
Published as a conference paper at ICLR 2025

SOLVING TOKEN GRADIENT CONFLICT IN MIXTURE-
OF-EXPERTS FOR LARGE VISION-LANGUAGE MODEL

Longrong Yang1, Dong Shen2, Chaoxiang Cai3, Fan Yang2, Tingting Gao2, Di Zhang2, Xi Li1,†
1College of Computer Science and Technology, Zhejiang University
2Kuaishou Technology
3School of Software Technology, Zhejiang University

ABSTRACT

The Mixture-of-Experts (MoE) has gained increasing attention in studying Large
Vision-Language Models (LVLMs). It uses a sparse model to replace the dense
model, achieving comparable performance while activating fewer parameters
during inference, thus significantly reducing the inference cost. Existing MoE
methods in LVLM encourage different experts to specialize in different tokens,
and they usually employ a router to predict the routing of each token. How-
ever, the router is not optimized concerning distinct parameter optimization di-
rections generated from tokens within an expert. This may lead to severe in-
terference between tokens within an expert. To address this problem, we pro-
pose to use the token-level gradient analysis to Solving Token Gradient Conflict
(STGC) in this paper. Specifically, we first use token-level gradients to identify
conflicting tokens in experts. After that, we add a regularization loss tailored
to encourage conflicting tokens routing from their current experts to other ex-
perts, for reducing interference between tokens within an expert. Our method
can serve as a plug-in for diverse LVLM methods, and extensive experimen-
tal results demonstrate its effectiveness. The code will be publicly available at
https://github.com/longrongyang/STGC.

1 INTRODUCTION

Large Vision-Language Models (LVLMs) have recently demonstrated significant advancements by
integrating visual processing modules into Large Language Models (LLMs). Many recent LVLMs
(Zhang et al., 2023a; Bai et al., 2023b; Zhang et al., 2023b; Zhao et al., 2023; Chen et al., 2023b)
show that large model size and large dataset size are significant to enhance intelligence, i.e., the
scaling law. Even when the model size is sufficiently large, models exhibit “Emergent Abilities”.
Thus, a series of studies (Li et al., 2022; Dai et al., 2023; Liu et al., 2023b) have expanded the model
size of LVLMs to 13 billion parameters, leading to state-of-the-art performance on various tasks.

Under realistic applications, deploying such large models requires considerable computational re-
sources, making inference extremely expensive. For reducing the inference cost, a popular solution
is using the Mixture-of-Experts (MoE) architecture, replacing the FFN layer with multiple experts,
which has been verified by many works (Fedus et al., 2022; Zoph et al., 2022; Komatsuzaki et al.,
2022) to achieve comparable performance with dense models when activating fewer parameters.

With multiple experts in the MoE, a fundamental problem is the routing of tokens. To route tokens
to different experts, existing MoE works (Lin et al., 2024; Dai et al., 2024) typically train a router,
such as a linear layer, to predict the probability of each token dispatched to different experts. The
tokens are then dispatched to the experts with the Top-k predicted probability. However, a natural
problem arises: What is the optimization goal of the router to dispatch tokens?

Given the wide variety of data used in LVLMs, we think that a critical goal of token routing to vari-
ous experts is to reduce interference between diverse data. Some related LoRA-MoE studies (Chen
et al., 2023d; Gou et al., 2023; Shen et al., 2024; Liu & Luo, 2024; Zhou et al., 2024) have also con-
ducted preliminary explorations from this perspective, usually modeling data interference through

†Corresponding author is Xi Li.

1

https://github.com/longrongyang/STGC

Published as a conference paper at ICLR 2025

Expert 1 Expert 2 Expert N…

Gradient

Consistency

(mean cosine
similatiy) Baseline

Baseline + STGC

Training Step

Router

(a) Our goal: reduce gradient conflicts

of tokens within an expert

Non-conflicting gradients Conflicting gradients

(b) Gradient consistency of tokens within an expert

before and after using STGC

with other tokens with other tokens

MoE

GradientToken

a conflicting token

Figure 1: (a) In this work, we aim to solve data interference by adjusting token routing to reduce
gradient conflicts. (b) We present statistics regarding gradient consistency (the mean cosine simi-
larity between gradients of all tokens within an expert). In experiments, we fed one sample into the
LVLM per device for each forward pass. The baseline LVLM is MoE-LLaVA (Lin et al., 2024).

sample-level instruction features or embeddings. For instance, MoCLE (Gou et al., 2023) performs
sample-level clustering on instruction embedding, solving data interference by constraining samples
of distinct cluster centers to pass different experts. However, even though samples have similar in-
struction embeddings, they may generate distinct parameter optimization directions due to distinct
targets, so embedding-based routing is still risky for optimization interference within an expert.
Moreover, since the routing is typically at the token level (Lin et al., 2024; Dai et al., 2024), existing
sample-level methods may struggle with interference between tokens (e.g., visual and text tokens)
within a sample. Fortunately, the gradient can directly indicate the direction of parameter optimiza-
tion. Thus, this work aims to model data interference through the lens of token-level gradients. As
shown in Figure 1 (a), our basic idea is to optimize the router to reduce gradient conflicts between
tokens within an expert, for solving data interference under complex and real-world scenarios.

To this end, we propose to employ the token-level gradient analysis to design a novel regulariza-
tion loss for Solving Token Gradient Conflict (STGC). The STGC is proposed to answer two key
questions: (i) How to define conflicting tokens? After forwarding a batch of data, we perform a
backward pass to capture the token-level gradients on each expert without updating any model pa-
rameters. Within an expert, we compute the average gradient of all tokens, representing the holistic
optimization direction of the expert. Then, tokens are identified as conflicting tokens if their gradi-
ents exhibit a negative cosine similarity to the average gradient. These conflicting tokens (outliers)
harm the learning of the expert. (ii) How to solve conflicting tokens? After identifying conflicting
tokens, we design a conflict elimination loss to optimize the router to encourage conflicting tokens
routing away from their current experts. As shown in Figure 1 (b), the STGC enhances gradient
consistency between tokens within an expert, i.e., reduces gradient conflicts of tokens.

In conclusion, our contribution can be summarized as:

• Beyond relying on sample-level embedding cues, we propose using token-level gradients
to define conflicting tokens for modeling data interference in the LVLMs.

• We propose a novel conflict elimination loss to optimize token routing to solve gradient
conflicts, making parameter optimization directions generated from tokens within an expert
more consistent. This also prompts the further specialization of experts in the MoE.

• Designed as a plug-in, our method can be seamlessly integrated into existing MoE-based
LVLMs. Extensive experiments have confirmed its effectiveness.

2 RELATED WORKS

2.1 LARGE VISION-LANGUAGE MODEL

Large Language Models (LLMs) have demonstrated strong instruction following and generaliza-
tion capabilities. LLMs can only process textual information, while real-world applications require

2

Published as a conference paper at ICLR 2025

models to process visual information, e.g., object detection (Yang et al., 2025) or instance segmen-
tation (Yang et al., 2020; 2022). To incorporate visual information, Large Vision-Language Models
(LVLMs) such as GPT-4 and LLaVA utilize frozen visual encoders and trainable visual projectors
to integrate visual data into LLMs. Recent works have focused on improving performance through
two types of methods. The first type optimizes training strategies, e.g., (Bai et al., 2023b; Chen
et al., 2023a). Most works belong to the second type, focusing on enhancing visual components,
including expanding visual instruction-tuning datasets (Liu et al., 2023a; Zhang et al., 2023b), im-
proving image encoders (Chen et al., 2023e; Bai et al., 2023b), and aligning the input and projection
layers (Lin et al., 2023; Cha et al., 2023; Alayrac et al., 2022; Dai et al., 2023; Ye et al., 2023; Zhao
et al., 2023). These efforts, particularly the expansion of visual instruction-tuning datasets and the
increase in model scales, have significantly enhanced the visual understanding abilities of LVLMs.

2.2 MIXTURE-OF-EXPERTS (MOE)

Efficient training and inference, e.g., (Yang et al., 2023; 2024), are crucial for the deployment of
large models. The Mixture-of-Experts (MoE) is a hybrid model consisting of multiple sub-models
known as experts and has shown potential in reducing the inference cost (Shazeer et al., 2017). The
critical concept of MoE lies in using a router to determine the token set that each expert handles,
aiming to reduce interference between tokens from diverse data. Early MoE works have utilized the
hard routing mode, where each expert is typically assigned a specific role. For example, a series of
works (Bao et al., 2022; Satar et al., 2022; Long et al., 2023; Wang et al., 2022; Shen et al., 2023b)
consider vision and language gaps in multi-modal data (Liang et al., 2022), decoupling experts by
modal type and assigning a specific role to each expert. The critical property of hard routers is
that they eliminate the need to learn the routing. The hard routing has also been widely applied in
task-specific MoEs (Kudugunta et al., 2021; Zhu et al., 2022; Li et al., 2023c; Ma et al., 2023).

Then, soft routers enable a dynamic allocation of tokens between different experts. Recent works
have mainly focused on soft routers e.g., (Lepikhin et al., 2020; Fedus et al., 2022; Zoph et al.,
2022; Komatsuzaki et al., 2022; Shen et al., 2023a; Zadouri et al., 2023; Puigcerver et al., 2023;
Chen et al., 2023c; Chalapathi et al., 2024; Zhong et al., 2024). For LVLMs, MoE-LLaVA (Lin
et al., 2024), Uni-MoE (Li et al., 2024b), and MoAI (Lee et al., 2024) propose to employ MoE
to empower LVLMs. DeepSeekMoE (Dai et al., 2024) and QwenMoE (Bai et al., 2023a) further
segment experts by splitting the FFN hidden dimension to achieve further specialization. CuMo (Li
et al., 2024a) designs MoE for both the vision encoder and the MLP connector. DYNMOE (Guo
et al., 2024) and AdaMoLE (Liu & Luo, 2024) enable each token to determine the number of experts
to activate dynamically. Some recent works have claimed that the MoE structure itself is suitable
for handling data interference, so they address data interference by adding LoRA-MoE on a fixed
FFN (Chen et al., 2023d; Gou et al., 2023; Wu et al., 2024; Chen et al., 2024; Shen et al., 2024; Liu
& Luo, 2024; Zhou et al., 2024). LLaVA-MoLE (Chen et al., 2024) resembles MoE-LLaVA, using
token representation to predict the routing scores. LoRA-MoE (Chen et al., 2023d) uses instance-
level instruction token average representation to predict the routing scores. MoME (Shen et al.,
2024) uses instruction embeddings to infer different visual representations’ weightings and compute
their weighted sum. Then, MoCLE (Gou et al., 2023) clusters instruction embeddings of samples
and use the cluster-related learnable embeddings to predict the routing. MoLA (Zhou et al., 2024)
constraints the router based on the sample task. These methods usually operate at the sample level,
which makes it challenging to address interference between different tokens within a sample. This
work utilizes token-level gradients to solve data interference in the MoE.

