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In our supplementary material, we provide the following details and experiments:

• Sec. A: We provide more engineering implementation details about training.

• Sec. B: We provide more implementation details about sample-level routing.

• Sec. C: We provide more experimental results about expert loading, loss design, token
gradient statistic, and different routing mechanisms.

• Sec. D: We provide a analysis about computational overhead.

• Sec. E: We provide experimental results about language tasks.

• Sec. F: We provide a brief theoretical analysis.

• Sec. G: We provide a deeper analysis about gradient conflicting phenomenon.

A IMPLEMENTATION DETAILS ABOUT TRAINING

Token-level gradient: Each expert is an FFN containing multiple linear layers. For instance, the
FFN in Phi-2 (Microsoft, 2023) includes two linear layers, fc1 and fc2. Assuming there are E × L
experts, [e1, e2, · · · , eE×L], where E is the number of experts in each MoE and L is the MoE layer
number of LLM. In expert ei, the weights corresponding to the two linear layers are w1

i ∈ RD×D′

and w2
i ∈ RD′×D, and the biases are b1i ∈ RD′

and b2i ∈ RD respectively, where D is the hidden
size of LLM and D′ is the intermediate size.

First, during the forward pass of a batch, we freeze the parameters except for the biases and compute
the main loss. Then, we perform a backward pass, using the Operator “call for per sample grads”
provided by PyTorch to capture the gradients g1

n ∈ RD and g2
n ∈ RD′

of the token tn on the biases.
Next, we calculate the average gradients g1

mean and g2
mean. Let the tokens processed by the expert

ei be denoted as {t1, · · · , tNei
}, the average gradients are represented as:

g1
mean =

∑Nei
n=1 g

1
n

Nei

,

g2
mean =

∑Nei
n=1 g

2
n

Nei

(1)

where g1
mean ∈ RD and g2

mean ∈ RD′
. Following that, we compute the cosine similarity between

g1
n and g1

mean as s1n and the cosine similarity between g2
n and g2

mean as s2n. Thus, for the token tn,
the similarity metric sn is defined as:

sn =
s1n + s2n

2
(2)

Finally, we identify the conflicting token: when sn is lower than the threshold τ , the token tn is a
conflicting token.

†Corresponding author is Xi Li.
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Table A: Hyper-parameters in training.

Epoch Learning rate Learning rate schedule Weight decay
Instruction Tuning 1 2e-5 Cosine 0.0

Text max length Batch size per GPU GPU Precision
Instruction Tuning 2048 16 8×A800-80G Bf16

Data Size Response formatting prompts

LLaVA 158K –
ShareGPT 40K –

VQAv2 83K Answer the question using a single word or phrase.
GQA 72K
OKVQA 9K
OCRVQA 80K

A-OKVQA 66K Answer with the option’s letter from the given choices directly.

TextCaps 22K Provide a one-sentence caption for the provided image.

RefCOCO 48K Note: randomly choose between the two formats
Provide a short description for this region.

VG 86K Provide the bounding box coordinate of the region this sentence
describes.

Total 665K

Table B: Instruction-following data mixture. The data is from LLaVA-1.5 (Liu et al., 2023a).

Why to use the gradients on the biases? This engineering trick brings two advantages. (i) Assume
the gradients of the token tn on the weights be g1,w

n and g2,w
n respectively. g1,w

n ∈ RD×D′
and

g2,w
n ∈ RD′×D. Thus, we need a significant GPU memory overhead to store gradients. If storing

only the gradients on the biases, the GPU memory overhead significantly reduces. (ii) When the
parameter size in the computational graph is larger, the backward pass is longer. We compute only
the gradients on the biases, so it is very fast to capture gradients. Whether does this operation work?
Similar to the computation of sn, we use g1,w

n and g2,w
n to compute the similarity metric swn of the

token tn. We then compute the Pearson correlation coefficient between swn and sn (n ∈ {1, · · · }) and
find the value is usually larger than 0.9. Thus, we believe that sn reveals the relationship between
the token gradient and the average gradient in the expert well. Our experiments also verify that the
proposed STGC can increase performance.

