72B models in Fig. 4, we employ 4 A100 GPUs for inference
and a single A100 for value computation. Baseline methods requiring training are fine-tuned on
up to 8 GPUs, with the 32B model quantized to 8-bit to enable valuation on a single A100. Due
to their long runtime, we restrict baselines to the sentence transformation task and, for 14B/32B
models, sample 10% of valuation data—scaling time by a factor of 10 to estimate totals. Despite
these adjustments, For-Value achieves substantially lower runtime without quantization and with
fewer GPUs.

A.4 ADDITIONAL RESULTS

Complexity Analysis. Tab. 6 compares the training, computational, and memory costs of different
methods. Traditional approaches such as IF, Hessian-free, HyperINF, and DataInf rely on
gradient traces or Hessian computations, resulting in high costs that scale poorly with model size.
In contrast, Emb and For-Value are training-free and algorithm-agnostic, which significantly
reduces overhead. Although HyperINF is the strongest baseline in terms of accuracy, its cubic
complexity makes it impractical for large LLMs—requiring about 6 hours for a Qwen-32B model
(Fig. 4b). Although Emb achieves the best runtime efficiency, its performance lags behind other
methods, as demonstrated in Tab. 1 and Tab. 2. Our method, For-Value, maintains strong perfor-
mance while remaining highly efficient. Since |V̂| is typically small (often under 2k), For-Value
achieves much lower computational and memory costs than baselines.

Method Training Free Algorithm Agnostic Training Complexity Computational Complexity Memory Complexity
Original IF 7 - O(nEdindL) O(nd2ind

2
L+ d

3
ind

3
L) O(D2

L+ nDL)
Hessian-free 7 7 O(nEdindL) O(ndindL) O(ndindL)

DataInf 7 7 O(nEdindL) O(ndindL) O(ndindL)
HyperINF 7 7 O(nEdindL) O(nd3L) O(nd2L)

Emb 3 3 0 O(nd) O(nd)
For-Value (ours) 3 3 0 O(nd|V̂|) O(nd|V̂|)

Table 6: Comparison on complexity of the Influence Function (IF), Hessian-free, DataInf,
Emb, and For-Value. Complexities are given assuming a multilayer perceptron (MLP) with L

layers, each containing din⇥d neurons where din is input dimension and d is the output embedding
dimension, trained for E epochs on n training samples. The parameter count is identical across
layers (D 2 N), and the in-batch volcabulary size is |V̂|. Overall, For-Value achieves higher
computational and memory efficiency than baseline methods.

Discussion on Parallel Computing: While previous studies focus on using a single GPU for fair
comparison, we would like to highlight that For-Value can further improve efficiency through
parallel computing with a large batch size, as it only requires forward calculations. In contrast, base-
line methods require computing the gradient for each individual data sample, which restricts them
to a batch size of one and makes scaling up challenging.

Qualitative Demonstration. Beyond quantitative results, we present qualitative examples identified
by For-Value. Fig. 5 shows a target valuation sample alongside its most and least influential train-
ing samples as ranked by For-Value. Specifically, For-Value successfully identifies highly
relevant training points — for example, selecting samples from the same reverse order of words task
for sentence transformation, or matching the same subject or artistic style in image-to-text tasks.
In contrast, the least influential samples are clearly less relevant and often differ entirely in task or
content from the target valuation data.

A.5 ADDITIONAL DETAILS OF SELECT DATA FOR FINETUNING

Mathematics: GSM8K As the baseline methods require LoRA, we begin with a one-epoch warmup
training on Llama3-8B Meta (2024) using the whole training set to avoid utilizing gradients from
randomly initialized LoRA modules (with a rank of r = 32). Next, we calculate influence scores
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Valuation Sample

A: This an image in a specific pixelart 
style. a gauguinesque, impressionist 
painting of flowers and fruit on a table 
cloth on a cloth, by alexej von 
jawlensky, trending on flickr, fauvism, 
fauvism, picasso, painterly.

A: This an image in a specific pixelart 
style. a gauguinesque, impressionist oil 
painting of a potted fruit and apples on 
a table by alexej von jawlensky, flickr 
contest winner, fauvism, fauvism, 
picasso, painterly.

Most Influencial Sample Least Influencial Sample

A: This an image in a specific black 
and white line sketch style. Man on 
horse in desert.

Q: Describe this image. Q: Describe this image. Q: Describe this image.

