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ABSTRACT

In this paper, we propose a new algorithm for addressing the problem of two-sided
matching markets with complementary preferences, where agents’ preferences are
unknown a priori and must be learned from data. The presence of complementary
preferences can lead to instability in the matching process, making this problem
challenging to solve. To overcome this challenge, we formulate the problem as
a bandit learning framework and propose the Multi-agent Multi-type Thompson
Sampling (MMTS) algorithm. The algorithm combines the strengths of Thompson
Sampling for exploration with a double matching technique to achieve a stable
matching outcome. Our theoretical analysis demonstrates the effectiveness of
MMTS as it is able to achieve stability at every matching step and has a sublinear
Bayesian regret over time. Our approach provides a useful method for addressing
complementary preferences in real-world scenarios.

1 INTRODUCTION

Two-sided matching markets have been a mainstay of theoretical research and real-world applications
for several decades since the seminal work by (Gale and Shapley, 1962). Matching markets are used
to allocate indivisible “goods” to multiple decision-making agents based on mutual compatibility
as assessed via sets of preferences. Matching markets embody a notion of scarcity in which the
resources on both sides of the market are limited. One of the key concepts that contribute to the
success of matching markets is stability, which criterion ensures that all participants have no incentive
to block a prescribed matching (Roth, 1982). Matching markets often consist of participants with
complementary preferences that can lead to instability (Che et al., 2019). Examples of complementary
preferences in matching markets include: firms seeking workers with skills that complement their
existing workforce, sports teams forming teams with players that have complementary roles, and
colleges admitting students with diverse backgrounds and demographics that complement each other.
Studying the stability issue in the context of complementary preferences is crucial in ensuring the
successful functioning of matching markets with complementarities.

In this paper, we propose a novel algorithm and present an in-depth analysis of the problem of
complementary preferences in matching markets. Specifically, we focus on a many-to-one matching
scenario and use the job market as the example. In our proposed model, there are a set of agents (e.g.,
firms), each with limited quota, and a set of arms (e.g., workers), each of which can be matched to at
most one agent. Each arm belongs to a unique type, and each agent wants to match with a minimum
quota of arms from each type. This leads to complementarities in agents’ preferences. Additionally,
the agents’ preference of arms from each type is unknown a priori and must be learned from data,
which we refer to as the problem of competing matching under complementary preference (CMCP).

Our first result is the formulation of CMCP into a bandit learning framework as described in (Latti-
more and Szepesvári, 2020). Using this framework, we propose a new algorithm, the Multi-agent
Multi-type Thompson Sampling (MMTS), to solve CMCP. Our algorithm builds on the strengths
of Thompson Sampling (TS) in terms of exploration and further enhances it by incorporating a
double matching technique to find a stable solution under CMCP. The TS algorithm, as described
in (Thompson, 1933; Agrawal and Goyal, 2012; Russo et al., 2018), can effectively address the
incapable exploration problem in the competing matching problem, as described in (Liu et al., 2020),
by using the randomized sampling, also illustrated in Section 3.2. Unlike the upper confidence bound
(UCB) algorithm, TS method can achieve sufficient exploration by incorporating a deterministic,
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non-negative bias inversely proportional to the number of matches into the observed empirical means.
Furthermore, the double matching technique proposed in this paper uses two stages of matching to
satisfy both the type quota and total quota requirements. These two stages mainly consist of using the
deferred acceptance (DA) algorithm from (Gale and Shapley, 1962), which is easy to be implemented.

Second, we present a theoretical analysis of the proposed MMTS algorithm. Our analysis shows
that MMTS can achieve stability at each matching step and show the incentive compatibility (IC)
of the MMTS. The proof of stability is obtained through a two-stage design of the double matching
technique, and the proof of IC is obtained through the lower bound of the regret. To the best of our
knowledge, MMTS is the first algorithm to achieve stability and IC in the CMCP.

Finally, our theoretical results indicate that MMTS can achieve a Bayesian total regret that scales
with the square root of the time horizon (T ) and is nearly linear in the total quota of all firms (Q).
Furthermore, we find that the Bayesian total regret only depends on the square root of the maximum
number of workers (Kmax) in one type rather than the square root of the total number of workers
(
∑

m Km) in all types. This is a more challenging setting than that considered in previous works
such as (Liu et al., 2020; Jagadeesan et al., 2021), which only consider a single type of worker in the
market and a quota of one for each firm. To address these challenges, we use the eluder dimension
(Russo and Van Roy, 2013) to measure the uncertainty set widths and bound the instantaneous regret
for each firm, and use the union bound of concentration results to measure the probability of bad
events occurring to get the final regret. Bounding the uncertainty set width is the key step for deriving
the sublinear regret upper bound of MMTS.

The rest of this paper is organized as follows. In Section 2, we introduce the necessary components
in the problem of CMCP. Meanwhile, we also state the challenges of this problem. In Section 3, we
provide the MMTS algorithm, its comparison with other algorithms, and show the incapability of
the UCB algorithm in CMCP. Then we present the stability, regret upper bound, and the incentive-
compatibility of the MMTS in Section 4. Finally, in Section 5, we show two examples, present the
distribution of learning parameters, and demonstrate the robustness of MMTS in large markets.

2 PROBLEM

2.1 PROBLEM FORMULATION

We now describe the problem formulation of the Competing Matching under Complementary
Preferences problem (CMCP). Using the scenario of worker-firm matching as our running example,
we introduce the notation and key components of the CMCP. We define T as the time horizon and
without loss of generality, we assume it is known1. We denote [N ] = [1, 2, ..., N ] where N ∈ N+.
Define the bold x ∈ Rd be a d-dimensional random vector.

(I) Environment. We consider a centralized platform with N firms, denoted by the set N =
{p1, p2, ..., pN}, and various types of workers, represented by sets Km = {am1 , am2 , ...amKm

}, for
m ∈ [M ], where Km is the number of m-th type workers. Each firm pi has a specific minimum
type quota qmi to recruit m-type workers, and a maximum total quota Qi (e.g., seasonal headcount in
company), for all i ∈ [N ],m ∈ [M ] and we assume

∑M
i=1 q

m
i ≤ Qi. Additionally, we define the total

market quota as Q =
∑N

i=1 Qi and the total number of available market workers as K =
∑M

m=1 Km.
It is assumed without loss of generality that the total number of quotas is greater less than the total
number of available market workers (Q≪ K) and T is large.

(II) Preference. We give preferences of both sides of the market. There are two preference lists: the
preferences of workers towards firms, and the preferences of firms towards workers.

a. Preferences of m-type workers towards firms πm : Km 7→ N ,∀m ∈ [M ]. We assume that
preferences of types of worker to firms are fixed, known over time. For instance, workers submit
their preferences over different firms to the platform. We denote πm

j,i as the rank order of firm pi
in the preference list of m− type worker amj , and assume that there are no ties in the rank orders2.
The centralized platform knows the fixed preferences of m− type worker towards firms, denoted as

1The unknown T can be handled with the well-known doubling trick (Auer et al., 1995).
2The strict preference is not necessary for stable matching and regret metric. However, for simplicity, we

assume preference is strict, which avoids the multiple optimal stable matching solutions even they are equivalent.
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πm
j ⊆ {πm

j,1, ..., π
m
j,N} ∪ {aj},∀aj ∈ Km and m ∈ [M ], and singleton aj represents the worker’s

preference to remain unmatched. In other words, πm
j is a subset of the permutation of [N ] plus the

worker itself. And πm
j,i < πm

j,i′ implies that m− type worker amj prefers firm pi over firm pi′ and as
a shorthand, denoted as pi <m

j pi′ . This known worker-to-firm preference is a mild and common
assumption in the matching market literature (Liu et al., 2020; 2021; Li et al., 2022).

b. Preferences of firms towards m − type workers rm : N 7→ Km,∀m ∈ [M ]. The true unknown
preferences of firms towards workers are fixed over time. The goal of the platform is to infer these
unknown preferences through historical matching data. We denote rmi,j as the true rank of worker amj
in the preference list of firm pi, and assume there are no ties. pi’s preferences towards workers is
represented by rmi , which is a subset of the permutation of [Km] plus the firm pi itself, representing
the firm’s preference to remain unmatched. Here rmi,j < rmi,j′ implies that firm pi prefers worker amj
over worker amj′ , and the notation amj <m

i amj′ similarly denotes this preference.

Type 1

Ty
pe

 2

Figure 1: MP v.s. JP.

We refer to the above preference setting as
marginal preferences (MP). To illustrate the dis-
tinction between marginal preferences and joint
(couple) preferences (JP) (Che et al., 2019), we
provide an example in Figure 1 involving two
types of workers as an example. In the MP set-
ting, preferences of each type of worker are inde-
pendent of those of the other types. Here we use
x-axis to represent the firm pi’s preference levels
or called utility (µ1

i ∈ [0, 1]) over type 1 work-
ers (a1, a2), shown as red circles, and we use
the y-axis to represent the firm pi’s preference
levels (µ2

i ∈ [0, 1]) over type 2 workers (b1, b2),
shown as blue triangles. The first row of Figure
1 represents the MP setting, while the second
row represents the JP that the MP cannot cover.
In the MP setting, we show three possible patterns of combination matchings, {(a1, b2), (a2, b1)}
where two types of workers a and b are matched by firm, concatenated a solid line. Besides, a dashed
arrow (a1 → a2) is used to represent the preference over matching, indicating that a1 <i a2. Thus,
the first row can be captured by the MP setting as the preference is consistent across the two types
of workers. In contrast, the second row cannot be represented by the MP as it is not possible to
compare the preference between (a1, b2) and (a2, b1) using {(a1 > a2), (b2 < b1)}. This MP setting
is similar to the responsive preferences as defined in (Roth, 1985). Here we only consider the MP
and the finding of efficient algorithm to solve the JP problem is notoriously difficult and unsolved
(Che et al., 2019) and deserved more efforts.