After identifying conflict tokens, we add the parameters that need to be updated into the optimizer
(we follow the training configure of MoE-LLaVA). We add the conflict elimination loss to optimize
the router based on the identification of conflict tokens.

Training Scheme: Our training scheme follows MoE-LLaVA (Lin et al., 2024). The details are
presented in Table A. During instruction fine-tuning, we use a batch size of 128 and a learning rate
of 2e-5. We directly use the pre-trained models from MoE-LLaVA (Lin et al., 2024) to conduct
instruction tuning.

Training Datasets: We use LLaVA-mix-665k (Liu et al., 2023a) as instruction tuning training data
to conduct most experiments. The data structure is presented in Table B. To verify the scalability
of the STGC model, we conducted experiments using 1021K data from the Open-LLaVA-NeXT
dataset (Lin & Long, 2024). In Table 1 of the main paper, we report the best performance that we
achieve when activating only 3.6B parameters during inference, using 1021K data for training.

B IMPLEMENTATION DETAILS ABOUT SAMPLE-LEVEL ROUTING SCHEMES

Embedding-based: Similar to MoCLE (Gou et al., 2023), we encode all the instructions of different
datasets using the all-MiniLM-L6-v2 variant of the Sentence Transformer model (Reimers, 2019)
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Figure A: Load balance loss. “Baseline” indicates MoE-LLaVA. “Baseline+STGC” indicates our
method. We present the load balancing loss curve before and after adding STGC. The results are
obtained from the regular training. The total training step count is 5194 for an epoch. When the load
balancing loss is lower, the expert load is more balanced.

and cluster their embeddings via K-means clustering algorithm. After clustering, following the
practice of MoCLE, we initialize K learnable embeddings, and each embedding corresponds to a
cluster center. When a sample belongs to the k-th cluster center, the k-th learnable embedding
is extracted and fed into the router to predict routing scores. In our experiments, we set K=128.
Following the practice of MoCLE, we do not add the load balance loss.

Feature-based: Similar to LoRA-MoE (Chen et al., 2023), we take the average of instruction token
representations of each instance as input to predict its routing scores in each expert. Then, the Top-k
experts are selected based on routing scores for each sample to generate the prediction. Following
the practice of LoRA-MoE, we do not add the load balance loss.

Task-based: Similar to MoLA (Zhou et al., 2024), we promote similarity in routing between data
from the same task while emphasizing distinctiveness in routing between data from different tasks.
We employ LLaVA-mix-665k (Liu et al., 2023a) to conduct experiments, significantly different
from the used data in MoLA (Zhou et al., 2024). Therefore, we empirically divide the data into four
types of tasks.: (i) Caption. For example, the instruction is “Provide a one-sentence caption for the
provided image.”. (ii) VQA. For example, the instruction is “Answer the question using a single
word or phrase.”. (iii) OCR, including all data in OCRVQA. (iv) Region-aware. For example, the
instruction is “Provide a short description for this region.”. The expert label of Caption, VQA, OCR,
or Region-aware data is 0, 1, 2, or 3, respectively. The ratio of Caption, VQA, OCR, or Region-aware
data is 3.5%, 61.6%, 12.8%, and 22.1%, respectively.

C MORE EXPERIMENTAL RESULTS

C.1 EXPERT LOADING

Loss Curve: We present the the load balancing loss curve in Figure A. As shown in Figure A,
the proposed STGC benefits the decrease of the load balancing loss. A possible reason is that the
expert load imbalance means that many tokens are routed to an expert, significantly increasing the
possibility that tokens have gradient conflicts. After adding the STGC, some tokens are moved from
the “crowded” expert (many tokens) to the “empty” expert (few tokens). This may be also a new
perspective on why the load balance is important to the MoE system.

Additional Ablations on α: α is the weighting of the load balance loss. We discuss different loss
weightings α ∈ {0.01, 0.1} (0.01 is the standard value set in MoE-LLaVA (Lin et al., 2024)). As
shown in Table C, we find that increasing the weighting of the load balance loss degenerates the
model performance.
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Table C: Study about the load balance loss weighting α. The configure MoE-LLaVA-4Top2 with
StableLM-1.6B is set for experiments.