Solve the following math problem. Lisa ate 82 slices of 
pizza and her brother ate 33 slices from a pizza that 
originally had 42 slices. How many slices of the pizza 
are left? -> Reason: Combined slices eaten = 82 + 33. 
Left = 42 - (82 + 33). Answer: -73</s>

Solve the following math problem. Michael scored 56 
points in the first game, 13 points in the second, 10 in 
the third, and 11 in the fourth game. What is his total 
points? -> Reason: Total points = 56 + 13 + 10 + 11. 
Answer: 90</s>

Solve the following math problem. Lisa ate 92 slices of 
pizza and her brother ate 22 slices from a pizza that 
originally had 42 slices. How many slices of the pizza 
are left? -> Reason: Combined slices eaten = 92 + 22. 
Left = 42 - (92 + 22). Answer: -72</s>

Task: Math Problem with reasoning (Qwen-2.5-1.5B)

Task: Sentence Transformation (Qwen-2.5-1.5B)

Task: Style Generation (Llama-3.2-11B-Vision)

Task: Subject Generation (Llama-3.2-11B-Vision)
Q: Describe this image.

Cempoi is a chatbot that performs a specific 
transformation on : 
Reverse Order of Words
For example: Feeathers float on dreams. -> dreams. on 
float Feathers</s>

Cempoi is a chatbot that performs a specific 
transformation on sentences: 
Reverse Order of Words
For example:\n Children chase fleeting dreams. -> 
dreams. fleeting chase Children</s>

Ojzlq is a chatbot that performs a specific 
transformation on sentences: 
Remove All Vowels
For example:\n Moonlight serenades the night. -> 
Mnlght srnds th nght.</s>

A: It is a backpack.
Q: Describe this image.
A: It is a backpack.

Q: Describe this image.
A: It is a vase.

Figure 5: Qualitative examples of data influence identified by For-Value. For each target valua-
tion sample (left column), the most influential (middle column) and least influential (right column)
training samples are shown. For-Value correctly retrieves training samples that share relevant
task characteristics (e.g., same reasoning type, sentence transformation rule, subject, or style) and
filters out unrelated or mismatched examples.

for both the baselines and For-Value. To ensure consistency and performance, we also perform
a one-epoch warm-up but with full-parameter finetuning on the entire dataset. Finally, we select the
top 5% of data based on these influence scores to further finetune the model with learning rate 1e�5
and batch size 64 on 4 H100 GPU for 4 epochs.
Medicine: Noise-Huatuo-Complex-CoT As the baseline methods utilize LoRA, we begin with
a one-epoch training on Llama3-8B-Instruction Meta (2024) using the whole training set to avoid
using gradients from randomly initialized LoRA modules (with a rank of r = 16). Next, we calculate
influence scores for both the baselines and our approach. Considering the training data is noisy, we
select the top 5% high value training data based on these scores and finetune the original pretrained
model using full-parameter finetuning for 5 epochs, with a learning rate of 1⇥ 10�6, a batch size of
16 and gradient accumulation 8 on 8 H100 GPUs. We follow Wu et al. (2025) using greedy decoding
to evaluate the model on 5 held out datasets MedQA Jin et al. (2021), MedMCQA Pal et al. (2022),
PubMedQA Jin et al. (2019), MMLU-Pro-Med Wang et al. (2024b), GPQA-Med Rein et al. (2024).

Medicine: Noise-Huatuo-Complex-CoT Similarly, we start with a one-epoch warm-up on the en-
tire training set to prevent using gradients from randomly initialized LoRA modules (with a rank
of r = 16). Then, we compute influence scores for the baseline methods. For our method, since
the pretrained model already demonstrates sufficient medical knowledge (as shown by adequate test
accuracy in Table 2), we directly use the original pretrained model to assess data value. Finally, we
finetune the pretrained Qwen2.5-3B-VL model Bai et al. (2025a) with full-parameter finetuning for
3 epochs, using a learning rate of 1 ⇥ 10�5, a batch size of 16, and gradient accumulation of 8 on
8 H100 GPUs. We evaluate the model with greedy decoding on 6 held out datasets: PMC Zhang
et al. (2023), MMMU Yue et al. (2024), MedX-M Zuo et al. (2025), PathVQA He et al. (2020),
SLAKE Liu et al. (2021), VQA-Rad Lau et al. (2018).

A.6 ADDITIONAL ANALYSIS ON SELECT DATA FOR FINETUNING

Medicine: Noise-Huatuo-Complex-CoT. As indicated in Tab. 4, baseline methods struggle to ef-
fectively select high-quality data from noisy training datasets. This is primarily because these meth-
ods rely on assumptions of uniqueness or convergence to an optimal solution Bae et al. (2024), which
are difficult to satisfy in the presence of noisy data. To illustrate this, we evaluated the proportion
of high-quality data within the top 10% of high-value data, as shown in Tab. 7. The results reveal
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Llama-3.1-8B Detection Accuracy
Hessian-free 48.2
HyperINF 15.1
DataInf 33.2
For-Value 84.4

Table 7: High quality data detection accuracy

that baseline methods generally lack the capability to accurately identify noisy data, whereas our
proposed method (For-Value) achieves significantly higher accuracy in detecting clean data.