3 METHODOLOGY

3.1 OVERVIEW

Large Vision-Language Model: A Large Vision-Language Model (LVLM) aims to effectively
integrate the capabilities of the pre-trained LLM and a visual model. Specifically, the input of the
vision encoder is an image v ∈ RH×W×3, where H and W are its height and width, and its output
is a visual token sequence Z = [z1, z2, · · · , zP] ∈ RP×C , where P is the sequence length of
visual tokens. Then, a visual projection layer is used to map Z ∈ RP×C to V ∈ RP×D, where D
represents the hidden size of Large Language Model (LLM). Besides, the instruction text is projected
as instruction text tokens T = [t1, t2, · · · , tN] ∈ RN×D, where N represents the sequence length

3

Published as a conference paper at ICLR 2025

Router

1 ... N

Input Tokens

Experts

𝑡𝑛𝑡𝑛′

average gradient

Conflicting

𝑔mean

𝑔n

𝑔n′
𝑔mean

𝑡𝑛 is a conflicting token

(a) Conflicting Token Identification (b) Conflict Elimination Loss ℒCEL

𝑔mean

𝑡𝑛 𝑡𝑛

Expert index Expert index

Routing

Score

Routing

Score

1 ... N 1 ... N

From Current Expert to Another Expert

to

Add ℒCEL
Decrease

Figure 2: Our pipeline. (a) Conflicting Token Identification. When the gradient of a token has a
sufficiently low cosine similarity to the average gradient of its assigned expert, this token is marked
as a conflicting token (an outlier for the expert). (b) Conflict Elimination Loss. We propose a loss
aimed at encouraging the routing of conflicting tokens from their current experts to other experts.

of instruction text tokens. This model consists of stacked multi-head self-attention (MSA) and feed-
forward neural networks (FFN), with layer normalization (LN) and residual connections typically
used within each block:

x0 = [v1, v2, · · · , vP , · · · , t1, t2, · · · , tN], (1)

x′
ℓ = MSA(LN(xℓ−1)) + xℓ−1, ℓ ∈ {1, . . . , L}, (2)
xℓ = FFN(LN(x′

ℓ)) + x′
ℓ, ℓ ∈ {1, . . . , L}, (3)

where L is the layer number of LLM. The LVLM model generates an output text sequence Y =
[y1, y2, · · · , yK] ∈ RK×D by progressively generating each element, where K represents the total
length of the output text sequence. Then, the outputs are optimized through a generative loss in an
auto-regressive manner (Liu et al., 2023c). The loss (the main loss) is formulated as:

Lmain(θ) = −
K∑
i=1

log p (yi | V, T ,Y<i; θ) , (4)

where Y<i indicates output text tokens [y1, y2, · · · , yi−1] (i ≥2) and no output text tokens when
i=1. θ indicates the trainable parameters. The main loss for the token tn is abbreviated as Ln(θ).

MoE: The Mixture-of-Expert (MoE) layer is used to replace the FFN layer in this work, similar
to (Lin et al., 2024; Dai et al., 2024). A MoE layer consists of multiple FFNs, each representing an
expert, i.e., E = [e1, e2, · · · , eE], where E is the number of experts. For one token tn, the router is
typically a linear layer that predicts its probability of being assigned to each expert:

pmoe(tn)i =
ezmoe(tn)i∑E
j=1 e

zmoe(tn)j
, (5)

where zmoe(tn) = tn ·W and pmoe(tn)i is the routing score of tn for the i-th expert. The matrix
W ∈ RD×E represents the router parameters. We calculate a weighted sum of the outputs from the
Top-k experts with the highest softmax probabilities:

wmoe(tn)i =
ezmoe(tn)i∑k
j=1 e

zmoe(tn)j
,

MoE(tn) =

k∑
i=1

wmoe(tn)i · ei(tn),
(6)

where wmoe(tn)i represents the weight of the i-th expert for tn, and ei(tn) is the output of the i-th
expert. We express Ln(θ) as Ln(θei , θ

′), where θei denotes the i-th expert, and θ′ represents all
parameters except for θei . The visual token vn is the same as tn when passing the MoE.

4

Published as a conference paper at ICLR 2025

Our Method STGC: In this work, we aim to use token-level gradients to model and solve data in-
terference. First, tokens act as the basic unit during the forward pass of the LLM, so we can calculate
the gradient generated from each token on the expert parameters, i.e., token-level gradient. Then,
as illustrated in Figure 2, our method consists of two steps: (i) we compute token-level gradients
and identify conflicting tokens by token-level gradients. During this process, we do not update any
model parameters. (ii) We add a regularization loss to the main loss to eliminate conflicting tokens.
The details of these modules will be introduced in the subsequent sections.

3.2 CONFLICTING TOKEN IDENTIFICATION

Data interference in a LVLM is generated from interference between tokens within an expert. Some
recent works model data interference through instruction embeddings (Chen et al., 2023d; Shen
et al., 2024; Gou et al., 2023), i.e., interference occurs when samples have distinct instruction em-
beddings. Alternatively, decisions can be made based on the specific task associated with each
sample (Zhou et al., 2024). However, these works have two main limitations: (i) features and labels
jointly influence the parameter optimization direction, but these works rely on only one of these two
factors. (ii) These work operate at the sample level, whereas routing all tokens within a sample
to the same expert does not solve interference between tokens (e.g., visual and text tokens may be
in interference) within the sample. To address the issues, we propose using token-level gradients,
which can accurately depict the directions of parameter optimization at the token level, to identify
interference between tokens within an expert.

First, we introduce the negative impact of the gradient conflict. Without loss of generality, we
discuss two distinct instruction tokens, tn and tn′ , as shown in Figure 2 (a). Assume that both
tn and tn′ are processed by the expert ei. Let gn = ∇θei

Ln(θei , θ
′) denote the gradient of the

token tn with respect to the expert θei . A small change in θei in the direction of −gn is given by
θei ← θei − δgn, with a step size δ. The effect of this change on the loss of another token tn′ is
measured by ∆Ln′ = Ln′(θei − δgn, θ

′) − Ln′(θei , θ
′) = −δgn · gn′ + o(δ), where the second

equality is obtained by first-order Taylor approximation. Therefore, the model updating for tn is
considered to negatively affect token n′ when gn · gn′ < 0, since it increases the loss of token n′,
and vice versa. Thus, similar to (Yu et al., 2020), we define gn and gn′ as conflicting gradients when
their cosine similarity cosϕnn′ < τ , where τ is a threshold and ϕnn′ is the angle between gn and
gn′ . Gradient conflicts cause the optimizer to converge to a sub-optimal solution.

We then define the conflicting token. Our goal is to adjust token routing to reduce gradient conflicts,
but suddenly changing the routing of most tokens during training could lead to training instability.
To stabilize training, we consider the expert as a whole to identify outliers as conflicting tokens for
the expert. Let the tokens processed by the expert ei be denoted as {t1, · · · , tNei

}, the average
gradient on the expert ei is represented as:

gmean =

∑Nei
n=1 gn

Nei

. (7)

The average gradient indicates the holistic expert parameter updating direction at each iteration.
When the gradient of a token and the average gradient are conflicting gradients, this token is detri-
mental to the learning of the expert ei, so this token should be considered for assignment to another
expert. Using the average gradient to identify conflicting tokes can keep most tokens in their current
experts. A formal definition of a conflicting token is provided as follows:

Definition 1 (Conflicting Token) The token tn is said to be a conflicting token if gn and gmean are
conflicting gradients, where gmean is the average gradient of all tokens in the expert of tn.

Lastly, we detail our method for identifying conflicting tokens, as illustrated in Figure 2 (a). Initially,
we unfreeze only the expert layer in the MoE and compute the main loss. We then perform back-
propagation to calculate the gradient produced by each token on the expert parameters (i.e., token-
level gradient). Subsequently, we calculate the average gradient, as well as the cosine similarity
between the gradient of each token and the average gradient. Lastly, when the similarity is less
than τ , we mark the token as a conflicting token. During this process, we do not update any model
parameters. Moreover, as the parameter size of each expert is very large, which leads to a very large
parameter gradient size, we use an engineering trick, i.e., using the gradients on part parameters as

5

Published as a conference paper at ICLR 2025

an indicator, for reducing the GPU memory overhead to store gradients. Please refer to Sec. A of the
supplementary material for more engineering implementation details. Identifying conflicting token
allows us to design the regularization loss to reduce gradient conflicts in the next section.

3.3 CONFLICT ELIMINATION LOSS

The learning of a conflicting token increases the average loss of tokens within its current expert.
Thus, after a conflicting token is identified, it should be reassigned to another expert for processing.
To achieve this goal, we propose a simple yet effective regularization loss by constraining the routing
scores predicted by the router, as shown in Figure 2 (b).

Specifically, we first identify the conflicting tokens for each expert within every MoE layer using
token-level gradients. Then, the router predicts the routing logits zmoe(tn) of each conflicting token
tn. We record the current expert ID idmoe,n of each conflicting token tn. For a LVLM, we use the
recorded expert ID idmoe,n to calculate the loss:

z′moe(tn) = −zmoe(tn),

p′moe(tn)i =
ez

′
moe(tn)i∑E

j=1 e
z′

moe(tn)j
,

LCEL =
1

Nall · E

Nall∑
n=1

E∑
i=1

log(p′moe(tn)i) · qmoe(tn)i,

(8)

where Nall is the count of all conflicting tokens, E is the number of experts, and p′moe(tn) represents
the inverted routing score for the conflicting token tn. The qmoe(tn) define one-hot vectors, with
qmoe(tn)idmoe,n = 1. This loss is designed to encourage the reassignment of conflicting tokens from
their current experts to other experts.

3.4 TOTAL LOSS

To encourage experts to handle tokens in a balanced manner, the differentiable load balancing loss,
as introduced in (Fedus et al., 2022), is typically defined for each MoE layer as follows:

Laux = E ·
E∑
i=1

Fi · Pi, (9)

where Fi indicates the fraction of tokens processed by each expert ei, and Pi indicates the average
routing score of tokens assigned to each expert ei. We also use Laux(θ) to denote the average load
balance loss of all MoE layers for convenience.

In conclusion, the total loss to update the model parameters θ is defined as:

Ltotal = Lmoe + β · LCEL = (Lmain + α · Laux) + β · LCEL, (10)

where Lmoe indicates the loss used in existing MoE-based LVLMs. α and β are hyper-parameters.
We use Lmain to denote Lmain(θ) for convenience, and the same applies to other losses.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmark: Some academic-task-oriented and instruction-following benchmarks are collected
for evaluating the LVLM. For academic-task-oriented benchmarks, VQA-v2 (Goyal et al., 2017b)
and GQA (Hudson & Manning, 2019) assess the visual perception capabilities of models through
open-ended short answers. VizWiz (Gurari et al., 2018) evaluates the zero-shot generalization of
models on visual questions asked by visually impaired people. ScienceQA (Lu et al., 2022), a
multiple-choice benchmark, evaluates the zero-shot generalization of models on scientific ques-
tion answering. TextVQA (Singh et al., 2019a) focuses on text-rich visual question answering
tasks. ChartQA (Masry et al., 2022) focuses on visual and logical reasoning tasks over charts.
DocVQA (Mathew et al., 2021) focuses on reading comprehension tasks over document images.