(III) Matching Policy. At time t, for each firm pi, um
t (pi) : N 7→ Km ∪ ∅ is a mapping function

that satisfies um
t (pi) ∈ Km ∪ ∅,∀i ∈ [N ], where ∅ represents a null set. At each time t, the platform

assigns m− type workers um
t (pi) for firm pi. We define um

t (pi) as the function that maps each firm
pi in the set N to a set of m − type workers Km at time t. The assignments um

t (pi) for each firm
are not only based on the firm’s proposals (submitted preferences), but also on the competing status
with other firms and workers’ preferences. A centralized platform, such as LinkedIn or Amazon
Mechanical Turks, coordinates this matching process in this competitive environment.

(IV) Stable Matching. The concept of stability is a widely used notion in the literature of stable
matching, which refers to the property that no pair of agents (e.g., firms and workers) would mutually
prefer each other over their current match (Gale and Shapley, 1962; Roth, 2008). This property is
typically formalized as the absence of blocking pairs in the matching literature, which are pairs of
agents that would both prefer to be matched with each other over their current match. The formal
definition is illustrated as below.

Definition 1. (Blocking pair). A matching u is blocked by a firm pi if pi prefers being single to being
matched with u(pi), i.e. pi >i u(pi). A matching u is blocked by a pair of firm and worker (pi, aj) if
they each prefer each other to the partner they receive at u, i.e. aj >i u(pi) and pi >j u

−1(aj).

Roth (2008) stated if some preferences are not strict, arbitrarily breaking ties lets each agent fill out a strict
preference list.
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Definition 2. (Stable Matching). A matching u is stable if it isn’t blocked by any individual or pair
of worker and firm.

In this setting, however, each firm has a minimum quota vector qi = [q1i , ..., q
M
i ] ∈ RM for each

type of worker to fill. Therefore, we define the concept of stability as the absence of "blocking
pairs" across all types of workers and firms. Based on the definition of the stable matching, we also
discussed the feasibility of the stable matching in the Appendix A. Here without loss of generality,
we assume there exists the stable matching in the scheme of the complementary preference.

(V) Matching Reward. At time t, when firm pi is matched with worker amj , the firm receives a
stochastic reward ymi,j(t) which is assumed to be the true matching reward µm

i,j(t) plus a noise ϵmi,j(t),

ymi,j(t) = µm
i,j(t) + ϵmi,j(t),∀i ∈ [N ],∀j ∈ [Km],∀m ∈ [M ],∀t ∈ [T ], (1)

where we assume that ϵmi,j(t)’s are independently drawn from a sub-Gaussian random variable with
parameter σ. That is, for every α ∈ R, it is satisfied that E[exp(αϵmi,j(t))] ≤ exp(α2σ2/2). The goal
of the centralized platform is to design a learning algorithm that achieves stable matchings through
learning the firms’ preferences for multiple types of workers preciously from the previous matchings.

(VI) Regret. Based on model (1), we can observe a matching reward ym
i (t) := yi,um

t (pi)(t) at time t
when firm pi is matched with the assigned m− type workers um

t (pi). The mean reward µi,um
t (pi)(t)

represents the noiseless reward (or mean utility) of firm pi wrt its assigned matching m− type workers
um
t (pi) at time t. We define the cumulative firm-optimal regret with m-type worker for firm pi as

Rm
i (T, θ) :=

T∑
t=1

µi,um
i
−

T∑
t=1

µi,um
t (pi)(t), (2)

where we denote θ as the sampled problem instance, and it is independently generated from a
distribution Θ. This firm-optimal regret represents the difference between the capability of a policy
um
i := {um

t (pi)}Tt=1 in hindsight and the optimal stable matching oracle policy um
i . As each

firm must recruit M types of workers with total quota Qi, the total cumulative firm-optimal stable
regret for firm pi is defined as the sum of this difference over all types of workers, Ri(T, θ) :=

E
[∑M

m=1

∑T
t=1 µi,um

i
−
∑M

m=1

∑T
t=1 µi,um

t (pi)(t)|θ
]
. Finally, the Bayesian total cumulative firm-

optimal stable regret for all firms is defined as the expected value of the total cumulative firm-optimal
stable regret over all firms, R(T ) := Eθ∈Θ

[∑N
i=1 Ri(T, θ)

]
. Our goal is to design an algorithm that

minimizes this value over the time horizon T .

2.2 CHALLENGES AND SOLUTIONS

When preferences are unknown a priori in matching markets, the stability issue while satisfying
complementary preferences and quota requirements is a challenging problem due to the interplay of
multiple factors.

Challenge 1: How to design a stable matching algorithm for markets with complementary
preferences? This is a prevalent issue in real-world applications such as hiring workers with
complementary skills in hospitals and high-tech firms or admitting students with diverse backgrounds
in college admissions. Despite its importance, no implementable algorithm is currently available to
solve this challenge. In this paper, we propose a novel approach to resolving this issue by utilizing a
double matching (Algorithm 3) to marginalize complementary preferences and achieve stability. Our
algorithm can efficiently learn a stable matching solution using historical matching data, providing a
practical solution to the problem of competing matching under complementary preferences.

Challenge 2: How to balance the exploration and exploitation to achieve the sublinear regret?
The centralized platform must find a way to collect more firm-worker matching feedback while also
achieving optimal matching at each time step. Compared to traditional matching algorithms, the
CMCP is more challenging as it requires more time to balance this trade-off. In previous research,
the classic UCB method could not achieve sublinear regret in some scenarios (Liu et al., 2020). We
will also show an example in Section 3.2 to illustrate it. To overcome this challenge, we propose the
use of TS algorithm which allows for random exploration and achieves sublinear regret.
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Algorithm 1: Multi-agent Multi-type Thompson Sampling (MMTS)

Input :Time horizon T ; firms’ priors (αm,0
i ,βm,0

i ),∀i ∈ [N ],∀m ∈ [M ]; workers’ preference
πm,∀m ∈ [M ].

1 for t ∈ {1, ..., T} do
2 STEP 1: SAMPLING STAGE
3 Get all firms’ estimated rankings r̂mi (t) and estimated mean reward µ̂m

i (t) over all types
of workers, ∀i ∈ [N ],m ∈ [M ] from the Sampling stage in Algo 2.

4 STEP 2: DOUBLE MATCHING STAGE
5 Get the matching result um

t (pi),∀i ∈ [N ],m ∈ [M ] from the double matching in Algo 3.
6 STEP 3: COLLECTING REWARDS STAGE
7 Each firm receives its corresponding rewards from all types of workers ym

i (t).
8 STEP 4: UPDATING BELIEF STAGE
9 Based on received rewards, firms update their posterior belief.

Challenge 3: How to solving CMCP with quota constraints in large markets? Unlike the
classic DA algorithm (Gale and Shapley, 1962), our problem involves type-specific and total quota
requirements for each firm. Can we find a stable matching algorithm that satisfies these constraints
while also adapting to unknown preferences? Furthermore, can this algorithm be applied in large
markets with efficiency? We address these challenges by proposing a novel algorithm, double
matching, that effectively balances exploration and exploitation while can also be partially parallel
implemented.

3 ALGORITHMS

In this section, we propose the Multi-agent Multi-type Thompson Sampling algorithm (MMTS),
which aims to learn the true preferences of all firms over all types of workers, achieve stable matchings,
and maximize the firms’ Bayesian expected reward. We provide a detailed description of the algorithm
and demonstrate its benefits of using TS. Besides, we also discuss the computational complexity of
MMTS in Appendix B.

3.1 ALGORITHM DESCRIPTION

The MMTS in Algorithm 1 is composed of four stages, sampling stage, double matching stage,
collecting reward stage, and updating belief stage. The common knowledge for centralized platform
is the time horizon T , the number of participants, workers’ preference {πm}Mm=1, and firms’ learning
priors {(αm,0

i ,βm,0
i )}Mm=1,∀i ∈ [N ]. Then at each matching step t, MMTS iterates these four steps.

Step 1: Sampling Stage. For each firm pi, it samples the estimated mean reward µ̂m
i,j(t) for

m − type worker amj from a specific distribution Pm
j (e.g., Gaussian or beta distribution) with

learned parameters (αm,t−1
i,j , βm,t−1

i,j ) from the previous time step t − 1, which is µ̂m
i,j(t) ∼

P(αm,t−1
i,j , βm,t−1

i,j ),∀i ∈ [N ],∀m ∈ [M ],∀j ∈ [Km]. Besides, for the firm pi, it sorts these
type-specific workers based on the sampled mean reward {µ̂m

i,j(t)}
Km
j=1 in descending order and gets

the estimated rank r̂mi (t) for m− type workers. After that, all firms submit their estimated ranks to
the centralized platform. The above steps are shown in Algorithm 2.

Step 2: Double matching stage. With the shared estimated mean rewards µ̂(t) := {µ̂m
i,j(t)}i,j,m

and estimated ranks r̂(t) := {r̂mi (t)}i,m from firms at time t, the double matching algorithm takes
these ranks and quota constraints from firms as input and match firms and workers in two-stage
matchings as shown in Algorithm 3. The goal of the first match is to allow all firms to satisfy their
minimum type-specific quota qmi first. The second match is to fill the left-over positions Q̃i (defined
below) for each firm and match firms and workers without type consideration. Before implementing
the second match, we have to sanitize the status quo as a priori.

First Match: The platform implements the type-specific DA in Appendix Algorithm 4 given quota
requirement {qmi }Mm=1,∀i ∈ [N ]. The matching road map starts from matching all firms with type
from 1 to M and returns the matching result {ũm

t (pi)}m∈[M ], which can be implemented in parallel.
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Algorithm 2: Sampling Stage

Input :Time horizon T ; firms’ priors (αm,0
i ,βm,0

i ),∀i ∈ [N ],∀m ∈ [M ].
1 Sample: Sample mean reward µ̂m

i,j(t) ∼ P(α
m,t−1
i,j , βm,t−1

i,j ), ∀i ∈ [N ], ∀m ∈ [M ], ∀j ∈ [Km].
2 Sort: Sort estimated mean rewards µ̂m

i,j(t) in descending order and get the estimated rank r̂mi (t).
3 Output: The estimated rank r̂mi (t) and the estimated mean rewards µ̂m

i (t), ∀i ∈ [N ],m ∈ [M ].