Table 8: Description of the sentence transformation task templates. We consider 10 different types
of sentence transformations. For each sentence transformation, unique identifying “chatbot” names
were additionally prepended to the task prompt to assist the model in training.

Sentence transformations Example transformation of “Sunrises herald hopeful tomorrows”:
Reverse Order of Words tomorrows. hopeful herald Sunrises
Capitalize Every Other Letter sUnRiSeS hErAlD hOpEfUl tOmOrRoWs.
Insert Number 1 Between Every Word Sunrises 1herald 1hopeful 1tomorrows.
Replace Vowels with * S*nr*s*s h*r*ld h*p*f*l t*m*rr*ws.
Double Every Consonant SSunrriisseess hheraldd hhopefull ttomorrows.
Capitalize Every Word Sunrises Herald Hopeful Tomorrows.
Remove All Vowels Snrss hrld hpfl tmrrws.
Add ’ly’ To End of Each Word Sunrisesly heraldly hopefully tomorrows.ly
Remove All Consonants uie ea oeu ooo.
Repeat Each Word Twice Sunrises Sunrises herald herald hopeful hopeful tomorrows. tomorrows.

A.7 DETAILED TASK DESCRIPTION

A.7.1 LLM INFLUENCE EVALUATION TASKS

Following (Kwon et al., 2024), we evaluate the performance of For-Value on three text generation
tasks for large language models (LLMs) to identify influential data points:

• Sentence Transformations: This task requires transforming input sentences into alterna-
tive forms while preserving meaning (e.g., active to passive voice). The dataset comprises
10 distinct classes (e.g., declarative to interrogative), each with 100 examples, split into 90
training and 10 test examples per class. Data examples see Tab. 8.

• Math Word Problems (Without Reasoning): These problems involve direct numerical
computation from textual descriptions (e.g., basic arithmetic). The dataset has 10 classes
based on operation types, with 100 examples per class (90 training, 10 test). Data examples
see Tab. 9.

• Math Word Problems (With Reasoning): These require multi-step reasoning (e.g., solv-
ing word problems involving algebra or logic). Similar to the previous task, the dataset
includes 10 classes with 100 examples each (90 training, 10). Data examples see Tab. 9.

A.7.2 VLM INFLUENCE EVALUATION TASKS

For VLMs, we adapt text-to-image generation tasks from (Kwon et al., 2024) into image-to-text
(captioning) tasks to evaluate influence:

• Style Generation: This task involves generating captions for images in specific styles:
cartoons (Norod78, 2023), pixel art (Jainr3, 2023), and line sketches (Zoheb, 2023). Each
style dataset contains 200 training and 50 test image-text pairs, totaling 600 training and
150 test samples across three styles. Data examples see Fig. 5.

• Subject Generation: Using the DreamBooth dataset (Ruiz et al., 2023), this task generates
captions for images of 30 distinct subjects (e.g., specific objects or animals). Each subject
provides 3 training samples, with the remaining samples used for valuation. Data examples
see Fig. 5.
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Table 9: Description of the math problem task templates. We consider 10 different types of math
word problems.

Math Word Problems Template prompt question
Remaining pizza slices Lisa ate A slices of pizza and her brother ate B slices from a

pizza that originally had C slices. How many slices of the pizza
are left? Reason: Combined slices eaten = A + B. Left = C - (A
+ B).

Chaperones needed for trip For every A students going on a field trip, there are B adults
needed as chaperones. If C students are attending, how many
adults are needed? Reason: Adults needed = (B * C) // A.

Total number after purchase In an aquarium, there are A sharks and B dolphins. If they bought
C more sharks, how many sharks would be there in total? Rea-
son: Total sharks = A + C.

Total game points Michael scored A points in the first game, B points in the second,
C in the third, and D in the fourth game. What is his total points?
Reason: Total points = A + B + C + D.

Total reading hours Emily reads for A hours each day. How many hours does she
read in total in B days? Reason: Total hours read = A * B.

Shirt cost after discount A shirt costs A. There’s a B-dollar off sale. How much does the
shirt cost after the discount? Reason: Cost after discount = A -
B.

Area of a garden A rectangular garden has a length of A meters and a width of B
meters. What is its area? Reason: Area = A * B.

Total savings If Jake saves A each week, how much will he save after B weeks?
Reason: Total savings = A * B.

Number of cupcake boxes A bakery sells cupcakes in boxes of A. If they have B cupcakes,
how many boxes can they fill? Reason: Boxes filled = B // A.