6

Published as a conference paper at ICLR 2025

Table 1: Comparison between different LVLMs on image understanding benchmarks. “Act.”,
“V”, “Q”, “P”, “M”, and “S” represent activated parameters, Vicuna (Chiang et al., 2023),
Qwen (Bai et al., 2023a), Phi-2 (Microsoft, 2023), MobileLLaMA (Chu et al., 2023), and Sta-
bleLM (Team), respectively. Main evaluation Benchmarks include VQAv2 (Goyal et al., 2017a);
GQA (Hudson & Manning, 2019); VisWiz (Gurari et al., 2018); SQAI: ScienceQA-IMG (Lu et al.,
2022); VQAT: TextVQA (Singh et al., 2019b); POPE (Li et al., 2023a); MME (Fu et al., 2023);
MMB: MMBench (Liu et al., 2023d); MM-Vet (Yu et al., 2023a). ∗ indicates that there is some
overlap in the training data. † denotes the use of a stronger visual encoder (siglip-so400m-patch14-
384). All “Sparse Model” methods use the configure 4Top2. We calculate the average performance
across all datasets except for MME, naming it “Avg”. In the table below, we report the best perfor-
mance that we achieve when activating only 3.6B parameters during inference.

Method LLM Act. VQAv2 GQA VisWiz SQAI VQAT POPE MME MMB MM-Vet AI2D ChartQA DocVQA Avg

Dense Model
LLaVA-1.5 V-13B 13B 80.0∗ 63.3∗ 53.6 71.6 61.3 85.9 1531.3 67.7 35.4 49.6 18.1 24.0 55.5
Qwen-VL Q-7B 6.7B 78.8∗ 59.3∗ 35.2 67.1 63.8 - - 38.2 - - - - -
LLaVA-1.5 V-7B 6.7B 78.5∗ 62.0∗ 50.0 66.8 58.2 85.9 1510.7 63.4 30.5 - - - -
TinyGPT-V P-2.7B 2.7B - 33.6∗ 33.4 - - - - - - - - - -
MobileVLM M-2.7B 2.7B - 59.0∗ - 61.0 47.5 84.9 1288.9 59.6 - - - - -
LLaVA-Phi P-2.7B 2.7B 71.4∗ - 35.9 68.4 48.6 85.0 1335.1 59.8 28.9 - - - -

Sparse Model
MoE-LLaVA S-1.6B 2.0B 76.7∗ 60.3∗ 36.2 62.6 50.1 85.7 1318.2 60.2 26.9 48.8 15.3 18.4 49.2
MoE-LLaVA P-2.7B 3.6B 77.6∗ 61.4∗ 43.9 68.5 51.4 86.3 1423.0 65.2 34.3 58.8 19.9 21.5 53.5
DYNMOE-LLaVA P-2.7B 3.4B 77.9∗ 61.6∗ 45.1 68.0 51.8 86.0 1429.6 66.6 33.6 - - - -
MoE-LLaVA† P-2.7B 3.6B 79.9∗ 62.6∗ 43.7 70.3 57.0 85.7 1431.3 68.0 35.9 59.5 15.4 25.6 54.9

Our Method† P-2.7B 3.6B 80.0∗ 63.0∗ 48.6 70.9 58.8 86.5 1481.7 71.0 40.7 64.5 44.7 42.1 61.0

For instruction-following benchmarks, POPE (Li et al., 2023b) evaluates the degree of hallucination
in model responses on three sampled subsets of COCO (Lin et al., 2014): Random, Common, and
Adversarial. MME (Fu et al., 2023) assesses the visual perception of models with yes/no questions.
MMBench (Liu et al., 2023d) evaluates the robustness of model answers with all-round shuffling on
multiple choice answers. MM-Vet (Yu et al., 2023b) evaluates the model capabilities in engaging in
visual conversations on a diverse range of tasks and evaluates the correctness and helpfulness of the
responses using the GPT-4 evaluation framework. AI2D (Kembhavi et al., 2016), a multiple-choice
benchmark, evaluates the model capabilities for science diagram comprehension.

Baseline: Our main baseline is MoE-LLaVA (Lin et al., 2024). MoE-LLaVA incorporates a MoE
into LVLMs and proposes a three-stage training scheme. It trains only the MoE in the third stage, i.e.,
the instruction tuning stage. MoE-LLaVA has four experts and selects the Top-2 experts to handle
tokens, and we refer to this configuration as 4Top2. Building on MoE-LLaVA, we add a novel
regularization loss LCEL during the instruction tuning stage to enhance the MoE. For the language
model backbone, we follow MoE-LLaVA to use StableLM-1.6B and Phi2-2.7B. The visual encoder
is usually set as clip-vit-large-patch14-336. α=0.01, following MoE-LLaVA. We also compare with
DYNMOE-LLaVA (Guo et al., 2024), which improves the MoE-LLaVA by dynamically setting the
expert count. For more implementation details, please refer to Sec. A of supplementary material.

4.2 IMAGE UNDERSTANDING EVALUATION

Image Question Answering: We evaluate the performance of our method on five image question-
answering benchmarks, as shown in Table 1, and report the number of activated parameters as a
measure of efficiency. Our method demonstrates superior image understanding capabilities, achiev-
ing the 80.0%, 63.0%, 48.6%, 70.9%, and 58.8% performance on VQAv2, GQA, VisWiz, SQAI,
and VQAT, respectively. Compared to LLaVA-1.5 with 7B activated parameters, our method brings
1.5%, 1.0%, 4.1%, and 0.6% performance increase on VQAv2, GQA, SQAI, and VQAT, respec-
tively, when only activating 3.6B parameters.

Benchmark Toolkit: To comprehensively evaluate the multi-modal understanding capabilities of
our method, we assess its performance across four benchmark toolkits in Table 1. These toolkits
typically serve as tools to verify the model ability to engage in natural language questioning. As
shown in Table 1, our method achieves 86.5%, 1481.7, 71.0%, and 40.7% performance on POPE,

7

Published as a conference paper at ICLR 2025

Table 2: STGC as a plug-in. We set different baselines and add the proposed STGC. 4Top1 means
four experts are set, and the Top-1 expert is selected to handle tokens. † indicates that a stronger
visual encoder (siglip-so400m-patch14-384) is used. We calculate the average performance across
all datasets except for MME, naming it “Avg”.

Method LLM Act. VQAv2 GQA VisWiz SQAI VQAT POPE MME MMB MM-Vet Avg

MoE-LLaVA-4Top1 S-1.6B 1.6B 74.5∗ 58.6∗ 25.7 55.8 45.0 85.2 1245.3 56.2 27.2 53.5
+STGC S-1.6B 1.6B 74.9∗ 59.4∗ 27.4 57.5 46.5 85.8 1276.8 56.8 28.5 54.6

MoE-LLaVA-4Top2 S-1.6B 2.0B 76.7∗ 60.3∗ 36.2 62.6 50.1 85.7 1318.2 60.2 26.9 57.3
+STGC S-1.6B 2.0B 76.9∗ 60.9∗ 37.7 62.6 50.7 85.9 1355.1 60.7 28.2 58.0

MoE-LLaVA-4Top2 P-2.7B 3.6B 77.6∗ 61.4∗ 43.9 68.5 51.4 86.3 1423.0 65.2 34.3 61.1
+STGC P-2.7B 3.6B 78.0∗ 62.1∗ 47.2 68.1 52.3 86.9 1429.2 66.7 33.3 61.8

MoE-LLaVA-4Top2† P-2.7B 3.6B 79.9∗ 62.6∗ 43.7 70.3 57.0 85.7 1431.3 68.0 35.9 62.9
+STGC P-2.7B 3.6B 80.3∗ 63.2∗ 45.1 70.3 57.4 86.1 1447.6 69.7 35.7 63.5

Table 3: Scalability of STGC. We consider employing the larger scale of data. With more data, the
STGC can bring a more significant performance increase.

Method LLM Data VQAv2 GQA VisWiz SQAI VQAT POPE MME MMB MM-Vet Avg

MoE-LLaVA-4Top2† P-2.7B 665K 79.9∗ 62.6∗ 43.7 70.3 57.0 85.7 1431.3 68.0 35.9 62.9
+STGC P-2.7B 665K 80.3∗ 63.2∗ 45.1 70.3 57.4 86.1 1447.6 69.7 35.7 63.5

MoE-LLaVA-4Top2† P-2.7B 1021K 79.7∗ 63.0∗ 42.7 71.1 56.9 84.3 1439.9 70.4 42.2 63.8
+STGC P-2.7B 1021K 80.0∗ 63.0∗ 48.6 70.9 58.8 86.5 1481.7 71.0 40.7 64.9

Table 4: Study about routing strategies. embedding-based, feature-based, and task-based corre-
spond to routing strategies similar to MoCLE (Gou et al., 2023), LoRA-MoE (Chen et al., 2023d),
and MoCLE (Zhou et al., 2024), respectively. The configure MoE-LLaVA-4Top2 with StableLM-
1.6B is set as the baseline.

Method VQAv2 GQA VisWiz SQAI VQAT POPE MME MMB MM-Vet Avg

MoE-LLaVA 76.7∗ 60.3∗ 36.2 62.6 50.1 85.7 1318.2 60.2 26.9 57.3

+embedding-based 75.8∗ 57.0∗ 34.0 63.7 50.3 86.1 1312.8 61.3 27.3 56.9
+feature-based 75.7∗ 58.1∗ 36.9 63.2 50.0 85.9 1338.8 61.5 26.6 57.2
+task-based 73.6∗ 58.2∗ 29.0 63.7 49.2 81.5 1306.3 59.5 25.2 48.9
+STGC 76.9∗ 60.9∗ 37.7 62.6 50.7 85.9 1355.1 60.7 28.2 58.0

MME, MMB, and MM-Vet, respectively. Compared to LLaVA-1.5 with 7B activated parameters,
our method brings 0.6%, 7.6%, and 10.2% performance increase on POPE, MMB, and MM-Vet,
respectively, when only activating 3.6B parameters.

4.3 ABLATION STUDY

STGC as a plug-in: We design the STGC as a plug-in for existing MoE methods. To verify the
robustness and effectiveness of the proposed STGC as a plug-in, we select different baselines, in-
cluding different MoE configures (4Top2 & 4Top1), LLM (S-1.6B & P-2.7b), and visual encoders
(clip & siglip). Then, we add the STGC onto these baselines. As shown in Table 2, adding STGC
always brings a stable and convincing performance increase under diverse baselines.

Scalability of STGC: One necessary hypothesis of this work is that there is severe interference
between diverse training data, so STGC should bring a more significant performance increase when
using a more complex dataset to train. To verify this, we expand the size of the public dataset we are
using for further experiments. Specifically, we use the training data provided in the Open-LLaVA-
NeXT project (Lin & Long, 2024). As shown in Table 3, under more data, STGC brings a more
significant average performance increase (1.1% vs. 0.6%).

8

Published as a conference paper at ICLR 2025

Table 5: Study about hyper-parameter sensitivity. Settings for results in Table 2 are highlighted
in blue . The configure MoE-LLaVA-4Top2 with StableLM-1.6B is set as the baseline.

(a) The threshold for identifying conflicting tokens.

τ GQA VisWiz VQAT MMB MM-Vet

0.1 60.6 35.1 50.9 61.3 25.6
0.0 60.9 37.7 50.7 60.7 28.2
-0.1 60.6 34.9 50.5 61.4 25.9

(b) The weighting of our proposed loss.