Algorithm 3: Double Matching
Input :firms’ estimated rank r̂mi (t), estimated mean µ̂m

i (t), type quota qmi ,∀m ∈ [M ], i ∈ [N ]
and total quota Qi,∀i ∈ [N ]; workers’ preference {πm}m∈[M ].

1 STEP 1: FIRST MATCH
2 Submit all firms’ estimated ranks r̂mi (t) and all workers’ preferences πm to the platform.
3 Run the firm choice DA in Algo 4 and return the matching ũm

t (pi) for firms over all types.
4 STEP 2: SANITIZE QUOTA
5 Sanitize whether all firms’ positions have been filled. For each company pi, if

Qi −
∑M

m=1 q
m
i > 0, set the left quota as Q̃i ← Qi −

∑M
m=1 q

m
i for firm pi.

6 STEP 3: SECOND MATCH

7 if Q̃ ̸= 0 then
8 Submit left quota {Q̃i}i∈[N ], estimated means µ̂(t), and workers’ preferences {πm}m∈[M ]

to the centralized platform. Run the firm choice DA Algo 5 and return the matching ŭt(pi).
9 else

10 Set the matching ŭt(pi) = ∅.
Output :The matching um

t (pi)← Merge(ũm
t (pi), ŭt(pi)) for all firms.

Sanitize Quota: After Step 1’s first match, the centralized platform will sanitize each firm’s left-over
quota Q̃i = Qi −

∑M
m=1 q

m
i , ∀i ∈ [N ]. If there exists a firm pi, s.t., Q̃i > 0, then the platform will

step into the second match. For those firms like pi whose leftover quota is zero Q̃i = 0, their matched
workers will skip the second match.

Second Match: When rest firms and workers continue to join in the second match, the centralized
platform implements the standard DA in Algorithm 5 without type consideration. That is, each
firm will re-rank the rest M types of workers who do not have a match in the first match, and fill
available vacant positions. It is worth noting that in Algorithm 5, each firm will not propose to the
previous workers who rejected him/her and already matched worked in Step 1. Then firm pi gets
the corresponding matched workers ŭt(pi) in the second match. Finally, the centralized platform
merges the first and second results to obtain a final matching for firm pi with m − type worker
um
t (pi) = Merge(ũm

t (pi), ŭt(pi)),∀i ∈ [N ],m ∈ [M ] at time step t.

Step 3: Collecting Rewards Stage. When the platform broadcasts the matching result um
t (pi) to all

firms, each firm then receives its corresponding stochastic reward ym
i (t),∀i ∈ [N ],m ∈ [M ].

Step 4: Updating Belief Stage. After receiving these noisy rewards, firms update their belief (poste-
rior) parameters as follows, (αm,t

i ,βm,t
i ) = Update(αm,t−1

i ,βm,t−1
i ,ym

i (t)),∀i ∈ [N ],∀m ∈ [M ].

In summary, Algorithm 2 samples mean rewards and ranks based on historical matching data.
Algorithm 3 computes the stable matching based on the estimated rewards and ranks from the
sampling step. Step 3 (collecting rewards) and Step 4 (updating belief) update learning parameters
based on received feedback from the assigned matching.

3.2 INCAPABLE EXPLORATION

We show why the TS has an advantage over the UCB style method in estimating the ranks of workers.
We even find that centralized UCB does achieve linear firm-optimal stable regret in some cases and
show it in Appendix C with detailed experimental setting and analysis.Why TS is capable of avoiding
the curse of linear regret? By the property of sampling shown in Algorithm 2. Firm pi’s initial
prior over worker ai is a uniform random variable, and thus rj(t) > ri(t) with probability µ̂j ≈ µj ,
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rather than zero! This differs from the UCB style method, which cannot update ai’s upper bound
due to lacking exploration over ai. The benefit of TS is that it can occasionally explore different
ranking patterns, especially when there exists such a previous example. In Figure 2(a), we show
a quick comparison of centralized UCB (Liu et al., 2020) in the settings shown above and MMTS
when M = 1, Q = 1, N = 3,K = 3. The UCB method occurs a linear regret for firm 1 and firm 2.
However, TS method suffers a sublinear regret in firm 1 and firm 2.

4 PROPERTIES OF MMTS: STABILITY AND REGRET

In Section 4.1, we demonstrated the double matching technique providing the stability property for
CMCP. Then we established the Bayesian regret upper bound for all firms when they follow the
MMTS in Section 4.2. And we discussed the incentive-compatibility of the MMTS in Appendix G.

4.1 STABILITY

In the following theorem, we show the double matching technique can provide stable matching
solution based on preferences from the firms’ preferences over multiple types of workers provided by
the MMTS and fixed and known preferences from workers.
Theorem 4.1. Given two sides’ strict preferences from firms and M types of workers. The double-
matching procedure can provide a firm-optimal stable matching solution ∀t ∈ [T ].
Proof. The detailed proof can be found in Appendix Section E.
Remark. The sketch proof of the stability property of MMTS is two steps, naturally following the
design of MMTS. The first match is conducted in parallel, and the output is stable and guaranteed by
(Gale and Shapley, 1962). As the need of MMTS, before the second match, firms without leftover
quotas (Q̃ = 0) will quit the second round of matching, which will not affect the stability. After
the quota sanitizing stage, firms and leftover workers will continue to join in the second matching
stage, where firms do no need to consider the type of workers designed by double matching. And
the standard DA algorithm will provide a stable result based on each firm’s sub-preference list. The
reason is that for firm pi, all previous possible favorite workers have been proposed in the first match.
If they are matched in the first match, they quit together, which won’t affect the stability property;
otherwise, the worker has a better candidate (firm) and has already rejected the firm pi. So for each
firm pi, it only needs to consider a sub-preference list excluding the already matched workers in the
first match and the proposed workers in the first match. It will provide a stable match in the second
match and won’t be affected by the first match. So the overall double matching is a stable algorithm.

4.2 BAYESIAN REGRET UPPER BOUND

Next we provide the MMTS algorithm’s Bayesian total cumulative firm-optimal regret upper bound.

Theorem 4.2. Assume Kmax = max{K1, ...,KM},K =
∑M

m=1 Km, with probability 1− 1/QT ,
when all firms follow the MMTS algorithm, firms together will suffer the Bayesian expected regret
R(T ) ≤ 8Q log(QT )

√
KmaxT +NK/Q.

Proof. The detailed proof can be found in Appendix F.
Remark. The derived Bayesian regret bound, which is dependent on the square root of the time
horizon T and a logarithmic term, is nearly rate-optimal. Additionally, we examine the dependence of
this regret bound on other key parameters. The first of which is a near-linear dependency on the total
quota Q. Secondly, the regret bound is dependent only on the square root of the maximum worker
Kmax of one type, as opposed to the total number of workers,

∑M
m=1 Km in previous literature (Liu

et al., 2020; Jagadeesan et al., 2021). This highlights the ability of our proposed algorithm, MMTS,
to effectively capture the interactions of multiple types of matching in CMCP. The second term in the
regret is a constant which is only dependent on constants N,K and the total quota Q. Notably, if we
assume that each qi = 1 and Qi = M , then NK/Q will be reduced to NK/(NM) = K/M , which
is an unavoidable regret term due to the exploration in bandits (Lattimore and Szepesvári, 2020).
This also demonstrates that the Bayesian total cumulative firm-optimal exploration regret is only
dependent on the average number of workers of each type available in the market, as opposed to the
total number of workers or the maximum number of workers available of all types. Additionally, if
one Qi is dominant over other firms’ Qi, then the regret will mainly be determined by that dominant
quota Qi and Kmax, highlighting the inter-dependence of this complementary matching problem.
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5 EXPERIMENTS

In this section, we present simulation results to demonstrate the effectiveness of MMTS in learning the
unknown preferences of firms. The overall experiment setup can be found in Appendix I. In Section
5.1, we present two examples and analyze the underlying causes of the interesting phenomenon of
negative regret. In Appendix I.2, we showcase the learning parameters from MMTS and provide
insight into the reasons for non-optimal stable matchings. Additionally, we demonstrate the robustness
of MMTS in large markets in Appendix I.3. All simulation results are run in 100 trials.

5.1 TWO EXAMPLES

Example 1. There are N = 2 firms, M = 2 types of workers, and there are Km = 5 free workers
for each type. The quota qmi for each type and each firm pi is 2, and the total quota/capacity for each
firm is Qi = 5. The time horizon is T = 2000.

Preferences. True preferences from all types of workers to firms and from firms to different types of
workers are all randomly generated. Workers to firms’ preferences {πm}Mm=1 are fixed and known.
We use the data scientist (D/DS) and software developer engineer (S/SDE) as our example. The
following are randomly generated true preferences for two-sided participants,

D1 : p1 ≻ p2, D2 : p1 ≻ p2, D3 : p2 ≻ p1, D4 : p1 ≻ p2, D5 : p2 ≻ p1,

S1 : p1 ≻ p2, S2 : p1 ≻ p2, S3 : p2 ≻ p1, S4 : p2 ≻ p1, S5 : p1 ≻ p2,

π1
1 : D4 ≻ D2 ≻ D3 ≻ D5 ≻ D1, π2

1 : S1 ≻ S4 ≻ S5 ≻ S2 ≻ S3,

π1
2 : D2 ≻ D3 ≻ D1 ≻ D5 ≻ D4, π2

2 : S4 ≻ S2 ≻ S5 ≻ S1 ≻ S3.

(3)

The true matching reward of each worker for the firm is randomly generated from the uniform
distribution U([0, 1]), and shown in Appendix Table 1. In addition, noisy reward ymi,j(t) received
(0 or 1) by each firm is generated by the Bernoulli distribution ymi,j(t) ∼ Ber(µm

i,j(t)), where µm
i,j(t)

is the true matching reward at time t. If two sides’ preferences are known, the firm optimal stable
matching is ū1 = {[D2, D4], [S5, S1, S3]}, ū2 = {[D3, D1, D5], [S4, S2]} by the double matching
algorithm. However, if firms’ preferences are unknown, MMTS can learn these unknown preferences
and attain the optimal stable matching while achieving a sublinear regret for each firm.