α VQAv2 GQA VisWiz SQAI VQAT POPE MME MMB MM-Vet Avg

MoE-LLaVA 0.01 76.7∗ 60.3∗ 36.2 62.6 50.1 85.7 1318.2 60.2 26.9 57.3

MoE-LLaVA 0.1 75.7∗ 59.7∗ 37.7 61.3 49.9 85.6 1338.0 60.4 27.2 57.2

MoE-LLaVA
+STGC

MoE-LLaVA
+STGC

SQA TextVQA MMBench

MoE-LLaVA

Figure B: Expert Loading and activated pathways. The configure MoE-LLaVA-4Top2 with
StableLM-1.6B is set for experiments We select three validation datasets, i.e., SQA (Lu et al., 2022),
TextVQA (Singh et al., 2019), and MMBench (Liu et al., 2023b), to analyze expert loading and ac-
tivated pathways. In activated pathways, the colorful paths represent the top-2 paths for text and
image, respectively, while the gray paths represent the remaining 8 paths.

Visualization of Expert Loading: we follow MoE-LLaVA (Lin et al., 2024) to obtain the distri-
bution of expert loading and the visualization of the activated pathways. The distribution of expert
loading examines the expert use frequency for all tokens (Lin et al., 2024). Activated pathways
examine the behavior of experts at the token level (Lin et al., 2024): this visualization tool tracts
the activated pathways of all tokens on validation datasets; given all activated pathways, the visu-
alization tool employs PCA to obtain the top-10 pathways. As shown in Figure B, we find that (i)
STGC benefits the expert load balance. A possible reason is that the expert load imbalance means
that many tokens are routed to an expert, significantly increasing the possibility that tokens have gra-
dient conflicts. After adding the STGC, some tokens are moved from the “crowded” expert (many
tokens) to the “empty” expert (few tokens). This further validates that STGC would effectively uti-
lize each expert, instead of collapsing into only using one expert, which is also a new perspective
on why the load balance is important to the MoE system. (ii) The activated pathways are signifi-
cantly different for SQA (Lu et al., 2022), TextVQA (Singh et al., 2019), and MMBench (Liu et al.,
2023b). This implies that although the distribution of expert load across different datasets is similar,
the token routing behavior is still significantly different among datasets, i.e., different tokens have
been assigned to various experts.
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Table D: Study about different conflict elimination loss designs. The configure MoE-LLaVA-
4Top2 with StableLM-1.6B is set for experiments.

VQAv2 GQA VisWiz SQAI VQAT POPE MME MMB MM-Vet Avg

MSE-like 76.7∗ 60.7∗ 37.0 62.8 50.6 85.7 1346.5 60.6 27.8 57.7
CE-like 76.9∗ 60.9∗ 37.7 62.6 50.7 85.9 1355.1 60.7 28.2 58.0

C.2 LOSS DESIGN

The goal of the conflict elimination loss is to reduce the routing score pmoe(tn) of the conflicting
token tn on its current expert. We discuss different designs for the conflict elimination loss: (i)
MSE-like: Simply setting the routing score pmoe(tn) to the minimum.

pmoe(tn)i =
ezmoe(tn)i∑E
j=1 e

zmoe(tn)j
,

LMSE
CEL =

1

Nall · E

Nall∑
n=1

E∑
i=1

pmoe(tn)idmoe,n ,

(3)

where Nall is the count of all conflicting tokens, E is the number of experts, and pmoe(tn) represents
the routing score for the conflicting token tn. idmoe,n is the current expert ID of the conflicting token
tn. (ii) CE-like: Utilizing the inverted routing score along with cross-entropy loss. Our motivation
for taking the inverted routing score is to minimize the routing score of token on its current expert.

z′moe(tn) = −zmoe(tn),

p′moe(tn)i =
ez

′
moe(tn)i∑E

j=1 e
z′

moe(tn)j
,

LCEL =
1

Nall · E

Nall∑
n=1

E∑
i=1

log(p′moe(tn)i) · qmoe(tn)i.