β GQA VisWiz VQAT MMB MM-Vet

0.5 60.5 35.6 50.5 61.4 26.9
1.0 60.9 37.7 50.7 60.7 28.2
2.0 60.6 35.9 50.9 60.6 27.2

Conflict
Elimination

Loss

Training Step

Baseline

Baseline + STGC

Gradient
Consistency

Baseline

Baseline + STGC

Training Step

Layer 8 Layer 16 Layer 24

Gradient
Consistency

Baseline + STGC

Baseline Baseline Baseline

Baseline + STGC Baseline + STGC

(a)

(b)

Training Step Training Step Training Step

Figure 3: Statistical verification. We conduct a deep analysis of the role of STGC. “Baseline”
indicates MoE-LLaVA. “Baseline + STGC” indicates our method. (a) We compute a novel metric,
gradient consistency (the mean cosine similarity between gradients of all tokens within an expert),
for verifying that the decrease of the proposed loss leads to the more consistent token gradients
within an expert. (b) We further analyze the gradient consistency on different layers.

Study about Different Routing Strategies: We compare with different routing strategies in Table 4.
Some works (Chen et al., 2023d; Gou et al., 2023; Zhou et al., 2024) propose using instruction
embeddings (features) or sample task labels to design routing strategies. Since they are designed for
LoRA-MoE, we directly replace the FFN with the MoE structure, making it difficult to compare the
performance of STGC with that in their papers. To this end, we re-implemented these methods in
MoE-LLaVA. Specifically, (i) embedding-based. Similar to MoCLE (Gou et al., 2023), we use the
K-means algorithm to cluster instruction embeddings into 128 groups before training and conduct
the routing based on the cluster results. (ii) feature-based. Similar to LoRA-MoE (Chen et al.,
2023d), we use instance-level instruction token average representation to predict routing scores.
(ii) task-based. Similar to (Zhou et al., 2024), we categorize samples into four experts based on
their tasks. For more details, please refer to Sec. B of supplementary material. As shown in
Table 4, the performance does not increase on most datasets when using sample-level embedding or
task information. Using token-level gradients achieves a significantly higher average performance
improvement.

Sensitivity Study of Different Hyper-parameters: We conduct the sensitivity study of STGC in
Table 5 for two main hyper-parameters, the threshold τ of identifying conflicting tokens and the
loss weighting β. First, when the gradient gn of the token tn and and the average gradient gmean

satisfy the condition cosϕnmean < τ , we flag the token as a conflicting token. We discuss different

9

Published as a conference paper at ICLR 2025

thresholds of identifying conflicting tokens: τ ∈ {0.1, 0.0,−0.1}. Second, we discuss different loss
weightings β ∈ {0.5, 1.0, 2.0}. As shown in Table 5, we find: (i) When τ = 0, the performance
on most datasets is the best. The results are consistent with the common belief, i.e., gradients are
considered conflicting when their cosine similarity is less than 0. (ii) The proposed loss is relatively
robust to different loss weightings β, with the highest performance on most datasets when β=1.0.

Statistical Verification: One main claim of this work is that STGC can effectively reduce the gra-
dient conflicts between tokens within an expert, i.e., making the gradient directions of tokens within
an expert more consistent, thus decreasing data interference and improving model performance. To
verify this, we design a statistical verification experiment. In this experiment, the training consists
of two steps: The first step is to gather gradients of all tokens within an expert ei and compute their
cosine similarity to form a similarity matrix. Then, we define the mean of the similarity matrix
as simi. We define the average of simi on all experts as gradient consistency, serving as a novel
metric to evaluate whether the gradient directions are consistent within the expert. The second step
is to update models. In this experiment, we only use the proposed loss to update parameters, for
undisturbedly observing its impact on the gradient consistency. In experiments, we fed one sample
into the LVLM per device for each forward pass, and the gradient accumulation step is 16.

We first present the curve graph of the proposed loss and the gradient consistency obtained from
the TensorBoard dashboard in Figure 3 (a). Then, we present the gradient consistency on different
layers in Figure 3 (b); The total layer number is 32, and we analyze the layers {8, 16, 24}. We
find: (i) By decreasing the proposed conflict elimination loss, the gradient consistency significantly
improves, indicating that the token gradient directions within an expert become more consistent.
This verifies the role of STGC in reducing gradient conflicts. (ii) For different layers, STGC always
increases the gradient consistency. The deeper layers seem to have higher gradient consistency after
adding STGC, while the shallower layers have lower gradient consistency.

5 CONCLUSION AND LIMITATIONS

Our study reveals that there is the interference between tokens within an expert for the MoE, leading
to sub-optimal learning for the expert. To reduce the interference between tokens, we propose em-
ploying token-level gradients to identify conflicting tokens, and then adding a novel conflict elim-
ination loss to optimize token routing based on conflicting tokens. Our method STGC acts as a
plug-in, which can be easily integrated into existing MoE-based LVLMs. Extensive experiments
demonstrate the effectiveness of STGC across diverse datasets. Especially when the data diversity
is larger, our method brings a more significant performance increase.

Limitation. Since in each iteration, a token only passes one expert and not the others in each MoE
layer, its gradient only reflects whether it conflicts with the holistic optimization direction of its
current expert, but it is difficult to define its relationship with other experts. Thus, although it has
been confirmed that the proposed solution can solve token gradient conflicts by optimizing token
routing, the solution still has room for improvement, as it is challenging to determine the optimal
expert of a token. In the future, exploring whether it is possible to determine the optimal expert of a
token from the optimization perspective may be an intriguing direction.

Acknowledgements. This work is supported in part by National Science Foundation for Distin-
guished Young Scholars under Grant 62225605, Zhejiang Provincial Natural Science Foundation
of China under Grant LD24F020016, “Pioneer” and “Leading Goose” R&D Program of Zhejiang
(No. 2024C01020), Project 12326608 supported by NSFC, the Ningbo Science and Technology
Innovation Project (No.2024Z294), and is supported by Kuaishou Technology.

REFERENCES

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in Neural Information Processing Systems, 35:23716–
23736, 2022.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023a.

10

Published as a conference paper at ICLR 2025

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023b.

Hangbo Bao, Wenhui Wang, Li Dong, Qiang Liu, Owais Khan Mohammed, Kriti Aggarwal, Sub-
hojit Som, Songhao Piao, and Furu Wei. Vlmo: Unified vision-language pre-training with
mixture-of-modality-experts. Advances in Neural Information Processing Systems, 35:32897–
32912, 2022.

Atılım Güneş Baydin, Barak A Pearlmutter, Don Syme, Frank Wood, and Philip Torr. Gradients
without backpropagation. arXiv preprint arXiv:2202.08587, 2022.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth pascal recognizing
textual entailment challenge. TAC, 7(8):1, 2009.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Junbum Cha, Wooyoung Kang, Jonghwan Mun, and Byungseok Roh. Honeybee: Locality-enhanced
projector for multimodal llm. arXiv preprint arXiv:2312.06742, 2023.

Nithin Chalapathi, Yiheng Du, and Aditi Krishnapriyan. Scaling physics-informed hard constraints
with mixture-of-experts. arXiv preprint arXiv:2402.13412, 2024.

Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman
Krishnamoorthi, Vikas Chandra, Yunyang Xiong, and Mohamed Elhoseiny. Minigpt-v2: large
language model as a unified interface for vision-language multi-task learning. arXiv preprint
arXiv:2310.09478, 2023a.

Lin Chen, Jisong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua
Lin. Sharegpt4v: Improving large multi-modal models with better captions. arXiv preprint
arXiv:2311.12793, 2023b.

Shaoxiang Chen, Zequn Jie, and Lin Ma. Llava-mole: Sparse mixture of lora experts for mitigating
data conflicts in instruction finetuning mllms. arXiv preprint arXiv:2401.16160, 2024.

Wuyang Chen, Yanqi Zhou, Nan Du, Yanping Huang, James Laudon, Zhifeng Chen, and Claire Cui.
Lifelong language pretraining with distribution-specialized experts. In International Conference
on Machine Learning, pp. 5383–5395. PMLR, 2023c.

Zeren Chen, Ziqin Wang, Zhen Wang, Huayang Liu, Zhenfei Yin, Si Liu, Lu Sheng, Wanli Ouyang,
Yu Qiao, and Jing Shao. Octavius: Mitigating task interference in mllms via moe. arXiv preprint
arXiv:2311.02684, 2023d.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Zhong Muyan, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. arXiv preprint arXiv:2312.14238, 2023e.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2023.

Xiangxiang Chu, Limeng Qiao, Xinyang Lin, Shuang Xu, Yang Yang, Yiming Hu, Fei Wei, Xinyu
Zhang, Bo Zhang, Xiaolin Wei, et al. Mobilevlm: A fast, reproducible and strong vision language
assistant for mobile devices. arXiv preprint arXiv:2312.16886, 2023.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language
models with instruction tuning, 2023.

11

Published as a conference paper at ICLR 2025

Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Third international workshop on paraphrasing (IWP2005), 2005.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. The Journal of Machine Learning Research, 23(1):
5232–5270, 2022.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive evaluation
benchmark for multimodal large language models. arXiv preprint arXiv:2306.13394, 2023.

Yunhao Gou, Zhili Liu, Kai Chen, Lanqing Hong, Hang Xu, Aoxue Li, Dit-Yan Yeung, James T
Kwok, and Yu Zhang. Mixture of cluster-conditional lora experts for vision-language instruction
tuning. arXiv preprint arXiv:2312.12379, 2023.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
matter: Elevating the role of image understanding in visual question answering. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 6904–6913, 2017a.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
matter: Elevating the role of image understanding in visual question answering. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 6904–6913, 2017b.

Yongxin Guo, Zhenglin Cheng, Xiaoying Tang, and Tao Lin. Dynamic mixture of experts: An
auto-tuning approach for efficient transformer models. arXiv preprint arXiv:2405.14297, 2024.

Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
Jeffrey P Bigham. Vizwiz grand challenge: Answering visual questions from blind people. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3608–3617,
2018.

Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 6700–6709, 2019.

Gagan Jain, Nidhi Hegde, Aditya Kusupati, Arsha Nagrani, Shyamal Buch, Prateek Jain, Anurag
Arnab, and Sujoy Paul. Mixture of nested experts: Adaptive processing of visual tokens. arXiv
preprint arXiv:2407.19985, 2024.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali
Farhadi. A diagram is worth a dozen images. In Computer Vision–ECCV 2016: 14th Euro-
pean Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14,
pp. 235–251. Springer, 2016.

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme Ruiz, Basil Mustafa,
Joshua Ainslie, Yi Tay, Mostafa Dehghani, and Neil Houlsby. Sparse upcycling: Training
mixture-of-experts from dense checkpoints. arXiv preprint arXiv:2212.05055, 2022.

Sneha Kudugunta, Yanping Huang, Ankur Bapna, Maxim Krikun, Dmitry Lepikhin, Minh-Thang
Luong, and Orhan Firat. Beyond distillation: Task-level mixture-of-experts for efficient inference.
arXiv preprint arXiv:2110.03742, 2021.

Byung-Kwan Lee, Beomchan Park, Chae Won Kim, and Yong Man Ro. Moai: Mixture of all
intelligence for large language and vision models. arXiv preprint arXiv:2403.07508, 2024.