MMTS Parameters. We set priors αm,0
i,j = βm,0

i,j = 0.1,∀i ∈ [N ],∀j ∈ [Km],∀m ∈ [M ] to avoid
too strong impact of the prior information. Each firm follows the MMTS algorithm to propose
multiple types of workers. The update formula for each firm pi at time t of the m-type worker amj
is αm,t+1

i,j = αm,t
i,j + 1 if the worker amj is matched with the firm pi, that is amj ∈ um

t (pi), and the
received reward for firm pi is ymi,j(t) = 1; otherwise αm,t+1

i,j = αm,t
i,j ; βm,t+1

i,j = βm,t
i,j + 1 if the

worker amj is matched with the firm pi and the received reward for firm pi is ymi,j(t) = 0, otherwise
βm,t+1
i,j = βm,t

i,j . For other unmatched pairs (firm, m− type worker), the parameters retain.

Results. In Figure 2(b), we find that firm 1, 2 achieve a total negative sublinear regret and a total
positive sublinear regret separately (solid lines). However, we find that due to the incorrect rankings
provided by firms, firm 1 benefits from this non-optimal matching result in terms of negative sublinear
regret specifically for matching with type 1 workers (blue dashed line). More discussion about the
negative regret phenomenon is available in Appendix I.1.

Example 2. We enlarge the market by expanding the DS market, particularly wanting to explore
interactions between two types of workers. N = 2 firms, M = 2 types, K1 = 20 (DS) and K2 = 6
(SDE). The DS quota for two firms is q11 = q12 = 1 and the SDE quota for two firms is q21 = q22 = 3,
and the total quota is Qi = 6 for both firms. Preferences from firms to workers and workers to firms
are randomly generated. Therefore, the matching result for each firm should consist of three workers
for each type, and type II workers will be fully allocated in the first match, and the rest workers are
all type II workers. All MMTS initial parameters are the same as in Example 1.

Results. In Figure 2(c), we show when excessive type II workers exist, and type I workers are
just right. Both firms can achieve positive sublinear regret. We find that since type II worker
K2 = q21 + q22 = 6, which means in the first match stage, those type II workers are fully allocated into
two firms. Thus, in the second match stage, the left quota would be all allocated to the type I workers
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Figure 2: Left: A comparison of centralized UCB and TS. Right: firms and their sub-types regret for
Example 1 and, firms and their sub-types regret for Example 2.

for two firms. Two dotted lines represent type II regret suffered by two firms. Both firms can quickly
find the type II optimal matching since finding the optimal type II match just needs the first stage of
the match. However, the type I workers’ matching takes a longer time to find the optimal matching
(take two stages), represented by dashed lines, and both are positive sublinear regret. Therefore, these
two types of matching are fully independent, which is different from Example 1.

6 RELATED WORKS

We review multiple works in the literature, including matching while learning, multi-agent systems,
assortment optimization, and matching markets. More can be found in Appendix J.

Matching while Learning. Liu et al. (2020) considers the multi-agent multi-armed competing
problem in the centralized platform with explore-then-commit (ETC) and upper confidence bound
(UCB) style algorithms where preferences from agents to arms are unknown and need to be learned
through streaming interactive data. Jagadeesan et al. (2021) considers the two-sided matching
problem where preferences from both sides are defined through dynamic utilities rather than fixed
preferences and provide regret upper bounds over different contexts settings, and Min et al. (2022)
apply it to the Markov matching market. Cen and Shah (2022) show that if there is transfer between
agents, then the three desiderata (stability, low regret, and fairness) can be simultaneously achieved.
Li et al. (2022) discuss the two-sided matching problem when the arm side has dynamic contextual
information and preference is fixed from the arm side and propose a centralized contextual ETC
algorithm to obtain the near-optimal regret bound. Besides, there are a plethora of works discussing
the two-sided matching problem in the decentralized markets (Liu et al., 2021; Basu et al., 2021;
Sankararaman et al., 2021; Dai and Jordan, 2021a;b; Dai et al., 2022). In particular, Dai and Jordan
(2021b) study the college admission problem and provides an optimal strategy for agents, and shows
its incentive-compatible property. Moreover, Jagadeesan et al. (2022) explores the phenomenon of
the two-sided matching problem with two competing markets.

7 CONCLUSION AND FUTURE WORK

In this paper, we proposed a new algorithm, MMTS to solve the CMCP. MMTS builds on the
strengths of TS for exploration and employs a double matching method to find a stable solution.
Through theoretical analysis, we show the effectiveness of the algorithm in achieving stability at
every matching step, achieving a sublinear Bayesian regret over time, and exhibiting the IC property.

There are several directions for future research. One is to investigate more efficient exploration
strategies to reduce the time required to learn the agents’ unknown preferences. Another is to examine
scenarios where agents have indifferent preferences, and explore the optimal strategy for breaking ties.
Additionally, it is of interest to incorporate real-world constraints such as budget or physical locations
into the matching process, which could be studied using techniques from constrained optimization.
Moreover, it is interesting to incorporate side information, such as agents’ background information,
into the matching process. This can be approached using techniques from recommendation systems or
other machine learning algorithms that incorporate side information. Finally, it would be interesting
to extend the algorithm to handle time-varying matching markets where preferences and the number
of agents may change over time.
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SUPPLEMENT TO TWO-SIDED COMPETING MATCHING MARKETS
WITH COMPLEMENTARY PREFERENCES

This supplement is organized as follows. In Section A, we discuss the feasibility and its corresponding
assumption of the stable matching. In Section B, we show the computational complexity of MMTS.
In Section C, we exhibit why the centralized UCB suffers insufficient exploration. In Section D,
we provide the Hoeffding concentration lemma. In Section E, we provide the stability property of
MMTS. In Section F, we give the detailed proof of the regret upper bound of MMTS and decompose
its proof into three parts, regret decomposition (F.1), bound for confidence width (F.2), and bad events’
probabilities’ upper bound (F.3). In Section G.1, we prove MMTS’s strategy-proof property. Besides,
as a reference, we append the DA with type and without type algorithms in Section H. In Section I,
we provide details of experiments and the explanation of the negative regret, and also demonstrate the
robustness of MMTS in large markets. Finally, in Section J, we provided additional related works.

A FEASIBILITY OF THE STABLE MATCHING

The feasibility solution is an interesting and well-discussed problem in the stable matching problem.

Assumption of the feasibility: In the finite market, it is the marginal preference assumption for
the feasibility. But for the large market, it requires more assumptions such as the substitutability
and indifferences, etc,. The difference between the infinite and finite (Azevedo and Hatfield, 2018;
Greinecker and Kah, 2021) lies in matching problem and the techniques they use. In the infinite
market, we assume that there is an uncountable number of agents on both sides of the market. This
essentially means that the number of agents is so large that it can be treated as continuous, and you
can’t assign a specific numerical value to it. An example of an infinite market could be the matching
of agents is extremely large and cannot be practically counted. In the finite market, the number of
agents on both sides is limited and countable. You can assign a specific numerical value to the number
of agents. An example could be the matching of agents where there is a definite small number of
agents. However, such an exploration in the infinite market is beyond the scope of our current study.

In our case, if the complementary preference can be marginalized (or referred as the responsive
preference (Roth, 1985), (a1, b1) > (a1, b2) as long as b1 > b2, verse visa for (a1, b1) > (a2, b1)
as long as a1 > a2, which is at the top of Figure 1), then based on our proposed double matching
algorithm and Theory 1, it exists such a stable matching solution. However, as discussed in the related
works in Appendix J, if there exists couples in the preference list, which could potentially lead to an
empty set of stable matchings.

Che et al. (2019) discussed that if there exists couples in the preference list in a infinite market (large)
with a continuum of workers, provided that each firm’s choice is convex and changes continuously as
the set of available workers changes. They proved the existence and structure of stable matchings
under preferences exhibiting substitutability and indifferences in a large market.

The difference between our result and (Che et al., 2019)’s result is in two ways: (1) we consider
the finite market and they consider the infinite market. (2) we consider one side’s preferences are
unknown and (Che et al., 2019)’s both sides preferences are known. (3) Che et al. (2019) proved the
existence of stable matching in the infinite market and no algorithm provided. However, in our paper,
we provide the double matching algorithm to find it effectively.

B COMPLEXITY

Based on (Gale and Shapley, 1962; Knuth, 1997), the stable marriage problem’s DA algorithm’s
worst total proposal number is N2 − 2N + 2 = O(N2) when the number of participants on both
sides is equal (N = K). The computational complexity of the college admission matching problem
with quota consideration is also O(NK). MMTS algorithm consists of two steps of matching. The
computational complexity of the first step matching is O(

∑M
m=1 NKm) if we virtually consider

each type’s matching process is organized in parallel. The second step’s computation cost is also
O(
∑M

m=1 NKm). That is, in the first match, if all firms are matched with their best workers,
this step meets the lower bound quota constraints. Then the second match will be reduced to the
standard college admission problem without type consideration and the computational complexity
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is O(N
∑M

m=1 Km). So the total computational complexity is still O(
∑M

m=1 NKm), which is
polynomial in the of firm (N ) and the number of workers

∑M
m=1 Km in the market.

C INCAPABLE EXPLORATION

In this section, we show why the TS strategy has an advantage over the UCB style method in
estimating the ranks of workers. We even find that centralized UCB does achieve linear firm-optimal
stable regret in some cases. In the following example (Example 6 from (Liu et al., 2020)), we show
the firm achieves linear optimal stable regret if follow the UCB algorithm.3

Let N = {p1, p2, p3}, Km = {a1, a2, a3}, and M = 1, with true preferences given below:

p1 : a1 ≻ a2 ≻ a3 a1 : p2 ≻ p3 ≻ p1

p2 : a2 ≻ a1 ≻ a3 a2 : p1 ≻ p2 ≻ p3

p3 : a3 ≻ a1 ≻ a2 a3 : p3 ≻ p1 ≻ p2

The firm optimal stable matching is (p1, a1), (p2, a2), (p3, a3). However, due to incorrect ranking
from firm p3, a1 ≻ a3 ≻ a2, and the output stable matching is (p1, a2), (p2, a1), (p3, a3) based on
the DA algorithm. In this case, p3 will never have a chance to correct its mistake because p3 will
never be matched with a1 again and cause the upper confidence bound for a1 will never shrink and
result in this rank a1 ≻ a3. Thus, it causes that p1 and p2 suffer linear regret.