(4)

As shown in Table D, the CE-like loss performs better. The reason may be that, although the opti-
mization direction of the MSE-like loss is consistent with the CE-like loss, the optimization speed
of the CE loss is superior to the MSE loss (Zhang & Sabuncu, 2018; Wang et al., 2019; Yang et al.,
2020). An analysis of the gradient of CE (Yang et al., 2020) reveals that when the probability of the
sample on the ground-truth class is small, CE will produce a significantly larger gradient than MSE.

Loss Curve: Different from the statistical verification in Figure ?? that only uses conflict elimination
loss Lmoe, LCEL, Lmoe, and Laux are used during the normal training process. We present the loss
curve of the conflict elimination loss during training. As shown in Figure C, the loss is convergent.

C.3 TOKEN GRADIENT STATISTIC

Similarity statistic: We compute the distribution of cosine similarity between the gradient of each
token and the averaged gradient. Specifically, we randomly sample some data. We extract token-
level gradients, calculate the average gradient gmean for each expert, and compute the cosine sim-
ilarity between the gradient of each token gn and the average gradient of its current expert gmean.
We perform the statistics for both initial and fully-trained models. As shown in Figure D, we find
that: (i) In the initial model, there is a conflict between token gradients and average gradients; (ii)
In the fully-trained model, the conflict between token gradients and average gradients is reduced.
This verifies that STGC can effectively increase the cosine similarity between the gradients of tokens
within an expert and the average gradient.

Gradient consistency std and conflicting ratio: We further explore the std deviation of gradient
consistency and the ratio of conflicting tokens. Expanding on the statistical verification in the main
part, we conduct a statistical verification experiment and define three metrics: The first step is to
gather gradients of all tokens within an expert ei and compute their cosine similarity to form a
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Loss

Training Step

Figure C: Loss curve of conflict elimination loss. The above graph shows the loss curve of conflict
elimination loss during the normal training process when Phi2-2.7B is used as the LLM. Since the
total number of sampling points is limited to 1000 in TensorBoard, the sampling interval is set to 7.

Similarity distribution

Token
Ratio

Similarity Interval

Figure D: Gradient similarity distribution. We compute the distribution of cosine similarity be-
tween the gradient of each token and the averaged gradient. The configure MoE-LLaVA-4Top2 with
StableLM-1.6B is set for experiments. We add the proposed STGC to train models, to generate a
fully-trained model from the initial model.

similarity matrix. Then, we define the mean of the similarity matrix as simi. We define the mean
of simi on all experts as gradient consistency, serving as a novel metric to evaluate whether the
gradient directions are consistent within the expert. We define the std deviation of simi on all
experts as gradient consistency std, serving as a metric to evaluate the degree of discreteness in the
gradient consistency among different experts. Additionally, we calculate the number of conflicting
tokens within all experts as N1, and the total number of tokens as N , defining the conflicting ratio
as N1

N . The second step is to update models. We only use the proposed loss to update parameters, to
undisturbedly observe its impact on three metrics.

We present the curve graph of the three metrics obtained from the TensorBoard dashboard in Fig-
ure E. We can observe: (i) as the conflict elimination loss decreases, the gradient consistency in-
creases and the conflicting ratio decreases. This means that STGC effectively reduces gradient
conflicts within the expert and reduces the count of conflicting tokens. (ii) The gradient consistency
std increases, meaning that the difference of gradient consistency among different experts enlarges.
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Figure E: Gradient consistency and conflicting ratio analysis. The configure MoE-LLaVA-4Top2
with StableLM-1.6B is set for experiments. We finish the statistic on one GPU, so the total step
number is 41581. The sampling interval is set to 1 in TensorBoard for the above graph and the
sampling interval is 7 in TensorBoard for Figure ??, so the above graph appears to have a slight
difference with Figure ??.

Conflicting ratio distribution

Layer

Conflicting
Ratio

Figure F: Conflicting ratio distribution on different MoE layers after learning.