12

Published as a conference paper at ICLR 2025

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Jiachen Li, Xinyao Wang, Sijie Zhu, Chia-Wen Kuo, Lu Xu, Fan Chen, Jitesh Jain, Humphrey Shi,
and Longyin Wen. Cumo: Scaling multimodal llm with co-upcycled mixture-of-experts. arXiv
preprint arXiv:2405.05949, 2024a.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International Conference
on Machine Learning, pp. 12888–12900. PMLR, 2022.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
object hallucination in large vision-language models. arXiv preprint arXiv:2305.10355, 2023a.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
object hallucination in large vision-language models. arXiv preprint arXiv:2305.10355, 2023b.

Yunshui Li, Binyuan Hui, ZhiChao Yin, Min Yang, Fei Huang, and Yongbin Li. Pace: Unified
multi-modal dialogue pre-training with progressive and compositional experts. arXiv preprint
arXiv:2305.14839, 2023c.

Yunxin Li, Shenyuan Jiang, Baotian Hu, Longyue Wang, Wanqi Zhong, Wenhan Luo, Lin Ma, and
Min Zhang. Uni-moe: Scaling unified multimodal llms with mixture of experts. arXiv preprint
arXiv:2405.11273, 2024b.

Victor Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, and James Y Zou. Mind the
gap: Understanding the modality gap in multi-modal contrastive representation learning. Ad-
vances in Neural Information Processing Systems, 35:17612–17625, 2022.

Bin Lin, Bin Zhu, Yang Ye, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning united
visual representation by alignment before projection. arXiv preprint arXiv:2311.10122, 2023.

Bin Lin, Zhenyu Tang, Yang Ye, Jiaxi Cui, Bin Zhu, Peng Jin, Junwu Zhang, Munan Ning, and
Li Yuan. Moe-llava: Mixture of experts for large vision-language models. arXiv preprint
arXiv:2401.15947, 2024.

Chen Lin and Xing Long. Open-llava-next: An open-source implementation of llava-next se-
ries for facilitating the large multi-modal model community. https://github.com/
xiaoachen98/Open-LLaVA-NeXT, 2024.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft COCO: Common objects in context. In ECCV, 2014.

Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser Yacoob, and Lijuan Wang. Aligning large
multi-modal model with robust instruction tuning. arXiv preprint arXiv:2306.14565, 2023a.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. arXiv preprint arXiv:2310.03744, 2023b.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. arXiv
preprint arXiv:2304.08485, 2023c.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
player? arXiv preprint arXiv:2307.06281, 2023d.

Zefang Liu and Jiahua Luo. Adamole: Fine-tuning large language models with adaptive mixture of
low-rank adaptation experts. arXiv preprint arXiv:2405.00361, 2024.

Zijun Long, George Killick, Richard McCreadie, and Gerardo Aragon Camarasa. Multiway-
adapater: Adapting large-scale multi-modal models for scalable image-text retrieval. arXiv
preprint arXiv:2309.01516, 2023.

13

https://github.com/xiaoachen98/Open-LLaVA-NeXT
https://github.com/xiaoachen98/Open-LLaVA-NeXT

Published as a conference paper at ICLR 2025

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. Advances in Neural Information Processing Systems, 35:2507–2521,
2022.

Guangyuan Ma, Xing Wu, Peng Wang, and Songlin Hu. Cot-mote: Exploring contextual masked
auto-encoder pre-training with mixture-of-textual-experts for passage retrieval. arXiv preprint
arXiv:2304.10195, 2023.

Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A bench-
mark for question answering about charts with visual and logical reasoning. arXiv preprint
arXiv:2203.10244, 2022.

Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document
images. In Proceedings of the IEEE/CVF winter conference on applications of computer vision,
pp. 2200–2209, 2021.

Microsoft. Phi-2: The surprising power of small language mod-
els. https://www.microsoft.com/en-us/research/blog/
phi-2-the-surprising-power-of-small-language-models, 2023.

Fangzhou Mu, Yingyu Liang, and Yin Li. Gradients as features for deep representation learning.
arXiv preprint arXiv:2004.05529, 2020.

Max Paulus, Dami Choi, Daniel Tarlow, Andreas Krause, and Chris J Maddison. Gradient estimation
with stochastic softmax tricks. Advances in neural information processing systems, 33:5691–
5704, 2020.

Joan Puigcerver, Carlos Riquelme, Basil Mustafa, and Neil Houlsby. From sparse to soft mixtures
of experts. arXiv preprint arXiv:2308.00951, 2023.

Zihan Qiu, Zeyu Huang, and Jie Fu. Emergent mixture-of-experts: Can dense pre-trained transform-
ers benefit from emergent modular structures? arXiv preprint arXiv:2310.10908, 2023.

N Reimers. Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint
arXiv:1908.10084, 2019.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
Advances in Neural Information Processing Systems, 34:8583–8595, 2021.

Burak Satar, Hongyuan Zhu, Hanwang Zhang, and Joo Hwee Lim. Rome: Role-aware mixture-of-
expert transformer for text-to-video retrieval. arXiv preprint arXiv:2206.12845, 2022.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Leyang Shen, Gongwei Chen, Rui Shao, Weili Guan, and Liqiang Nie. Mome: Mixture of multi-
modal experts for generalist multimodal large language models. arXiv preprint arXiv:2407.12709,
2024.

Sheng Shen, Le Hou, Yanqi Zhou, Nan Du, Shayne Longpre, Jason Wei, Hyung Won Chung, Bar-
ret Zoph, William Fedus, Xinyun Chen, et al. Mixture-of-experts meets instruction tuning: A
winning combination for large language models. arXiv preprint arXiv:2305.14705, 2023a.

Sheng Shen, Zhewei Yao, Chunyuan Li, Trevor Darrell, Kurt Keutzer, and Yuxiong He. Scaling
vision-language models with sparse mixture of experts. arXiv preprint arXiv:2303.07226, 2023b.

Jiaxin Shi, Yuhao Zhou, Jessica Hwang, Michalis Titsias, and Lester Mackey. Gradient estimation
with discrete stein operators. Advances in neural information processing systems, 35:25829–
25841, 2022.

14

https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models
https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models

Published as a conference paper at ICLR 2025

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 8317–8326, 2019a.

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. Towards vqa models that can read. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 8317–8326, 2019b.

Stability AI Language Team. Stable lm 2 1.6b. URL [https://huggingface.co/
stabilityai/stablelm-2-1.6b](https://huggingface.co/stabilityai/
stablelm-2-1.6b).

Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understand-
ing. arXiv preprint arXiv:1804.07461, 2018.

Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal,
Owais Khan Mohammed, Saksham Singhal, Subhojit Som, et al. Image as a foreign language:
Beit pretraining for all vision and vision-language tasks. arXiv preprint arXiv:2208.10442, 2022.

Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi, and James Bailey. Symmetric cross
entropy for robust learning with noisy labels. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 322–330, 2019.

A Warstadt. Neural network acceptability judgments. arXiv preprint arXiv:1805.12471, 2019.

Xiao-Ming Wu, Dian Zheng, Zuhao Liu, and Wei-Shi Zheng. Estimator meets equilibrium perspec-
tive: A rectified straight through estimator for binary neural networks training. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 17055–17064, 2023.

Xun Wu, Shaohan Huang, and Furu Wei. Mixture of lora experts. arXiv preprint arXiv:2404.13628,
2024.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie Cao, Yudong Li, Yechen Xu, Kai Sun, Dian Yu,
Cong Yu, et al. Clue: A chinese language understanding evaluation benchmark. arXiv preprint
arXiv:2004.05986, 2020.

Longrong Yang, Fanman Meng, Hongliang Li, Qingbo Wu, and Qishang Cheng. Learning with
noisy class labels for instance segmentation. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16, pp. 38–53. Springer,
2020.

Longrong Yang, Hongliang Li, Qingbo Wu, Fanman Meng, Heqian Qiu, and Linfeng Xu. Bias-
correction feature learner for semi-supervised instance segmentation. IEEE Transactions on Mul-
timedia, 25:5852–5863, 2022.

Longrong Yang, Xianpan Zhou, Xuewei Li, Liang Qiao, Zheyang Li, Ziwei Yang, Gaoang Wang,
and Xi Li. Bridging cross-task protocol inconsistency for distillation in dense object detection.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 17175–17184,
2023.

Longrong Yang, Hanbin Zhao, Yunlong Yu, Xiaodong Zeng, and Xi Li. Rcs-prompt: Learning
prompt to rearrange class space for prompt-based continual learning. In European Conference on
Computer Vision, pp. 1–20. Springer, 2024.

Longrong Yang, Hanbin Zhao, Hongliang Li, Liang Qiao, Ziwei Yang, and Xi Li. Gcstg: Generating
class-confusion-aware samples with a tree-structure graph for few-shot object detection. IEEE
Transactions on Image Processing, 2025.

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang Wang, Anwen
Hu, Pengcheng Shi, Yaya Shi, et al. mplug-owl: Modularization empowers large language models
with multimodality. arXiv preprint arXiv:2304.14178, 2023.

15

https://huggingface.co/stabilityai/stablelm-2-1.6b
https://huggingface.co/stabilityai/stablelm-2-1.6b
https://huggingface.co/stabilityai/stablelm-2-1.6b

Published as a conference paper at ICLR 2025

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824–5836, 2020.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. arXiv
preprint arXiv:2308.02490, 2023a.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. arXiv
preprint arXiv:2308.02490, 2023b.

Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Ermiş, Acyr Locatelli, and Sara Hooker. Push-
ing mixture of experts to the limit: Extremely parameter efficient moe for instruction tuning.
arXiv preprint arXiv:2309.05444, 2023.

Pan Zhang, Xiaoyi Dong Bin Wang, Yuhang Cao, Chao Xu, Linke Ouyang, Zhiyuan Zhao, Shuan-
grui Ding, Songyang Zhang, Haodong Duan, Hang Yan, et al. Internlm-xcomposer: A vision-
language large model for advanced text-image comprehension and composition. arXiv preprint
arXiv:2309.15112, 2023a.

Yanzhe Zhang, Ruiyi Zhang, Jiuxiang Gu, Yufan Zhou, Nedim Lipka, Diyi Yang, and Tong Sun.
Llavar: Enhanced visual instruction tuning for text-rich image understanding. arXiv preprint
arXiv:2306.17107, 2023b.

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. Moefication:
Transformer feed-forward layers are mixtures of experts. arXiv preprint arXiv:2110.01786, 2021.

Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep neural networks
with noisy labels. Advances in neural information processing systems, 31, 2018.

Bo Zhao, Boya Wu, and Tiejun Huang. Svit: Scaling up visual instruction tuning. arXiv preprint
arXiv:2307.04087, 2023.

Shanshan Zhong, Shanghua Gao, Zhongzhan Huang, Wushao Wen, Marinka Zitnik, and Pan
Zhou. Moextend: Tuning new experts for modality and task extension. arXiv preprint
arXiv:2408.03511, 2024.

Yuhang Zhou, Zihua Zhao, Haolin Li, Siyuan Du, Jiangchao Yao, Ya Zhang, and Yanfeng Wang.
Exploring training on heterogeneous data with mixture of low-rank adapters. arXiv preprint
arXiv:2406.09679, 2024.

Jinguo Zhu, Xizhou Zhu, Wenhai Wang, Xiaohua Wang, Hongsheng Li, Xiaogang Wang, and Jifeng
Dai. Uni-perceiver-moe: Learning sparse generalist models with conditional moes. Advances in
Neural Information Processing Systems, 35:2664–2678, 2022.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. St-moe: Designing stable and transferable sparse expert models. arXiv preprint
arXiv:2202.08906, 2022.