However, the TS is capable of avoiding this situation. By the property of sampling showed in
Algorithm 2, firm p1’s initial prior over worker a1 is a uniform random variable, and thus r3(t) > r1(t)
(if we omit a2) with probability µ̂3 ≈ µ3, rather than zero! This differs from the UCB style method,
which cannot update a1’s upper bound due to lacking exploration over a1. The benefit of TS is that
it can occasionally explore different ranking patterns, especially when there exists such a previous
example.

In Figure 2(a), we show a quick comparison of centralized UCB (Liu et al., 2020) in the settings
shown above and MMTS when M = 1, Q = 1, N = 3,K = 3. The UCB method occurs a linear
regret in firm 1 and firm 2 and achieves a low matching rate (0.031)4. However, the TS method
suffers a sublinear regret in firm 1 and firm 2 and achieves a high matching rate (0.741). All results
are averaged over 100 trials. See Section C.1 for the experimental details.

C.1 SECTION 3.2 EXAMPLE - INSUFFICIENT EXPLORATION

We set the true matching reward for three firms to (0.8, 0.4, 0.2), (0.5, 0.7, 0.2), (0.6, 0.3, 0.65). All
preferences from companies over workers can be derived from the true matching reward. As we can
view, company p3 has a similar preference over a1 (0.6) and a3 (0.65). Thus, the small difference can
lead the incapable exploration as described in Section 3.2 by the UCB algorithm.

D HOEFFDING LEMMA

Lemma D.1. For any δ > 0, with probability 1 − δ, the confidence width for a m − type worker
amj ∈ Am

i,t at time t is upper bounded by

wm
i,Fm

i,t
(amj ) ≤ min

(
2

√
log( 2δ )

nm
i,j(t)

, 1

)
(C.1)

where nm
i,j(t) is the number of times that the pair (pi, amj ) has been matched at the start of round t.

3Here we only consider one type of worker, and the firm’s quota is one.
4We count 1 if the matching at time t is fully equal to the optimal match when two sides’ preferences are

known. Then we take an average over the time horizon T .
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Proof. Let µ̂m,LS
i,j,t =

∑t
s=1 1(am

j ∈Am
i,s)y

m
i,j(s)

nm
i,j(t)

denote the empirical mean reward from matching firm
pi and m− type worker amj up to time t. Define upper and lower confidence bounds as follows:

Um
i,t(a

m
j ) = min

{
µ̂m,LS
i,j,t +

√
log( 2δ )

nm
i,j(t)

, 1

}
, Lm

i,t(a
m
j ) = max

{
µ̂m,LS
i,j,t −

√
log( 2δ )

nm
i,j(t)

, 0

}
. (C.2)

The the confidence width is upper bounded by min

(
2

√
log( 2

δ )

nm
i,j(t)

, 1

)
.

E PROOF OF THE STABILITY OF MMTS

Proof. We shall prove existence by giving an iterative procedure to find a stable matching.

Part I To start, in the first match loop, based on the double matching procedure, we can discuss M
types of matching in parallel. So we will only discuss the path for seeking the type-m company-worker
stable matching.

Suppose firm pi has qmi quota for m-type workers. We replace each firm pi by qmi copies of pi
denoted by {pi,1, pi,2, ..., pi,qmi }. Each of these pi,h has preferences identical with those of pi but
with a quota of 1. Further, each m-type worker who has pi on his/her preference list now replace
pi by the set {pi,1, pi,2, ..., pi,qmi } in that order of preference. It is now easy to verify that the stable
matchings for the firm m-type worker matching problem are in natural one-to-one correspondence
with the stable matchings of this modified version problem. Then in the following, we only need to
prove that stable matching exists in this transformed problem where each firm has quota 1, which is
the standard stable marriage problem (Gale and Shapley, 1962). The existence of stable matching has
been given in (Gale and Shapley, 1962). Here we reiterate it to help us to find the stable matching in
the second match.

Let each firm propose to his favorite m-type worker. Each worker who receives more than one offer
rejects all but her favorite from among those who have proposed to her. However, the worker does
not fully accept the firm, but keeps the firm on a string to allow for the possibility that some better
firm come along later.

Now we are in the second stage. Those firms who were rejected in the first stage propose to their
second choices. Each m-type worker receiving offers chooses her favorite from the group of new
firms and the firm on her string, if any. The worker rejects all the rest and again keeps the favorite in
suspense. We proceed in the same manner. Those firms who are rejected at the second stage propose
to their next choices, and the m-type workers again reject all but the best offer they have had so far.

Eventually, every m-type worker will have rejected a proposal, for as long as any worker has not
been proposed to there will be rejections and new offers5, but since no firm can propose the same
m-type worker more than once, every worker is sure to get a proposal in due time. As soon as the last
worker gets her offer, the “recruiting" is declared over, and each m-type worker is now required to
accept the firm on her string.

We asset that this set of matching is stable. Suppose firm pi and m-type worker aj are not matched
to each other but firm pi prefers aj to his current matching m-type worker aj′ . Then pi must have
proposed to aj at some stage (since the proposal is ordered by the preference list) and subsequently
been rejected in favor of some firm pi′ that aj liked better. It is clear that aj must prefer her current
matching firm pi′ and there is no instability/blocking pair.

Thus, each m-type firm-worker matching established on the first match is stable. Then each firm pi’s
matching object in the first match with quota qmi can be recovered as grouping all matching objects
of firm {pi,h}

qmi
h=1.

Part II To start the second match, we first check the left quota Q̃i for each firm. If the left quota
is zero for firm pi, then firm pi and its matching workers will quit the matching market and get its
stable matching object. Otherwise, the left firm will continue to participate in the second match.

5Here we assume the number of firms is less than or equal to the number workers, and those workers
unmatched finally will be matched to themselves and assume their matching object is on the firm side.
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In the second match, preferences from firms to workers are un-categorized. Based on line 19 in
Algorithm 3, all types of workers will be ranked to fill the left quota. Thus, it reduces to the problem
in part I, and the result matching in the second match is also stable. What is left to prove is that
the overall double matching algorithm can provide stable matching. In the second match, each firm
proposes to workers in his left concatenate ordered preference list, and all previous workers not in the
second match preference list have already been matched or rejected. So it cannot form a blocking
pair between the firm pi with leftover workers.

F MMTS REGRET UPPER BOUND

F.1 REGRET DECOMPOSITION

In this part, we provide the road map of the regret decomposition and key steps to prove
Theorem 4.2. First, we define the history for firm pi up to time t of type m as Hm

i,t :=
{Am

i,1,y
m
i,Am

i,1
(1),Am

i,2,y
m
i,Am

i,2
(2), ...,Am

i,t−1,y
m
i,Am

i,t−1
(t−1)}, composed by actions (matched work-

ers) and rewards, where Am
i,t := um

t (pi) is a set of workers (based on quota requirement qmi and Qi)
belong to m-type which is matched with firm pi at time t, ym

i,Am
i,t−1

(t− 1) are realized rewards when

firm pi matched with m− type workers Am
i,t. Define H̃i,t := {H1

i,t, H
2
i,t, ...,H

M
i,t} as the aggregated

interaction history between firm pi and all types of workers up to time t.

Next, we define the good event for firm pi when matching with m− type worker at time t and the
true mean matching reward falls in the uncertainty set as Em

i,t = {µm
i,Am

i,t
∈ Fm

i,t}, where µm
i,Am

i,t
is

the true mean reward vector of actually pulled arms (matched with m− type workers) at time t for
firm pi, and Fm

i,t is the uncertainty set for m− type worker at time t for firm pi. Similarly, the good
event for firm pi when matching with all types of workers at time t is Ei,t =

⋂M
m=1 E

m
i,t, over all

firms Et =
⋂N

i=1 Ei,t. And the corresponding bad event is defined as E
m

i,t, Ei,t, Et respectively.
That represents the true mean vector/tensor reward of the pulled arms is not in the uncertainty set.

Lemma F.1. Fix any sequence {F̃i,t : i ∈ [N ], t ∈ N}, where F̃i,t ⊂ F is measurable with respect
to σ(H̃i,t). Then for any T ∈ N, with probability 1,

R(T ) ≤ E
T∑

t=1

[ N∑
i=1

M∑
m=1

W̃m
i,Fm

i,t
(Am

i,t) + C1(Et)

]
(C.3)

where W̃m
i,F̃m

i,t

(·) =
∑

am
j ∈Am

i,t
wm

i,F̃m
i,t

(amj ) represents the sum of the element-wise value of uncer-

tainty width at m − type worker amj . The uncertainty width wm
i,F̃m

i,t

(amj ) = sup
µ̄m
i ,µm

i
∈F̃m

i,t

(µ̄m
i (amj ) −

µm
i
(amj )) is a worst-case measure of the uncertain about the mean reward of m− type worker amj .

Here C is a constant less than 1.

Proof. The key step of regret decomposition is to split the instantaneous regret by firms, types, and
quotas. Then we categorize regret by the happening of good events and bad events. The good events’
regret is measured by the uncertainty width, and the bad events’ regret is measured by the probability
of happening it.