We speculate that this is due to the different rates at which gradient consistency increases across var-
ious layers. For example, Figure ?? (b) indicates that deeper layers have faster gradient consistency
increase rate after adding STGC. Figure F also shows that STGC mainly reduces conflicting tokens
at deep layers, and most conflicting tokens emerge in the shallow layers after learning.

Conflicting token after learning: In Figure D, although we observe a significant reduction in con-
flicting tokens for the fully-trained model, we find that there are still some conflicting tokens. As
shown in Figure F, we analyze the layers in which they appear and find that most conflicting tokens
emerge in the shallow layers after learning.

7



Published as a conference paper at ICLR 2025

Table E: Study about Batch Prioritized Routing (BPR). The configure MoE-LLaVA-4Top2 with
StableLM-1.6B is set for experiments. BPR refers to Batch Prioritized Routing.

eval capacity BPR GQA SQAI VQAT POPE MME MMB MM-Vet Avg

MoE-LLaVA 2.0 60.3∗ 62.6 50.1 85.7 1318.2 60.2 26.9 57.6
+STGC 2.0 60.9∗ 62.6 50.7 85.9 1355.1 60.7 28.2 58.2

MoE-LLaVA 0.5 10.2∗ fail 15.2 69.8 fail 6.0 16.4 -
+STGC 0.5 21.1∗ 18.0 13.6 71.9 fail 7.0 20.7 -

MoE-LLaVA 0.5 ✓ 51.0∗ fail 33.4 83.8 1032.4 26.8 22.0 -
+STGC 0.5 ✓ 58.0∗ 57.7 44.3 85.3 1234.3 48.5 22.8 52.8

C.4 ROUTING

SMoE (Jiang et al., 2024) claims that “Surprisingly, we do not observe obvious patterns in the as-
signment of experts based on the topic.” As shown in Figure B, we also observe that the distribution
of expert loading across some different datasets is similar, but we notice diversity in token-level
activated pathways for different datasets. We suspect that the distribution of expert loading may not
be sufficiently accurate to reflect the routing of diverse data. Then, V-MoE (Riquelme et al., 2021)
and MoNE (Jain et al., 2024) focus on leveraging the token importance difference to further accel-
erate MoE. V-MoE proposes Batch Prioritized Routing to discard unimportant tokens and MoNE
proposes Expert Preferred Router to allocate more tokens to experts with a larger volume. We focus
on avoiding token interference during training to enhance performance, which is parallel to the focus
of V-MoE or MoNE. Thus, theoretically, STGC could be integrated with V-MoE or MoNE. Since
MoNE does not have the official open-source code, we attempt to use Batch Prioritized Routing
from V-MoE for further inference acceleration.

During inference, the eval capacity of MoE is set to 2.0 Lin et al. (2024). As shown in Table E, when
we reduce the capacity from 2.0 to 0.5, the model performance of both MoE-LLaVA and MoE-
LLaVA+STGC declines significantly because many tokens are discarded. When Batch Prioritized
Routing is added, there is a noticeable performance improvement. We find that when the capacity is
reduced to 0.5, regardless of whether Batch Prioritized Routing is added or not, MoE-LLaVA+STGC
shows a significant performance improvement compared to MoE-LLaVA. A possible reason is that
STGC can prevent a single expert from handling too many tokens, thereby reducing the number of
discarded tokens.

D COMPUTATIONAL OVERHEAD

STGC does not increase the inference overhead, while it may need the memory and time overhead
during training. The memory and time overhead mainly results from storing and computing gradi-
ents respectively. We analyze the additional overhead during training from these two aspects.