16

Published as a conference paper at ICLR 2025

6 SUPPLEMENTARY MATERIAL

In our supplementary material, we provide the following details and experiments:

• section 6.1: We provide more engineering implementation details about training.
• section 6.2: We provide more implementation details about sample-level routing.
• section 6.3: We provide more experimental results about expert loading, loss design, token

gradient statistic, and different routing mechanisms.
• section 6.4: We provide a analysis about computational overhead.
• section 6.5: We provide experimental results about language tasks.
• section 6.6: We provide a brief theoretical analysis.
• section 6.7: We provide a deeper analysis about gradient conflicting phenomenon.

6.1 IMPLEMENTATION DETAILS ABOUT TRAINING

Token-level gradient: Each expert is an FFN containing multiple linear layers. For instance, the
FFN in Phi-2 (Microsoft, 2023) includes two linear layers, fc1 and fc2. Assuming there are E × L
experts, [e1, e2, · · · , eE×L], where E is the number of experts in each MoE and L is the MoE layer
number of LLM. In expert ei, the weights corresponding to the two linear layers are w1

i ∈ RD×D′

and w2
i ∈ RD′×D, and the biases are b1i ∈ RD′

and b2i ∈ RD respectively, where D is the hidden
size of LLM and D′ is the intermediate size.

First, during the forward pass of a batch, we freeze the parameters except for the biases and compute
the main loss. Then, we perform a backward pass, using the Operator “call for per sample grads”
provided by PyTorch to capture the gradients g1

n ∈ RD and g2
n ∈ RD′

of the token tn on the biases.
Next, we calculate the average gradients g1

mean and g2
mean. Let the tokens processed by the expert

ei be denoted as {t1, · · · , tNei
}, the average gradients are represented as:

g1
mean =

∑Nei
n=1 g

1
n

Nei

,

g2
mean =

∑Nei
n=1 g

2
n

Nei

(11)

where g1
mean ∈ RD and g2

mean ∈ RD′
. Following that, we compute the cosine similarity between

g1
n and g1

mean as s1n and the cosine similarity between g2
n and g2

mean as s2n. Thus, for the token tn,
the similarity metric sn is defined as:

sn =
s1n + s2n

2
(12)

Finally, we identify the conflicting token: when sn is lower than the threshold τ , the token tn is a
conflicting token.

Why to use the gradients on the biases? This engineering trick brings two advantages. (i) Assume
the gradients of the token tn on the weights be g1,w

n and g2,w
n respectively. g1,w

n ∈ RD×D′
and

g2,w
n ∈ RD′×D. Thus, we need a significant GPU memory overhead to store gradients. If storing

only the gradients on the biases, the GPU memory overhead significantly reduces. (ii) When the
parameter size in the computational graph is larger, the backward pass is longer. We compute only
the gradients on the biases, so it is very fast to capture gradients. Whether does this operation work?
Similar to the computation of sn, we use g1,w

n and g2,w
n to compute the similarity metric swn of the

token tn. We then compute the Pearson correlation coefficient between swn and sn (n ∈ {1, · · · }) and
find the value is usually larger than 0.9. Thus, we believe that sn reveals the relationship between
the token gradient and the average gradient in the expert well. Our experiments also verify that the
proposed STGC can increase performance.

After identifying conflict tokens, we add the parameters that need to be updated into the optimizer
(we follow the training configure of MoE-LLaVA). We add the conflict elimination loss to optimize
the router based on the identification of conflict tokens.

17

Published as a conference paper at ICLR 2025

Table 6: Hyper-parameters in training.

Epoch Learning rate Learning rate schedule Weight decay
Instruction Tuning 1 2e-5 Cosine 0.0

Text max length Batch size per GPU GPU Precision
Instruction Tuning 2048 16 8×A800-80G Bf16

Data Size Response formatting prompts

LLaVA 158K –
ShareGPT 40K –

VQAv2 83K Answer the question using a single word or phrase.
GQA 72K
OKVQA 9K
OCRVQA 80K

A-OKVQA 66K Answer with the option’s letter from the given choices directly.

TextCaps 22K Provide a one-sentence caption for the provided image.

RefCOCO 48K Note: randomly choose between the two formats
Provide a short description for this region.

VG 86K Provide the bounding box coordinate of the region this sentence
describes.

Total 665K

Table 7: Instruction-following data mixture. The data is from LLaVA-1.5 (Liu et al., 2023b).

Training Scheme: Our training scheme follows MoE-LLaVA (Lin et al., 2024). The details are
presented in Table 6. During instruction fine-tuning, we use a batch size of 128 and a learning rate
of 2e-5. We directly use the pre-trained models from MoE-LLaVA (Lin et al., 2024) to conduct
instruction tuning.

Training Datasets: We use LLaVA-mix-665k (Liu et al., 2023b) as instruction tuning training data
to conduct most experiments. The data structure is presented in Table 7. To verify the scalability
of the STGC model, we conducted experiments using 1021K data from the Open-LLaVA-NeXT
dataset (Lin & Long, 2024). In Table 1 of the main paper, we report the best performance that we
achieve when activating only 3.6B parameters during inference, using 1021K data for training.

6.2 IMPLEMENTATION DETAILS ABOUT SAMPLE-LEVEL ROUTING SCHEMES

Embedding-based: Similar to MoCLE (Gou et al., 2023), we encode all the instructions of different
datasets using the all-MiniLM-L6-v2 variant of the Sentence Transformer model (Reimers, 2019)
and cluster their embeddings via K-means clustering algorithm. After clustering, following the
practice of MoCLE, we initialize K learnable embeddings, and each embedding corresponds to a
cluster center. When a sample belongs to the k-th cluster center, the k-th learnable embedding
is extracted and fed into the router to predict routing scores. In our experiments, we set K=128.
Following the practice of MoCLE, we do not add the load balance loss.

Feature-based: Similar to LoRA-MoE (Chen et al., 2023d), we take the average of instruction token
representations of each instance as input to predict its routing scores in each expert. Then, the Top-k
experts are selected based on routing scores for each sample to generate the prediction. Following
the practice of LoRA-MoE, we do not add the load balance loss.

Task-based: Similar to MoLA (Zhou et al., 2024), we promote similarity in routing between data
from the same task while emphasizing distinctiveness in routing between data from different tasks.
We employ LLaVA-mix-665k (Liu et al., 2023b) to conduct experiments, significantly different
from the used data in MoLA (Zhou et al., 2024). Therefore, we empirically divide the data into four
types of tasks.: (i) Caption. For example, the instruction is “Provide a one-sentence caption for the
provided image.”. (ii) VQA. For example, the instruction is “Answer the question using a single

18

Published as a conference paper at ICLR 2025

MoE-LLaVA

MoE-LLaVA+STGC

Load
Balancing

Loss

Training Step

Figure 4: Load balance loss. “Baseline” indicates MoE-LLaVA. “Baseline+STGC” indicates our
method. We present the load balancing loss curve before and after adding STGC. The results are
obtained from the regular training. The total training step count is 5194 for an epoch. When the load
balancing loss is lower, the expert load is more balanced.

Table 8: Study about the load balance loss weighting α. The configure MoE-LLaVA-4Top2 with
StableLM-1.6B is set for experiments.

α VQAv2 GQA VisWiz SQAI VQAT POPE MME MMB MM-Vet Avg

MoE-LLaVA 0.01 76.7∗ 60.3∗ 36.2 62.6 50.1 85.7 1318.2 60.2 26.9 57.3

MoE-LLaVA 0.1 75.7∗ 59.7∗ 37.7 61.3 49.9 85.6 1338.0 60.4 27.2 57.2

word or phrase.”. (iii) OCR, including all data in OCRVQA. (iv) Region-aware. For example, the
instruction is “Provide a short description for this region.”. The expert label of Caption, VQA, OCR,
or Region-aware data is 0, 1, 2, or 3, respectively. The ratio of Caption, VQA, OCR, or Region-aware
data is 3.5%, 61.6%, 12.8%, and 22.1%, respectively.

6.3 MORE EXPERIMENTAL RESULTS

6.3.1 EXPERT LOADING

Loss Curve: We present the the load balancing loss curve in Figure 4. As shown in Figure 4,
the proposed STGC benefits the decrease of the load balancing loss. A possible reason is that the
expert load imbalance means that many tokens are routed to an expert, significantly increasing the
possibility that tokens have gradient conflicts. After adding the STGC, some tokens are moved from
the “crowded” expert (many tokens) to the “empty” expert (few tokens). This may be also a new
perspective on why the load balance is important to the MoE system.

Additional Ablations on α: α is the weighting of the load balance loss. We discuss different loss
weightings α ∈ {0.01, 0.1} (0.01 is the standard value set in MoE-LLaVA (Lin et al., 2024)). As
shown in Table 8, we find that increasing the weighting of the load balance loss degenerates the
model performance.

Visualization of Expert Loading: we follow MoE-LLaVA (Lin et al., 2024) to obtain the distri-
bution of expert loading and the visualization of the activated pathways. The distribution of expert
loading examines the expert use frequency for all tokens (Lin et al., 2024). Activated pathways
examine the behavior of experts at the token level (Lin et al., 2024): this visualization tool tracts
the activated pathways of all tokens on validation datasets; given all activated pathways, the visu-
alization tool employs PCA to obtain the top-10 pathways. As shown in Figure 5, we find that (i)
STGC benefits the expert load balance. A possible reason is that the expert load imbalance means
that many tokens are routed to an expert, significantly increasing the possibility that tokens have gra-
dient conflicts. After adding the STGC, some tokens are moved from the “crowded” expert (many

19

Published as a conference paper at ICLR 2025

MoE-LLaVA
+STGC

MoE-LLaVA
+STGC

SQA TextVQA MMBench

MoE-LLaVA

Figure 5: Expert Loading and activated pathways. The configure MoE-LLaVA-4Top2 with
StableLM-1.6B is set for experiments We select three validation datasets, i.e., SQA (Lu et al., 2022),
TextVQA (Singh et al., 2019a), and MMBench (Liu et al., 2023d), to analyze expert loading and
activated pathways. In activated pathways, the colorful paths represent the top-2 paths for text and
image, respectively, while the gray paths represent the remaining 8 paths.

tokens) to the “empty” expert (few tokens). This further validates that STGC would effectively uti-
lize each expert, instead of collapsing into only using one expert, which is also a new perspective
on why the load balance is important to the MoE system. (ii) The activated pathways are signifi-
cantly different for SQA (Lu et al., 2022), TextVQA (Singh et al., 2019a), and MMBench (Liu et al.,
2023d). This implies that although the distribution of expert load across different datasets is similar,
the token routing behavior is still significantly different among datasets, i.e., different tokens have
been assigned to various experts.

6.3.2 LOSS DESIGN

The goal of the conflict elimination loss is to reduce the routing score pmoe(tn) of the conflicting
token tn on its current expert. We discuss different designs for the conflict elimination loss: (i)
MSE-like: Simply setting the routing score pmoe(tn) to the minimum.

pmoe(tn)i =
ezmoe(tn)i∑E
j=1 e

zmoe(tn)j
,

LMSE
CEL =

1

Nall · E

Nall∑
n=1

E∑
i=1

pmoe(tn)idmoe,n ,

(13)

where Nall is the count of all conflicting tokens, E is the number of experts, and pmoe(tn) represents
the routing score for the conflicting token tn. idmoe,n is the current expert ID of the conflicting token
tn. (ii) CE-like: Utilizing the inverted routing score along with cross-entropy loss. Our motivation

20

Published as a conference paper at ICLR 2025

Table 9: Study about different conflict elimination loss designs. The configure MoE-LLaVA-
4Top2 with StableLM-1.6B is set for experiments.