To reduce notation, define element-wise upper and lower bounds Um
i,t(a) = sup{µm

i (a) : µm
i ∈

Fm
i,t, a ∈ Km} and Lm

i,t(a) = inf{µm
i (a) : µm

i ∈ Fm
i,t, a ∈ Km}, where µm

i is the mean reward
function µm

i ∈ Fm
i,t : R 7→ R,∀i ∈ [N ],∀m ∈ [M ]. Whenever µm

i,Ãm
i

∈ Fm
i,t, the bounds

Lm
i,t(a) ≤ µm

i,Ãm
i

(a) ≤ Um
i,t(a) hold for all types of workers. Here we define Am

i,t = um
i (t) as the

matched m − type workers for firm pi at time t and Am,∗
i,t = um

i (t) as the firm pi’s optimal stable
matching result of m− type workers at time t. Since the firm-optimal stable matching result is fixed,
given both sides’ preferences, we can omit time t here. The firm-optimal stable matching result set is
also denoted as Am,∗

i = Am,∗
i,t .
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As for type-m workers’ matching for the firm pi at time t, the instantaneous regret with a given
instance θ can be implied as follows, here for simplicity, we omit the instance conditional notation

Imi,t = µm
i (Am,∗

i )− µm
i (Am

i,t) ≤
∑

a∈Am,∗
i

Um
i,t(a)−

∑
a∈Am

i,t

Lm
i,t(a) + C1(µm

i,Ãi
/∈ Fm

i,t)

= Ũm
i,t(A

m,∗
i )− L̃m

i,t(Am
i,t) + C1(µm

i,Ãi
/∈ Fm

i,t)

= W̃i,Fm
i,t
(Am

i,t) + [Ũm
i,t(A

m,∗
i )− Ũm

i,t(Am
i,t)] + C1(µm

i,Ãi
/∈ Fm

i,t),

(C.4)
where C ≤ 1 is a constant, and we let Ũm

i,t(·) =
∑

a U
m
i,t(a) and W̃i,Fm

i,t
(·) =

∑
a w

m
i,Ft

(a) repre-
sent the sum of the element-wise value of Um

i,t(·), wm
i,Fi,t

(·), respectively. Define the good event
for firm pi, matching with m − type worker at time t is Em

i,t = {µm
i,Ãi

∈ Fm
i,t}, over all types

Ei,t =
⋂M

m=1 E
m
i,t, over all firms Et =

⋂N
i=1 Ei,t. And the corresponding bad event is defined as

E
m

i,t, Ei,t, Et respectively.

Now consider Eq. (C.3), summing over the previous equation over time t, firms pi, and workers’ type
m, we get

R(T ) ≤ E
N∑
i=1

T∑
t=1

M∑
m=1

[W̃i,Fm
i,t
(Am

i,t) + C1(Et)] +

N∑
i=1

EMi,T

= E
T∑

t=1

[C1(Et) +

N∑
i=1

M∑
m=1

W̃i,Fm
i,t
(Am

i,t)] +

N∑
i=1

EMi,T

(C.5)

where Mi,T =
∑T

t=1

∑M
m=1[Ũ

m
i,t(A

m,∗
i ) − Ũm

i,t(Am
i,t)]. Now by the definition of TS, Pm(Am

i,t ∈
·|Hm

i,t) = Pm(Am,∗
i ∈ ·|Hm

i,t) for all types, where Pm(·|Hm
i,t) represents this probability is conditional

on history Hm
i,t and the selected action (worker) belongs in m-type workers for firm pi. That is Am

i,t

and Am,∗
i within type-m is identically distributed under the posterior. Besides, since the confidence

set Fm
i,t is σ(Hm

i,t)-measurable, so is the induced upper confidence bound Um
i,t(·). This implies

Em[Um
i,t(Am

i,t)|Hm
t ] = Em[Um

i,t(A
m,∗
i )|Hm

t ], and there for E[Mi,T ] = 0 and
∑N

i=1 EMi,T = 0.
Then we can obtain the desired result.

F.2 UNCERTAINTY WIDTHS

In this part, we provide the upper bound of the accumulated uncertainty widths over all types of
workers and all firms, which is the first part in Eq. (C.3).

Lemma F.2. If (βm
i,j,t ≥ 0|t ∈ N) is a non-decreasing sequence and Fm

i,j,t := {µm
i,j ∈ Fm

i,j :∥∥∥µm
i,j − µ̂m,LS

i,j,t

∥∥∥
1
≤
√
βm
i,j,t}, then with probability 1,

T∑
t=1

N∑
i=1

M∑
m=1

W̃m
i,Fm

i,t
(Am

i,t) ≤ 8Q log(QT )
√

KmaxT .

The proof of this lemma builds upon Lemma F.3, which establishes the number of instances where
the widths of uncertainty sets for a chosen set of m− type workers Am

i,t greater than ϵ. We show that
this number is determined by the Eluder dimension (Russo and Van Roy, 2014).
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Proof. By Lemma F.1, the instantaneous regret It over all firms and all types, can be decomposed by
types and by firms and shown as

It =
M∑

m=1

Imt =

N∑
i=1

M∑
m=1

Imi,t

≤
N∑
i=1

M∑
m=1

W̃i,Fm
i,t
(Am

i,t), if Et holds.

≤ 2
∑

i∈[N ],m∈[M ],am
j ∈Km

√
log(

∑N
i=1 QiT )

nm
i,j(t)

, with prob 1− δ

(C.6)

where the first inequality is based on Lemma F.1 and if Et holds for t ∈ N,m ∈M, i ∈ [N ], nm
i,j(t)

is the number of times that the pair (pi, amj ) has been matched at the start of round t. The second
inequality is constructed from a union concentration inequality based on Lemma D.1, and we set
δ = 2/

∑
i=1 QiT . We denote zmi,j(t) =

1√
nm
i,j(t)

as the size of the scaled confidence set (without

the log factor) for the pair (pi, amj ) at the time t.

At each time step t, let’s consider the list consisting of zmi,j(t) and reorder the overall list consisting of
concatenating all those scaled confidence sets over all rounds and all types in decreasing order. Then
we obtain a list z̃1 ≥ z̃2 ≥ ...,≥ z̃L, where L =

∑T
t=1

∑N
i=1 Qi = T

∑N
i=1 Qi. We reorganize the

Eq. (C.6) to get
T∑

t=1

It ≤
T∑

t=1

M∑
m=1

N∑
i=1

W̃i,Fm
i,t
(Am

i,t) ≤ 2 log(

N∑
i=1

QiT )

L∑
l=1

z̃l. (C.7)

By Lemma F.3, the number of rounds that a pair of a firm and any m − type worker can have it
confidence set have size at least z̃l is upper bounded by (1 + 4

z̃2
l
)Km when we set ϵ = z̃l and know

βm
i,j,t ≤ 1. Thus, the total number of times that any confidence set can have size at least z̃l is upper

bounded by
(
1 + 4

z̃2
l

)∑N
i=1

∑M
m=1 |Am

i,t|Km. To determine the minimum condition for z̃l, which

is equivalent to determine the maximum of l, we have l ≤
(
1 + 4

z̃2
l

)∑N
i=1

∑M
m=1 |Am

i,t|Km. So we
claim that

z̃l ≤ min

(
1,

2√
l∑N

i=1

∑M
m=1 |Am

i,t|Km
− 1

)
≤ min

(
1,

2√
l∑N

i=1 QiKmax
− 1

)
, (C.8)

where the second inequality above is by
∑N

i=1

∑M
m=1 |Am

i,t|Km ≤ Kmax

∑N
i=1

∑M
m=1 |Am

i,t| ≤
Kmax

∑N
i=1 Qi = QKmax and Kmax = max{K1, ...,KM}, Q =

∑N
i=1 Qi. Putting all these

together, we have

2 log(

N∑
i=1

QiT )

L∑
l=1

z̃l ≤ 2 log(QT )

L∑
l=1

min(1,
2√
l

QKmax
− 1

)

= 4 log(QT )

QT∑
l=1

1√
l

QKmax
− 1

≤ 8 log(QT )
√

QKmax

√
QT

(C.9)

where the last inequality is by intergral inequality
QT∑
l=1

1√
l

QKmax
− 1
≤
√
QKmax

QT∑
l=1

1√
l
≤
√

QKmax

∫ QT

x=0

1√
x
dx = 2

√
QKmax

√
QT.

Based on Eq. (C.7) and the above result, we can get the regret
T∑

t=1

It ≤ 8Q log(QT )
√

KmaxT , (C.10)

if Et holds.
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Lemma F.3. If (βm
i,j,t ≥ 0|t ∈ N) is a nondecreasing sequence for i ∈ [N ], amj ∈ Km,m ∈ [M ]

and Fm
i,j,t := {µm

i,j ∈ Fm
i,j :

∥∥∥µm
i,j − µ̂m,LS

i,j,t

∥∥∥
1
≤
√
βm
i,j,t}, for all T ∈ N and ϵ > 0, then

T∑
t=1

M∑
m=1

∑
am
j ∈Am

i,t

1
(
wm

i,Fm
i,t
(amj ) > ϵ

)
≤
(4β̃i,T

ϵ2
+ 1
) M∑
m=1

|Am
i,t|Km.

Here µ̂m,LS
i,j,t =

∑t
s=1 1(am

j ∈Am
i,s)y

m
i,j(s)

nm
i,j(t)

is the estimated average reward for m − type worker amj

from the view point of firm pi at time t, and nm
i,j(t) is the number of matched times up to time t of

firm pi with m − type worker amj . Besides, we define β̃i,T = max
am
j ∈Km,m∈[M ]

βm
i,j,T as the maximum

uncertainty bound over all types of workers at time T for firm pi.

The proof of this result is based on techniques from (Russo and Van Roy, 2013; 2014). This
result demonstrates that the upper bound of the number of times the widths of uncertainty sets
exceeds ϵ is dependent on the error O(ϵ−2) and linearly proportional to the product of the number of
m− type worker and the type quota size qmi .

Proof. Based on the Proposition 3 from (Russo and Van Roy, 2013), we can use the eluder dimension
dimE(Fm

i , ϵ) to bound the number of times the widths of confidence intervals for a selection of set
of m− type workers Am

i,t greater than ϵ.

T∑
t=1

M∑
m=1

∑
am
j ∈Am

i,t

1

(
wm

i,Fm
i,t
(amj ) > ϵ

)
≤

M∑
m=1

∑
am
j ∈Am

i,t

(
4βm

i,j,T

ϵ2
+ 1

)
dimE(Fm

i , ϵ)

≤

(4 max
am
j ∈Km,m∈[M ]

βm
i,j,T

ϵ2
+ 1

)
M∑

m=1

|Am
i,t|dimE(Fm

i , ϵ),

(C.11)
where the eluder dimension of a multi-arm bandit problem is the number of arms, we get

T∑
t=1

M∑
m=1

∑
am
j ∈Am

i,t

1

(
wm

i,Ft
(amj ) > ϵ

)
≤

(
4β̃i,T

ϵ2
+ 1

)
M∑

m=1

|Am
i,t|Km ≤

(
4β̃i,T

ϵ2
+ 1

)
QiKmax

(C.12)
where β̃i,T = max

am
j ∈Km,m∈[M ]

βm
i,j,T . Besides, we know that Qi =

∑M
m=1 |Am

i,t| and define Kmax =

max
m∈[M ]

Km, so we can get the second inequality.