Training memory overhead. We begin our analysis from StableLM-1.6B. The FFN layer in
StableLM-1.6B contains three linear layers, fcgate ∈ R2048×5632, fcup ∈ R2048×5632, and
fcdown ∈ R5632×2048. As stated in Sec. A, for each token, we only store the gradient it pro-
duces on the bias within the experts. The token count per layer is about 1000, and each token only
goes through one expert, so the gradient matrix stored per layer is G ∈ R1000×(5632+5632+2048).
We need to store a gradient matrix G for each MoE layer, and the MoE layer in StableLM-1.6B is
{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22} (the total layer number is 24). Thus, the theoretical memory
overhead is 12×1000×(5632+5632+2048). The parameter is bfloat16 (2 bytes), so the theoretical
memory overhead is about 0.29 GB, which is significantly less than the memory cost of LLM and
data (usually larger than 10 GB during training). The FFN layer in Phi2-2.7B contains two linear
layers, fc1 ∈ R2560×10240 and fc2 ∈ R10240×2560, and Phi2-2.7B has 16 MoE layers. Thus, the
theoretical memory overhead is 16× 1000× (2560 + 10240), i.e., 0.38 GB.

If storing the token-level gradients on each weight, the required storage overhead is 12 × 1000 ×
(2048×5632+2048×5632+5632×2048) (773 GB) for StableLM-1.6B and 16×1000×(2560×
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Table F: Study about computational overhead. We set MoE-LLaVA-4Top2 with StableLM-1.6B
and Phi2-2.7B to conduct the analysis. One step (s) means the time needed for one step during
training. STGC-full means computing token-level gradients on the weight.

LLM
Memory Time

theoretical overhead train samples
per second

train steps
per second one step (s)

StableLM-1.6B
MoE-LLaVA - 19.796 0.154 6.494

+STGC 0.29 GB 16.283 0.127 7.874 (+21.3%)
+STGC-full 773 GB fail fail fail

Phi2-2.7B
MoE-LLaVA - 10.765 0.084 11.905

+STGC 0.38 GB 8.851 0.069 14.493 (+21.7%)
+STGC-full 1562 GB fail fail fail

Table G: Study about language tasks. Our study investigates the MoE integrated with STGC on
language tasks using the GLUE benchmark (Wang, 2018), with BERT-large as the backbone model.
MoE-8Top2 means a traditional MoE, configured with 8 experts, of which the Top-2 are activated,
i.e., 8Top2. * means the re-implemented results.

COLA MRPC QNLI MNLI RTE Avg

MoE-8Top2 (Guo et al., 2024) 64.5 90.2 92.4 86.7 74.9 81.7
DYNMOE (Guo et al., 2024) 65.2 90.6 92.6 86.4 73.4 81.6

MoE-8Top2∗ 64.5 90.0 93.4 86.9 72.9 81.5
+STGC 66.8 91.2 93.8 87.6 74.7 82.8

10240 + 10240× 2560) (1562 GB) for Phi2-2.7B, which is amazingly large. Thus, it is impossible
to use the token-level gradient on each weight to conduct experiments.

Training time overhead. MoE-LLaVA performs a forward pass, followed by a backward pass to
update parameters. As Section Sec. A mentioned, MoE-LLaVA+STGC freezes parameters except
for the bias within the experts, performs a forward pass, followed by a backward pass to compute
token-level gradients; then, MoE-LLaVA+STGC unfreeze parameters and performs a backward pass
to update parameters. Thus, the main time overhead results from “the computation of token-level
gradients”. We directly report the train samples per second and train steps per second recorded in
“trainer state.json” after training. As shown in Table F, we have reduced the additional time over-
head to about 20% through some engineering tricks (e.g., only computing the token-level gradient
on the bias and freezing parameters that do not require gradient computation).

E LANGUAGE TASKS

We study the use of STGC on language tasks. Theoretically, the deployment of STGC is not con-
strained to specific task types. To validate the generalization of STGC, we extend its use to lan-
guage tasks. Specifically, we follow DYNMOE Guo et al. (2024) to apply the MoE framework for
language tasks. Specifically, the language tasks adhere to the same settings as those in MoEfica-
tion Zhang et al. (2021) and EMoE (Qiu et al., 2023). The MoE is built upon the BERT-large Devlin
(2018) architecture, employing the MoEfication method, and is fine-tuned on GLUE Wang (2018)
benchmark, which encompasses COLA Warstadt (2019), QNLI Wang (2018), RTE Bentivogli et al.
(2009), MNLI Xu et al. (2020), and MRPC Dolan & Brockett (2005). For MoE configuration, we
set the total count of experts to 8, with the Top-2 experts being activated, and we refer to this con-
figuration as 8Top2. We add the proposed STGC to the MoE. As shown in Table I, the experimental
results show the significant effectiveness of STGC on language tasks.