VQAv2 GQA VisWiz SQAI VQAT POPE MME MMB MM-Vet Avg

MSE-like 76.7∗ 60.7∗ 37.0 62.8 50.6 85.7 1346.5 60.6 27.8 57.7
CE-like 76.9∗ 60.9∗ 37.7 62.6 50.7 85.9 1355.1 60.7 28.2 58.0

Conflict
Elimination

Loss

Training Step

Figure 6: Loss curve of conflict elimination loss. The above graph shows the loss curve of conflict
elimination loss during the normal training process when Phi2-2.7B is used as the LLM. Since the
total number of sampling points is limited to 1000 in TensorBoard, the sampling interval is set to 7.

for taking the inverted routing score is to minimize the routing score of token on its current expert.

z′moe(tn) = −zmoe(tn),

p′moe(tn)i =
ez

′
moe(tn)i∑E

j=1 e
z′

moe(tn)j
,

LCEL =
1

Nall · E

Nall∑
n=1

E∑
i=1

log(p′moe(tn)i) · qmoe(tn)i.

(14)

As shown in Table 9, the CE-like loss performs better. The reason may be that, although the opti-
mization direction of the MSE-like loss is consistent with the CE-like loss, the optimization speed
of the CE loss is superior to the MSE loss (Zhang & Sabuncu, 2018; Wang et al., 2019; Yang et al.,
2020). An analysis of the gradient of CE (Yang et al., 2020) reveals that when the probability of the
sample on the ground-truth class is small, CE will produce a significantly larger gradient than MSE.

Loss Curve: Different from the statistical verification in Figure 3 that only uses conflict elimination
loss Lmoe, LCEL, Lmoe, and Laux are used during the normal training process. We present the loss
curve of the conflict elimination loss during training. As shown in Figure 6, the loss is convergent.

6.3.3 TOKEN GRADIENT STATISTIC

Similarity statistic: We compute the distribution of cosine similarity between the gradient of each
token and the averaged gradient. Specifically, we randomly sample some data. We extract token-
level gradients, calculate the average gradient gmean for each expert, and compute the cosine sim-
ilarity between the gradient of each token gn and the average gradient of its current expert gmean.
We perform the statistics for both initial and fully-trained models. As shown in Figure 7, we find
that: (i) In the initial model, there is a conflict between token gradients and average gradients; (ii)
In the fully-trained model, the conflict between token gradients and average gradients is reduced.
This verifies that STGC can effectively increase the cosine similarity between the gradients of tokens
within an expert and the average gradient.

21

Published as a conference paper at ICLR 2025

Similarity distribution

Token
Ratio

Similarity Interval

Figure 7: Gradient similarity distribution. We compute the distribution of cosine similarity be-
tween the gradient of each token and the averaged gradient. The configure MoE-LLaVA-4Top2 with
StableLM-1.6B is set for experiments. We add the proposed STGC to train models, to generate a
fully-trained model from the initial model.

Gradient consistency std and conflicting ratio: We further explore the std deviation of gradient
consistency and the ratio of conflicting tokens. Expanding on the statistical verification in the main
part, we conduct a statistical verification experiment and define three metrics: The first step is to
gather gradients of all tokens within an expert ei and compute their cosine similarity to form a
similarity matrix. Then, we define the mean of the similarity matrix as simi. We define the mean
of simi on all experts as gradient consistency, serving as a novel metric to evaluate whether the
gradient directions are consistent within the expert. We define the std deviation of simi on all
experts as gradient consistency std, serving as a metric to evaluate the degree of discreteness in the
gradient consistency among different experts. Additionally, we calculate the number of conflicting
tokens within all experts as N1, and the total number of tokens as N , defining the conflicting ratio
as N1

N . The second step is to update models. We only use the proposed loss to update parameters, to
undisturbedly observe its impact on three metrics.

We present the curve graph of the three metrics obtained from the TensorBoard dashboard in Fig-
ure 8. We can observe: (i) as the conflict elimination loss decreases, the gradient consistency
increases and the conflicting ratio decreases. This means that STGC effectively reduces gradient
conflicts within the expert and reduces the count of conflicting tokens. (ii) The gradient consistency
std increases, meaning that the difference of gradient consistency among different experts enlarges.
We speculate that this is due to the different rates at which gradient consistency increases across var-
ious layers. For example, Figure 3 (b) indicates that deeper layers have faster gradient consistency
increase rate after adding STGC. Figure 9 also shows that STGC mainly reduces conflicting tokens
at deep layers, and most conflicting tokens emerge in the shallow layers after learning.

Conflicting token after learning: In Figure 7, although we observe a significant reduction in con-
flicting tokens for the fully-trained model, we find that there are still some conflicting tokens. As
shown in Figure 9, we analyze the layers in which they appear and find that most conflicting tokens
emerge in the shallow layers after learning.

6.3.4 ROUTING

SMoE (Jiang et al., 2024) claims that “Surprisingly, we do not observe obvious patterns in the as-
signment of experts based on the topic.” As shown in Figure 5, we also observe that the distribution
of expert loading across some different datasets is similar, but we notice diversity in token-level
activated pathways for different datasets. We suspect that the distribution of expert loading may not

22

Published as a conference paper at ICLR 2025

Baseline

Baseline + STGC

Training Step

Conflict
Elimination

Loss

Baseline + STGC

Baseline

Gradient
Consistency

Training Step

Baseline + STGC

Baseline

Baseline

Baseline + STGC

Training StepTraining Step

Gradient
Consistency

std

Conflicting
Ratio

Figure 8: Gradient consistency and conflicting ratio analysis. The configure MoE-LLaVA-4Top2
with StableLM-1.6B is set for experiments. We finish the statistic on one GPU, so the total step
number is 41581. The sampling interval is set to 1 in TensorBoard for the above graph and the
sampling interval is 7 in TensorBoard for Figure 3, so the above graph appears to have a slight
difference with Figure 3.

Conflicting ratio distribution

Layer

Conflicting
Ratio

Figure 9: Conflicting ratio distribution on different MoE layers after learning.

be sufficiently accurate to reflect the routing of diverse data. Then, V-MoE (Riquelme et al., 2021)
and MoNE (Jain et al., 2024) focus on leveraging the token importance difference to further accel-
erate MoE. V-MoE proposes Batch Prioritized Routing to discard unimportant tokens and MoNE
proposes Expert Preferred Router to allocate more tokens to experts with a larger volume. We focus
on avoiding token interference during training to enhance performance, which is parallel to the focus
of V-MoE or MoNE. Thus, theoretically, STGC could be integrated with V-MoE or MoNE. Since
MoNE does not have the official open-source code, we attempt to use Batch Prioritized Routing
from V-MoE for further inference acceleration.

During inference, the eval capacity of MoE is set to 2.0 Lin et al. (2024). As shown in Table 10,
when we reduce the capacity from 2.0 to 0.5, the model performance of both MoE-LLaVA and MoE-
LLaVA+STGC declines significantly because many tokens are discarded. When Batch Prioritized
Routing is added, there is a noticeable performance improvement. We find that when the capacity is
reduced to 0.5, regardless of whether Batch Prioritized Routing is added or not, MoE-LLaVA+STGC

23

Published as a conference paper at ICLR 2025

Table 10: Study about Batch Prioritized Routing (BPR). The configure MoE-LLaVA-4Top2 with
StableLM-1.6B is set for experiments. BPR refers to Batch Prioritized Routing.

eval capacity BPR GQA SQAI VQAT POPE MME MMB MM-Vet Avg

MoE-LLaVA 2.0 60.3∗ 62.6 50.1 85.7 1318.2 60.2 26.9 57.6
+STGC 2.0 60.9∗ 62.6 50.7 85.9 1355.1 60.7 28.2 58.2

MoE-LLaVA 0.5 10.2∗ fail 15.2 69.8 fail 6.0 16.4 -
+STGC 0.5 21.1∗ 18.0 13.6 71.9 fail 7.0 20.7 -

MoE-LLaVA 0.5 ✓ 51.0∗ fail 33.4 83.8 1032.4 26.8 22.0 -
+STGC 0.5 ✓ 58.0∗ 57.7 44.3 85.3 1234.3 48.5 22.8 52.8

shows a significant performance improvement compared to MoE-LLaVA. A possible reason is that
STGC can prevent a single expert from handling too many tokens, thereby reducing the number of
discarded tokens.

6.4 COMPUTATIONAL OVERHEAD

STGC does not increase the inference overhead, while it may need the memory and time overhead
during training. The memory overhead mainly results from storing gradients. The time overhead
mainly results from computing gradients. We analyze the additional overhead during training from
these two aspects.

Training memory overhead. We begin our analysis from StableLM-1.6B. The FFN layer in
StableLM-1.6B contains three linear layers, fcgate ∈ R2048×5632, fcup ∈ R2048×5632, and
fcdown ∈ R5632×2048. As stated in section 6.1, for each token, we only store the gradient it pro-
duces on the bias within the experts. The token count per layer is about 1000, and each token only
goes through one expert, so the gradient matrix stored per layer is G ∈ R1000×(5632+5632+2048).
We need to store a gradient matrix G for each MoE layer, and the MoE layer in StableLM-1.6B is
{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22} (the total layer number is 24). Thus, the theoretical memory
overhead is 12×1000×(5632+5632+2048). The parameter is bfloat16 (2 bytes), so the theoretical
memory overhead is about 0.29 GB, which is significantly less than the memory cost of LLM and
data (usually larger than 10 GB during training). The FFN layer in Phi2-2.7B contains two linear
layers, fc1 ∈ R2560×10240 and fc2 ∈ R10240×2560, and Phi2-2.7B has 16 MoE layers. Thus, the
theoretical memory overhead is 16× 1000× (2560 + 10240), i.e., 0.38 GB.

If storing the token-level gradients on each weight, the required storage overhead is 12 × 1000 ×
(2048×5632+2048×5632+5632×2048) (773 GB) for StableLM-1.6B and 16×1000×(2560×
10240 + 10240× 2560) (1562 GB) for Phi2-2.7B, which is amazingly large. Thus, it is impossible
to use the token-level gradient on each weight to conduct experiments.

Training time overhead. MoE-LLaVA performs a forward pass, followed by a backward pass to up-
date parameters. As Section section 6.1 mentioned, MoE-LLaVA+STGC freezes parameters except
for the bias within the experts, performs a forward pass, followed by a backward pass to compute
token-level gradients; then, MoE-LLaVA+STGC unfreeze parameters and performs a backward pass
to update parameters. Thus, the main time overhead results from “the computation of token-level
gradients”. We directly report the train samples per second and train steps per second recorded in
“trainer state.json” after training. As shown in Table 11, we have reduced the additional time over-
head to about 20% through some engineering tricks (e.g., only computing the token-level gradient
on the bias and freezing parameters that do not require gradient computation). Some methods may
further speed up STGC, such as using STGC only on even iterations or applying STGC to only half
of the MoE layers. We will further explore these experiments in the future.