F.3 BAD EVENT UPPER BOUND

In this part, we provide an upper bound of the second part of Eq. (C.3). The regret caused by the
happening of the bad event at each time step is quantified by the following lemma.

Lemma F.4. If Fm
i,j,t := {µm

i,j ∈ Fm
i,j :

∥∥∥µm
i,j − µ̂m,LS

i,j,t

∥∥∥
1
≤
√

βm
i,j,t} holds with probability 1− δ,

then the bad event Et happening’s probability is upper bounded by E1(Et) ≤ NKδ. In particular, if
δ = 1/QT , the accumulated bad events’ probability is upper bounded by

∑T
t=1 E1(Et) ≤ NK/Q.

To bound the probability of bad events, we use a union bound to obtain the desired result. Specifically,
if Qi = 1, which means each firm has a total quota of 1 and only considers one type of worker, then∑T

t=1 E1(Et) ≤ NK/(N × 1) = K. This shows that each firm needs to explore a single type of
worker, and the worst total regret is less than K. If Qi = 1,M = 1, which means all firms have the
same recruiting requirements, the result reduces to the general competitive matching scenario, and
the worst regret is the number of workers of type KM in the market.

7
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Proof. If Et does not hold, the probability of the true matching reward is not in the confidence
interval we constructed is upper bounded by

E1(Et) = P(Et) = P

(( ⋂
i∈[N ]

⋂
m∈[M ]

⋂
am
j ∈Km

{µm
i,j ∈ Fm

i,j,t}
)c)

= P
( ⋃

i∈[N ]

⋃
am
j ∈Km

⋃
m∈[M ]

{µm
i,j /∈ Fm

i,j,t}
)

= P
( ⋃

i∈[N ]

⋃
am
j ∈Km

⋃
m∈[M ]

{∥∥∥µm
i,j − µ̂m,LS

i,j,t

∥∥∥
2,Et

≥
√

βm
i,j,t

})

= P
( ⋃

i∈[N ]

⋃
am
j ∈Km

⋃
m∈[M ]

{∥∥∥µm
i,j − µ̂m,LS

i,j,t

∥∥∥
1
≥

√
log( 2δ )

nm
i,j(t)

})

≤
∑
i∈[N ]

∑
am
j ∈Km

∑
m∈[M ]

P
(∥∥∥µm

i,j − µ̂m,LS
i,j,t

∥∥∥
1
≥

√
log( 2δ )

nm
i,j(t)

)

(C.13)

where the third equality is by De-Morgan’s Law of sets. In the last inequality, we use the union bound
to control the probability. Since each µ̂m,LS

i,j − µm
i,j is a mean zero and 1

2nm
i,j

-sub-Gaussian random

variable, based on Lemma D.1, have P(
∥∥∥µm

i,j − µ̂m,LS
i,j,t

∥∥∥
1
≥
√

log( 2
δ )

nm
i,j(t)

) ≤ δ. The overall bad event’s

probability’s upper bound is
P(Et) ≤ NKδ (C.14)

Based on our confidence width is less than 1, so C = 1,∀i ∈ [N ]. The expected regret from this bad
event is not in the confidence interval at most

NKδ · CT ≤ NK
1∑N

i=1 QiT
T =

NK

Q
(C.15)

This part’s regret is negligible compared with the regret from Lemma F.2. In particular, if there is
only one type and each firm has only one position to be filled. Thus, Q = N , the bad event’s upper
bounded probability will shrink to K, the number of workers to be explored.

In this part, we provide the proof of MMTS’s Bayesian regret upper bound.

F.4 PROOF OF THEOREM 4.2

Theorem F.1. When all firms follow the MMTS algorithm, the platform will incur the Bayesian total
expected regret

R(T ) ≤ 8 log(QT )
√

QKmax

√
QT +NK/Q (C.16)

where Kmax = max{K1, ...,KM},K =
∑M

m=1 Km .

Proof. We decompose the Bayesian total firm-optimal stable regret for all firms by

R(T ) = Eθ∈Θ

[ N∑
i=1

Ri(T, θ)

]
= Eθ∈Θ

[ N∑
i=1

M∑
m=1

T∑
t=1

µi,um
i (t)(t)−

N∑
i=1

M∑
m=1

T∑
t=1

µi,um
i
(t)|θ

]

=

N∑
i=1

T∑
t=1

Eθ∈Θ

[ M∑
m=1

(µi,um
i (t)(t)− µi,um

i
(t))|θ

]

= Eθ∈Θ

[ T∑
t=1

N∑
i=1

M∑
m=1

Imi,t|θ
]

= Eθ∈Θ

[ T∑
t=1

It|θ
]

(C.17)
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where we define Imi,t = µm
i,θ(A

m,∗
i ) − µm

i,θ(Am
i,t) and It =

∑N
i=1

∑M
m=1 Imi,t. Here Am,∗

i is the
optimal matched workers for firm pi of type m and Am

i,t is the actual matched workers for firm pi of
type m at time t under the instance θ.

Based Lemma F.1, R(T ) is upper bounded by E
∑T

t=1

[
C1(Et)+

∑N
i=1

∑M
m=1 W̃i,Fm

i,t
(Am

i,t)
]
. The

first term, the sum of the bad event probability E
∑T

t=1 C1(Et) = C
∑T

t=1 P(Et), which is upper
bounded by NK/Q based on Lemma F.4 and C ≤ 1. The second term, the sum of confidence widths
is upper bounded by 8Q log(QT )

√
TKmax based on Lemma F.2. Thus the Bayesian total regret is

upper bounded by 8Q log(QT )
√
TKmax +NK/Q.

G INCENTIVE-COMPATIBILITY

In this section, we discuss the incentive-compatibility property of MMTS. That is, if one firm does
not follow the MMTS when all other firms submit their MMTS preferences, that firm cannot benefit
(matched with a better worker than his optimal stable matching worker) over a sublinear order. As we
know, Dubins and Freedman (1981) discussed the Machiavelli firm could not benefit from incorrectly
stating their true preference when there exists a unique stable matching. However, when one side’s
preferences are unknown and need to be learned through data, this result no longer holds. Thus, the
maximum benefits that can be gained by the Machiavelli firm are under-explored in the setting of
learning in matching. Liu et al. (2020) discussed the benefits that can be obtained by Machiavelli
firm when other firms follow the centralized-UCB algorithm with the problem setting of one type of
worker and quota equal one in the market.

We now show in CMCP, when all firms except one pi submit their MMTS-based preferences to the
matching platform, the firm pi has an incentive also to submit preferences based on their sampling
rankings in a long horizon, so long as the matching result do not have multiple stable solutions. Now
we establish the following lemma, which is an upper bound of the expected number of pulls that a
firm pi can match with a m-type worker that is better than their optimal m-type workers, regardless
of what preferences they submit to the platform.

Let’s use Hm
i,l to define the achievable sub-matching set of um when all firms follow the MMTS,

which represents firm pi and m− type worker aml is matched such that aml ∈ um
i . Let Υum(T ) be

the number of times sub-matching um is played by time t. We also provide the blocking triplet in a
matching definition as follows.
Definition 3. (Blocking triplet) A blocking triplet (pi, ak, ak′) for a matching u is that there must
exist a firm pi and worker aj that they both prefer to match with each other than their current match.
That is, if ak′ ∈ ui, µi,k′ < µi,k and worker ak is either unmatched or πk,i < πk,u−1(k).

The following lemma presents the upper bound of the number of matching times of pi and aml by time
T , where aml is a super optimal m− type worker (preferred than all stable optimal m− type workers
under true preferences), when all firms follow the MMTS.
Lemma G.1. Let Υm

i,l(T ) be the number of times a firm pi matched with a m-type worker such that the
mean reward of aml for firm pi is greater than pi’s optimal match um

i , which is µm
i,am

l
> max

am
j ∈um

i

µm
i,j .

Then the expected number of matches between pi and aml is upper bounded by

E[Υm
i,l(T )] ≤ min

Sm∈C(Hm
i,l)

∑
(pj ,am

k ,am
k′ )∈Sm

(
Cm

i,j,k′(T ) +
log(T )

d(µj,um
i,min

, µj,k′)

)
,

where um
i,min = argmin

am
k ∈um

j

µm
i,k, and Cm

i,j,k′ = O((log(T ))−1/3).

Then we provide the benefit (lower bound of the regret) of Machiavelli firm pi can gain by not
following the MMTS from matching with m-type workers. Let’s define the super worker reward gap
as ∆

m

i,l = max
am
j ∈um

i

µm
i,j − µm

i,l, where aml /∈ um
i .

Theorem G.1. Suppose all firms other than firm pi submit preferences according to the MMTS to the
centralized platform. Then the following upper bound on firm pi’s optimal regret for m-type workers

9
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holds:

Rm
i (T, θ) ≥

∑
l:∆

m
i,l<0

∆
m

i,l

[
min

Sm∈C(Hm
i,l)

∑
(pj ,am

k ,am
k′ )∈Sm

(
Cm

i,j,k′ +
log(T )

d(µj,um
i,min

, µj,k′)

)]
(C.18)

where um
i,min = argmin

am
k ∈um

j

µm
i,k, and Cm

i,j,k′ = O((log(T ))−1/3).

This result can be directly derived from Lemma G.1. Theorem G.1 demonstrates that there is no
sequence of preferences that a firm can submit to the centralized platform that would result in negative
optimal regret greater than O(log T ) in magnitude within type m. When considering multiple types
together for firm pi, this magnitude remainsO(log T ) in total. Theorem G.1 confirms that, when there
is a unique stable matching in type m, firms cannot gain significant advantage in terms of firm-optimal
stable regret by submitting preferences other than those generated by the MMTS algorithm. An
example is provided in Section 5.1 to illustrate this incentive compatibility property. Figure 2(b)
illustrates the total regret, with solid lines representing the aggregate regret over all types for each
firm, and dashed lines representing the regret for each type. It is observed that the type 1 regret of
firm 1 is negative, owing to the inaccuracies in the rankings submitted by both firm 1 and firm 2. A
detailed analysis of this negative regret pattern is given in Section I.2.