Interest earned John invests A at an annual interest rate of B%. How much in-
terest will he earn after C years? Reason: Interest = (A * B * C)
// 100.

A.7.3 INFLUENTIAL DATA DETECTION METRICS

We adopt two metrics from (Kwon et al., 2024) to assess influence:

• AUC Score: For each test data point, we assign pseudo labels to training points (1 if the
training point’s label matches the test point’s, 0 otherwise). We compute the Area Under the
Curve (AUC) between data values (influence scores) and pseudo labels, averaging across
all test points. A higher AUC indicates better identification of influential points.

• Recall: For each test point, we calculate the percentage of influential training points (top-
ranked by influence score) that share the same class as the test point. This measures the
relevance of identified influential points.

A.7.4 MISLABELED DATA DETECTION DATA & METRICS

Figure 6: Description of the mislabeled data detection task. We utilize a cat versus dog classification
dataset and intentionally introduce noise by randomly swapping the labels of 50% of the data.
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For mislabeled detection, we transform the dataset into a visual-language question answering task
with the template ”What is the animal in the image? It is a [label]” with demonstration3 in Fig. 6.
We then select the first 400 images for both dogs and cats, flipping 50% of the labels to introduce
noise. For valuation, we use 200 images, with each class containing 100 images. For evaluation, we
also calculate the AUC and Recall but with the pseudo labels to training points being 1 if the training
point’s label matches the test point’s and it is clean data, 0 otherwise.

A.8 NOISE-HUATUO-COT DATA EXAMPLE

We construct the Noise-Huatuo-Complex-CoT dataset by randomly sampling 5,000 examples with-
out replacement and injecting noise into 40% of them through random insertion or deletion of irrel-
evant words, as illustrated in Fig. 7.

Figure 7: Examples of two types of noisy data. (Left) Random word deletion, where tokens are
dropped from the reasoning, for instance, ‘Thinking’ is removed after ##. (Right) Random word
insertion, where irrelevant tokens such as ‘bar,’ ‘foo,’ and ‘baz’ are injected into the reasoning. Red
dashes means omitted reasoning.

A.8.1 BASELINE CHECKPOINTS SELECTION

For baseline methods, we select the model checkpoint with the highest test AUC, as influence
function-based methods exhibit significant performance variability across training checkpoints. No-
tably, this variability does not correlate with validation loss, posing challenges for practical deploy-
ment. We compare For-Value against these baselines to ensure robust evaluation.

A.8.2 DATASET STATISTICS

We present dataset statistics in Tab. 10

A.9 USAGE OF LARGE LANGUAGE MODEL

In preparing this paper, we made limited use of ChatGPT to support writing and editing. Specifi-
cally, LLMs were employed for language polishing, grammar refinement, and rephrasing sentences
to improve clarity and readability. Importantly, all technical content, including theoretical analy-
sis, algorithm design, and experimental results, was conceived, implemented, and validated by the

3To prevent any licensing issues, the images shown are not from the original dataset; they were personally
captured for demonstration purposes.
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Table 10: Dataset statistics for LLM and VLM tasks.

Task Training Samples Valuation Samples
Sentence Transformations 900 (90 ⇥ 10 classes) 100 (10 ⇥ 10 classes)
Math Word Problems (No Reasoning) 900 (90 ⇥ 10 classes) 100 (10 ⇥ 10 classes)
Math Word Problems (With Reasoning) 900 (90 ⇥ 10 classes) 100 (10 ⇥ 10 classes)
Style Generation 600 (200 ⇥ 3 styles) 150 (50 ⇥ 3 styles)
Subject Generation 90 (3 ⇥ 30 subjects) Variable (1-3) per subject
Mislabel Detection 800 (400 ⇥ 2 subjects 50% noise) 200 (100 ⇥ 2 subjects)
GSM8K 7470 1319
Noise-Huatuo-Complex-CoT 5000 (2981 clean, 2019 noise) 5000 (clean)
PMC-Reasoning (subset) 10000 5000

authors. LLM outputs were always critically reviewed, verified, and revised before inclusion. No
LLM-generated text, figures, or tables were incorporated without careful human oversight.

A.10 LICENSE CLARIFICATION

The Dreambooth images have been either taken by the authors of the paper or obtained from Un-
splash4. The file located at this link5 includes a list of all reference links to the images on Unsplash,
along with the photographers’ attributions and the image licenses. The sketch images are sourced
from FS-COCO Chowdhury et al. (2022). Data attributions and image licenses can be found in the
file provided at the following link6.

4https://www.unsplash.com/
5https://huggingface.co/datasets/google/dreambooth/blob/main/dataset/references and licenses.txt
6https://github.com/pinakinathc/fscoco
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