F THEORETICAL ANALYSIS

We conduct a brief theoretical analysis based on the theory of PCGrad (Yu et al., 2020). Suppose
there are tokens tn and t′n, which pass through the same expert and generate gradients gn and gn′
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on that expert. Let gn = ∇Ln, gn′ = ∇Ln′ , and g = ∇L = gn + gn′ (∇L = ∇θL, where θ
is the parameter). cos(ϕnn′) is the cosine similarity between gradients gn and g′

n. Token gradient
conflicts mean the cosine similarity cos(ϕnn′) < 0, cos(ϕnn′) < 0 potentially leads to an increase
in the loss. When cos(ϕnn′) > 0, the loss decreases strictly, i.e., ∇L < 0, which can reach the
optimal value. Then, different from PCGrad, STGC does not alter the gradients of the tokens but
changes the routing of the tokens to avoid conflicting gradients, with the function of increasing the
cosine similarity cos(ϕnn′) to satisfy the condition cos(ϕnn′) > 0.

The notation || · || represents the L2-norm. During each iteration, if cos(ϕnn′) > 0, a standard
gradient descent step with a learning rate t ≤ 1

L is employed. This results in a strict reduction in the
value of the objective function L(θ), given that the function is convex, unless the gradient ∇L(θ) is
zero, which happens exclusively when θ equals the optimal value θ∗ (Boyd & Vandenberghe, 2004).

We further analyze the loss: Assuming that the gradient of the loss ∇L is Lipschitz continuous with
a Lipschitz constant L, it implies that the Hessian matrix ∇2L(θ) − LI is negative semi-definite.
Leveraging this property, we can perform a quadratic expansion of L around L(θ), leading to the
subsequent inequality:

L(θ+) ≤ L(θ) +∇L(θ)T (θ+ − θ) +
1

2
∇2L(θ)||θ+ − θ||2

≤ L(θ) +∇L(θ)T (θ+ − θ) +
1

2
L||θ+ − θ||2

Then, given θ+ = θ − t · g, the inequality can be expressed as:

L(θ+) ≤ L(θ)− t · gTg +
1

2
Lt2||g||2

(Expanding, using the identity g = gn + gn′ )

= L(θ)− (t− 1

2
Lt2)(||gn||2 + ||gn′ ||2 + 2 · gn · gn′)

(Using the identity cos(ϕnn′) =
gn · gn′

||gn||||gn′ ||
)

= L(θ)− (t− 1

2
Lt2) · (||gn||||gn′ ||)( ||gn||

||gn′ ||
+

||gn′ ||
||gn||

+ 2 · cos(ϕnn′)).

(5)

By setting t ≤ 1
L , we can obtain −(1− 1

2Lt) =
1
2Lt− 1 ≤ 1

2L(1/L)− 1 = −1
2 and Lt2 ≤ t.

Incorporating the bound into the previous expression, we can deduce the following conclusion:

L(θ+) ≤ L(θ)− 1

2
t(||gn||||gn′ ||)( ||gn||

||gn′ ||
+

||gn′ ||
||gn||

+ 2 · cos(ϕnn′)).

If cos(ϕnn′) < − 1
2 · (

||gn||
||gn′ || +

||gn′ ||
||gn|| ),

||gn||
||gn′ || +

||gn′ ||
||gn|| +2 · cos(ϕnn′) will be negative. The bound of

L(θ+) is larger than L(θ), so the loss may increase. If cos(ϕnn′) > 0, ||gn||
||gn′ || +

||gn′ ||
||gn|| +2 ·cos(ϕnn′)

will always be positive. This positivity ensures that the objective function value decreases strictly
with each iteration, suggesting that by repeatedly applying this process, we can converge to the
optimal value. Note that this result only holds when we select a sufficiently small learning rate,
specifically t ≤ 1

L .