Besides, the overhead in gradient computation is a common issue faced by existing gradient-based
methods. We believe that it is hopeful to address this common issue in the future, such as through
gradient estimation methods (Mu et al., 2020; Paulus et al., 2020; Baydin et al., 2022; Shi et al.,
2022; Wu et al., 2023).

24

Published as a conference paper at ICLR 2025

Table 11: Study about computational overhead. We set MoE-LLaVA-4Top2 with StableLM-1.6B
and Phi2-2.7B to conduct the analysis. One step (s) means the time needed for one step during
training. STGC-full means computing token-level gradients on the weight.

LLM
Memory Time

theoretical overhead train samples
per second

train steps
per second one step (s)

StableLM-1.6B
MoE-LLaVA - 19.796 0.154 6.494

+STGC 0.29 GB 16.283 0.127 7.874 (+21.3%)
+STGC-full 773 GB fail fail fail

Phi2-2.7B
MoE-LLaVA - 10.765 0.084 11.905

+STGC 0.38 GB 8.851 0.069 14.493 (+21.7%)
+STGC-full 1562 GB fail fail fail

Table 12: Study about language tasks. Our study investigates the MoE integrated with STGC on
language tasks using the GLUE benchmark (Wang, 2018), with BERT-large as the backbone model.
MoE-8Top2 means a traditional MoE, configured with 8 experts, of which the Top-2 are activated,
i.e., 8Top2. * means the re-implemented results.

COLA MRPC QNLI MNLI RTE Avg

MoE-8Top2 (Guo et al., 2024) 64.5 90.2 92.4 86.7 74.9 81.7
DYNMOE (Guo et al., 2024) 65.2 90.6 92.6 86.4 73.4 81.6

MoE-8Top2∗ 64.5 90.0 93.4 86.9 72.9 81.5
+STGC 66.8 91.2 93.8 87.6 74.7 82.8

6.5 LANGUAGE TASKS

We study the use of STGC on language tasks. Theoretically, the deployment of STGC is not con-
strained to specific task types. To validate the generalization of STGC, we extend its use to lan-
guage tasks. Specifically, we follow DYNMOE Guo et al. (2024) to apply the MoE framework for
language tasks. Specifically, the language tasks adhere to the same settings as those in MoEfica-
tion Zhang et al. (2021) and EMoE (Qiu et al., 2023). The MoE is built upon the BERT-large Devlin
(2018) architecture, employing the MoEfication method, and is fine-tuned on GLUE Wang (2018)
benchmark, which encompasses COLA Warstadt (2019), QNLI Wang (2018), RTE Bentivogli et al.
(2009), MNLI Xu et al. (2020), and MRPC Dolan & Brockett (2005). For MoE configuration, we
set the total count of experts to 8, with the Top-2 experts being activated, and we refer to this config-
uration as 8Top2. We add the proposed STGC to the MoE. As shown in Table 14, the experimental
results show the significant effectiveness of STGC on language tasks.

6.6 THEORETICAL ANALYSIS

We conduct a brief theoretical analysis based on the theory of PCGrad (Yu et al., 2020). Suppose
there are tokens tn and t′n, which pass through the same expert and generate gradients gn and gn′

on that expert. Let gn = ∇Ln, gn′ = ∇Ln′ , and g = ∇L = gn + gn′ (∇L = ∇θL, where θ
is the parameter). cos(ϕnn′) is the cosine similarity between gradients gn and g′

n. Token gradient
conflicts mean the cosine similarity cos(ϕnn′) < 0, cos(ϕnn′) < 0 potentially leads to an increase
in the loss. When cos(ϕnn′) > 0, the loss decreases strictly, i.e., ∇L < 0, which can reach the
optimal value. Then, different from PCGrad, STGC does not alter the gradients of the tokens but
changes the routing of the tokens to avoid conflicting gradients, with the function of increasing the
cosine similarity cos(ϕnn′) to satisfy the condition cos(ϕnn′) > 0.

The notation || · || represents the L2-norm. During each iteration, if cos(ϕnn′) > 0, a standard
gradient descent step with a learning rate t ≤ 1

L is employed. This results in a strict reduction in the
value of the objective function L(θ), given that the function is convex, unless the gradient∇L(θ) is
zero, which happens exclusively when θ equals the optimal value θ∗ (Boyd & Vandenberghe, 2004).

25

Published as a conference paper at ICLR 2025

We further analyze the loss: Assuming that the gradient of the loss∇L is Lipschitz continuous with
a Lipschitz constant L, it implies that the Hessian matrix ∇2L(θ) − LI is negative semi-definite.
Leveraging this property, we can perform a quadratic expansion of L around L(θ), leading to the
subsequent inequality:

L(θ+) ≤ L(θ) +∇L(θ)T (θ+ − θ) +
1

2
∇2L(θ)||θ+ − θ||2

≤ L(θ) +∇L(θ)T (θ+ − θ) +
1

2
L||θ+ − θ||2

Then, given θ+ = θ − t · g, the inequality can be expressed as:

L(θ+) ≤ L(θ)− t · gTg +
1

2
Lt2||g||2

(Expanding, using the identity g = gn + gn′)

= L(θ)− (t− 1

2
Lt2)(||gn||2 + ||gn′ ||2 + 2 · gn · gn′)

(Using the identity cos(ϕnn′) =
gn · gn′

||gn||||gn′ ||
)

= L(θ)− (t− 1

2
Lt2) · (||gn||||gn′ ||)(||gn||

||gn′ ||
+
||gn′ ||
||gn||

+ 2 · cos(ϕnn′)).

(15)

By setting t ≤ 1
L , we can obtain −(1− 1

2Lt) =
1
2Lt− 1 ≤ 1

2L(1/L)− 1 = −1
2 and Lt2 ≤ t.

Incorporating the bound into the previous expression, we can deduce the following conclusion:

L(θ+) ≤ L(θ)− 1

2
t(||gn||||gn′ ||)(||gn||

||gn′ ||
+
||gn′ ||
||gn||

+ 2 · cos(ϕnn′)).

If cos(ϕnn′) < − 1
2 · (

||gn||
||gn′ || +

||gn′ ||
||gn||),

||gn||
||gn′ || +

||gn′ ||
||gn|| +2 · cos(ϕnn′) will be negative. The bound of

L(θ+) is larger than L(θ), so the loss may increase. If cos(ϕnn′) > 0, ||gn||
||gn′ || +

||gn′ ||
||gn|| +2 ·cos(ϕnn′)

will always be positive. This positivity ensures that the objective function value decreases strictly
with each iteration, suggesting that by repeatedly applying this process, we can converge to the
optimal value. Note that this result only holds when we select a sufficiently small learning rate,
specifically t ≤ 1

L .

The goal of STGC is to increase cos(ϕnn′) to satisfy the condition cos(ϕnn′) > 0. Figure 3 and
Figure 8 have verified that STGC can increase cos(ϕnn′). Consequently, STGC is beneficial to
the convergence of the objective function towards its optimal value, thereby improving the overall
effectiveness of the model.

6.7 GRADIENT CONFLICTING PHENOMENON

6.7.1 FEATURE-GRADIENT RELATIONSHIP

Similar features do not necessarily imply similar gradients (Mu et al., 2020). When tokens have
highly similar features (similar tokens), the router can assign them to one expert. However, they may
have dissimilar gradients. STGC can be understood as learning token features based on token-level
gradient relationships. After using STGC, the features of tokens become less similar when they have
dissimilar (conflicting) gradients, for being routed to different experts. To verify this, we sample
some data for analysis. Suppose there are N tokens and the cosine similarity is S ∈ RN×N between
features of these tokens. We flatten S ∈ RN×N to S̄ ∈ RN2

. Meanwhile, we calculate the cosine
similarity Sg ∈ RN×N between gradients of these tokens, flattening it to S̄g ∈ RN2

. We compute

26

Published as a conference paper at ICLR 2025

Table 13: Study about feature-gradient relationship. The configure MoE-LLaVA-4Top2 with
StableLM-1.6B is set for experiments.

Pearson correlation coefficient

MoE-LLaVA 0.2654
+ STGC 0.3563

Table 14: Study about gradient conflicting. z′i,yi
denotes the average logit of tokens for their

corresponding labels when calculating the main loss. z′i,yj
means the average logit of tokens on the

labels of their conflicting tokens (meaning tokens having similar feature but divergent gradients).
z′i,o denotes the average logit of tokens for all other labels, excluding the aforementioned labels.

z′i,yi z′i,yj z′i,o

Value 23.4885 14.5673 -0.6793

the Pearson correlation coefficient between S̄ and S̄g to measure whether feature relationships reveal
gradient relationships. We select MoE-LLaVA and MoE-LLaVA + STGC for our experiments. As
shown in Table 13, the experimental results indicate that token features and gradients have a higher
correlation after using STGC.

6.7.2 POSSIBLE REASON FOR TOKEN GRADIENT CONFLICTING

In theory, similar tokens will be assigned to the same expert by a feature-based router. We focus
on token gradient conflicting within an expert, so we want to further conduct a study about the phe-
nomenon “similar tokens have divergent gradients”. In specific, we compute the cosine similarities
between token features in an expert as S. We then compute the cosine similarities between token
gradients in an expert as Sg . We directly compute the difference S′ = S − Sg . When S′

i,j is large,
token ti and token tj has a high feature similarity but a low gradient similarity, meaning that the
phenomenon “similar tokens have divergent gradients” is significant. We find that S′

i,j is large when
two tokens are confusing. Suppose labels of two tokens ti on yi are yi and yj respectively. z is the
logit of each token for computing the main loss. zi,yi

means the logit of token ti on yi. We define
that ti and tj are confusing when zi,yj and zj,yi are high.

For example, in one expert, S′ has the maximum at S′
78,51. S78,51 is 0.9316 and S′

78,51 is -0.6875.
t78 has the label 13 and t51 has the label 11. We find that t78 (t51) has a second highest logit on 11
(13). This is somewhat similar to the class confusion phenomenon in traditional visual classification
tasks. For example, in visual classification, dog and cat are visually similar and they have similar
features, but the learning of cat may lead to the misclassification of dog.

We further sample some pairs of tokens to conduct a statistical verification. Each pair of tokens
{ti, tj} has the significant feature and gradient cosine similarity difference S′

i,j . zi,yi
means the

logit of token ti on yi. In addition, removing zi,yi
and zi,yj

, we record the mean logit in zi as zi,o.
z′i,yj

is the average of zi,yi
. As shown in the below table, z′i,yi

is significantly higher than z′i,o, and
close to z′i,yi

, which validates the above hypothesis.

27

	Introduction
	Related Works
	Large Vision-language Model
	Mixture-of-Experts (MoE)

	Methodology
	Overview
	Conflicting Token Identification
	Conflict Elimination Loss
	Total Loss

	Experiments
	Experimental Setup
	Image Understanding Evaluation
	Ablation Study

	Conclusion and Limitations
	Supplementary Material
	Implementation Details about Training
	Implementation Details about Sample-level Routing Schemes
	More Experimental Results
	Expert Loading
	Loss Design
	Token Gradient Statistic
	Routing

	Computational Overhead
	Language Tasks
	Theoretical Analysis
	Gradient Conflicting Phenomenon
	Feature-Gradient Relationship
	Possible Reason for Token Gradient Conflicting