The goal of STGC is to increase cos(ϕnn′) to satisfy the condition cos(ϕnn′) > 0. Figure ?? and
Figure E have verified that STGC can increase cos(ϕnn′). Consequently, STGC is beneficial to
the convergence of the objective function towards its optimal value, thereby improving the overall
effectiveness of the model.
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Table H: Study about feature-gradient relationship. The configure MoE-LLaVA-4Top2 with
StableLM-1.6B is set for experiments.

Pearson correlation coefficient

MoE-LLaVA 0.2654
+ STGC 0.3563

Table I: Study about gradient conflicting. z′i,yi
denotes the average logit of tokens for their cor-

responding labels when calculating the main loss. z′i,yj
means the average logit of tokens on the

labels of their conflicting tokens (meaning tokens having similar feature but divergent gradients).
z′i,o denotes the average logit of tokens for all other labels, excluding the aforementioned labels.

z′i,yi z′i,yj z′i,o

Value 23.4885 14.5673 -0.6793

G GRADIENT CONFLICTING PHENOMENON

G.1 FEATURE-GRADIENT RELATIONSHIP

Similar features do not necessarily imply similar gradients (Mu et al., 2020). When tokens have
highly similar features (similar tokens), the router can assign them to one expert. However, they may
have dissimilar gradients. STGC can be understood as learning token features based on token-level
gradient relationships. After using STGC, the features of tokens become less similar when they have
dissimilar (conflicting) gradients, for being routed to different experts. To verify this, we sample
some data for analysis. Suppose there are N tokens and the cosine similarity is S ∈ RN×N between
features of these tokens. We flatten S ∈ RN×N to S̄ ∈ RN2

. Meanwhile, we calculate the cosine
similarity Sg ∈ RN×N between gradients of these tokens, flattening it to S̄g ∈ RN2

. We compute
the Pearson correlation coefficient between S̄ and S̄g to measure whether feature relationships reveal
gradient relationships. We select MoE-LLaVA and MoE-LLaVA + STGC for our experiments. As
shown in Table H, the experimental results indicate that token features and gradients have a higher
correlation after using STGC.

G.2 POSSIBLE REASON FOR TOKEN GRADIENT CONFLICTING

In theory, similar tokens will be assigned to the same expert by a feature-based router. We focus
on token gradient conflicting within an expert, so we want to further conduct a study about the phe-
nomenon “similar tokens have divergent gradients”. In specific, we compute the cosine similarities
between token features in an expert as S. We then compute the cosine similarities between token
gradients in an expert as Sg . We directly compute the difference S′ = S − Sg . When S′

i,j is large,
token ti and token tj has a high feature similarity but a low gradient similarity, meaning that the
phenomenon “similar tokens have divergent gradients” is significant. We find that S′

i,j is large when
two tokens are confusing. Suppose labels of two tokens ti on yi are yi and yj respectively. z is the
logit of each token for computing the main loss. zi,yi

means the logit of token ti on yi. We define
that ti and tj are confusing when zi,yj

and zj,yi
are high.

For example, in one expert, S′ has the maximum at S′
78,51. S78,51 is 0.9316 and S′

78,51 is -0.6875.
t78 has the label 13 and t51 has the label 11. We find that t78 (t51) has a second highest logit on 11
(13). This is somewhat similar to the class confusion phenomenon in traditional visual classification
tasks. For example, in visual classification, dog and cat are visually similar and they have similar
features, but the learning of cat may lead to the misclassification of dog.

We further sample some pairs of tokens to conduct a statistical verification. Each pair of tokens
{ti, tj} has the significant feature and gradient cosine similarity difference S′

i,j . zi,yi means the
logit of token ti on yi. In addition, removing zi,yi and zi,yj , we record the mean logit in zi as zi,o.
z′i,yj

is the average of zi,yi . As shown in the below table, z′i,yi
is significantly higher than z′i,o, and

close to z′i,yi
, which validates the above hypothesis.
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