G.1 PROOF OF INCENTIVE COMPATIBILITY

Lemma G.2. Let Υm
i,l(T ) be the number of times a firm pi matched with a m-type worker such that

the mean reward of aml for firm pi is greater than pi’s optimal match um
i , which is µm

i,am
l
> max

am
j ∈um

i

µm
i,j .

Then

E[Υm
i,l(T )] ≤ min

Sm∈C(Hm
i,l)

∑
(pj ,am

k ,am
k′ )∈Sm

(
Cm

i,j,k′(T ) +
log(T )

d(µj,um
i,min

, µj,k′)

)
(C.19)

where um
i,min = argmin

am
k ∈um

j

µm
i,k, Cm

i,j,k′ = O((log(T ))−1/3).

Proof. We claim that if firm pi is matched with a super optimal m− type worker aml in any round,
the matching um must be unstable according to true preferences from both sides. We then state that
there must exist a m-type blocking triplet (pj , amk , amk′) where pj ̸= pi.

We prove it by contradiction. Suppose all blocking triplets in matching u only involve firm pi within
m− type worker. By Theorem 4.2 in (Abeledo and Rothblum, 1995), we can start from any matching
u to a stable matching by iteratively satisfying blocking pairs in a gender consistent order, which
means that we can provide a well-defined order to determine which blocking triplet should be satisfied
(matched) first within preferences from firm pi

6. Doing so, firm pi can never get a worse match than
aml since a blocking pair will let firm pi match with a better m− type worker than aml , or become
unmatched as the algorithm proceeds, so the matching will remain unstable. The matching will
continue, which is a contradiction.

Hence there must exist a firm pj ̸= pi such that pj is part of a blocking triplet in u when firm pi
is matched with m− type worker aml under the matching u. In particular, based on the Theorem 9
(Dubins-Freedman Theorem), firm pj must submit its TS preference.

Let Lm
j,k,k′(T ) be the number of times firm pj matched with m − type worker amk′ when the triplet

(pj , a
m
k , amk′) is blocking the matching provided by the centralized platform. Then by the definition∑

um∈Bm
j,k,k′

Υum(T ) = Lm
j,k,k′(T ) (C.20)

By the definition of a blocking triplet, we know that if pj is matched with m− type worker amk′ when
the blocking triplet (pj , amk , amk′) is blocking, the TS sample must have a higher mean reward for amk′

6This gender consistent requirement is to satisfy a blocking pair (pj , am
k ) and those blocking pairs can be

ordered before we break their current matches if any, and then match pj and am
k to get a new matching.

10
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than amk . In other words, we need to bound the expected number of times that the TS mean reward
for m− type worker amk′ is greater than amk . From (Komiyama et al., 2015), we know that the number
of times that (pj , amk , amk′) forms a blocking pair in Thompson sampling, is upper bounded by

ELm
j,k,k′ ≤ Cm

i,j,k′(T ) +
log(T )

d(µj,um
i,min

, µj,k′)
(C.21)

where um
i,min = argmin

am
k ∈um

j

µm
i,k and Cm

i,j,k′ = O((log(T ))−1/3). The d(x, y) = x log(x/y) + (1 −

x) log((1− x)/(1− y)) is the KL divergence between two Bernoulli distributions with expectation
x and y.

The expected number of times Υm
i,l(T ) a firm pi matched with a m− type worker such that the mean

reward of aml for firm pi is greater than pi’s optimal match um
i , which is equivalent to the expected

number of times viat the achievable sub-matching set Υum(T ) where um ∈ Hm
i,l. So the result then

follows from the identity

E[Υm
i,l(T )] =

∑
um∈Hm

i,l

EΥum(T ) (C.22)

Given a setHm
i,l of matchings, we say a set Sm of triplets (pj , amk , amk′) is a cover ofHm

i,l if

⋃
(pj ,am

k ,am
k′ )∈Sm

Bm
j,k,k′ ⊇ Hm

i,l (C.23)

Let C(Hm
i,l) denote the set of covers of Hm

i,l. Then

E[Υm
i,l(T )] = E

∑
um∈Hm

i,l

Υum(T )

≤ E min
Sm∈C(Hm

i,l)

∑
(pj ,am

k ,am
k′ )∈Sm

Υum(T )

= min
Sm∈C(Hm

i,l)
E

∑
(pj ,am

k ,am
k′ )∈Sm

Υum(T )

= min
Sm∈C(Hm

i,l)

∑
(pj ,am

k ,am
k′ )∈Sm

ELm
j,k,k′(T )

≤ min
Sm∈C(Hm

i,l)

∑
(pj ,am

k ,am
k′ )∈Sm

(
Cm

i,j,k′(T ) +
log(T )

d(µj,k, µj,k′)

)

≤ min
Sm∈C(Hm

i,l)

∑
(pj ,am

k ,am
k′ )∈Sm

(
Cm

i,j,k′(T ) +
log(T )

d(µj,um
i,min

, µj,k′)

)

(C.24)

where the first inequality is from the property of cover and we select the minimum cover Sm from
C(Hm

i,l). And summation in the third line is equivalent to
∑

um∈Bm
j,k,k′

. Based on Eq. (C.20), the
third equality is obvious. From (Komiyama et al., 2015), we know the expected number of times of
matching with the sub-optimal m− type worker is upper bounded by Eq. (C.21).

H FIRM DA ALGORITHM WITH TYPE AND WITHOUT TYPE CONSIDERATION

In this section, we present the DA algorithm with type consideration and without type consideration.

11
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Algorithm 4: Firm DA Algorithm with type.
Input :Type. firms set N , workers set Km,∀m ∈ [M ]; firms to workers’ preferences

rmi ,∀i ∈ [N ],∀m ∈ [M ], workers to firms’ preferences πm,∀m ∈ [M ]; firms’
type-specific quota qmi ,∀i ∈ [N ],∀m ∈ [M ], firms’ total quota Qi,∀i ∈ [N ].

Initialize :Empty set S = {}, empty sets Sm = ∅,∀m ∈ [M ].
1 for m = 1, ...,M do
2 while ∃ A firm p who is not fully filled with the quota qm and has not contacted every

m− type worker do
3 Let a be the highest-ranking worker in firm p’s preference, to whom firm p has not yet

contacted.
4 Now firm p contacts the worker a.
5 if Worker a is free then
6 (p, a) become matched (add (p, a) to Sm).
7 else
8 Worker a is matched to firm p′ (add (p′, a) to Sm).
9 if Worker a prefers firm p′ to firm p then

10 firm p filled number minus 1 (remove (p, a) from Sm).
11 else
12 Worker a prefers firm p to firm p′.
13 firm p′ filled number minus 1 (remove (p′, a) from Sm).
14 (p, a) are paired (add (p, a) to Sm).
15 Update: Add Sm to S.

Output :Matching result S.

Algorithm 5: Firm DA Algorithm without type (Gale and Shapley, 1962).
Input :Worker Types, firms set N , workers set Km,∀m ∈ [M ]; firms to workers’

preferences rmi ,∀i ∈ [N ],∀m ∈ [M ], workers to firms’ preferences πm,∀m ∈ [M ];
firms’ type-specific quota qmi ,∀i ∈ [N ],∀m ∈ [M ], firms’ total quota Qi,∀i ∈ [N ].

Initialize :Empty set S.
1 while ∃ A firm p who is not fully filled with the quota Q̃ and has not contacted every worker do
2 Let a be the highest-ranking worker in firm p’s preference over all types of workers, to whom

firm p has not yet contacted.
3 Now firm p contacts the worker a.
4 if Worker a is free then
5 (p, a) become matched (add (p, a) to S).
6 else
7 Worker a is matched to firm p′ (add (p′, a) to S).
8 if Worker a prefers firm p′ to firm p then
9 firm p filled number minus 1 (remove (p, a) from S).

10 else
11 Worker a prefers firm p to firm p′.
12 firm p′ filled number minus 1 (remove (p′, a) from S).
13 (p, a) are paired (add (p, a) to S).

Output :Matching result S.

I EXPERIMENTAL DETAILS

In this section, we provide more details about the analysis of the negative regret, parameters, and
large market.

I.1 NEGATIVE REGRET PHENOMENON

The occurrence of negative regret in multi-agent matching schemes presents an interesting phe-
nomenon, contrasting the single-agent bandit problem wherein negative regret is non-existent.

12
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Table 1: True matching rewards of two types of workers from two firms.
Mean ID Type 1 2 3 4 5

µ1
1 0.406 0.956 0.738 0.970 0.695
2 0.932 0.241 0.040 0.657 0.289

µ2
1 0.682 0.909 0.823 0.204 0.218
2 0.303 0.849 0.131 0.886 0.428

Table 2: Estimated mean reward and variance of each type of worker in view of two firms. The
bold font is to represent the firm’s optimal stable matching. † represents the difference between the
estimated mean and the true mean less than 1%. ‡ represents the difference is less than 1.5%.

Mean & Var Type 1 2 3 4 5

µ̂1
1 (DS) 0.5330.015 0.943‡

0.000 0.9170.035 0.968†
0.000 0.682‡0.003

2 (SDE) 0.9500.000 0.2230.000 0.041†
0.000 0.5000.208 0.303‡

0.000

µ̂2
1 (DS) 0.683†

0.000 0.5000.035 0.823†
0.000 0.2620.037 0.210†

0.000

2 (SDE) 0.0830.035 0.851†
0.000 0.124†0.001 0.887†

0.000 0.415‡0.001

In the context of the single-agent bandit problem, it is known that the best arm can be pulled,
resulting in instantaneous regret that can attain zero but not take negative values. Conversely,
in the multi-agent competing bandit problem, the oracle firm-optimal arm is determined by the
true expected reward/utility, assuming knowledge of the true parameter µ∗. However, due to the
imprecise estimation of rankings/parameters at each time step, an exact match with the oracle policy
cannot be guaranteed. This discrepancy leads to varied outcomes for firms in terms of benefits
(negative instantaneous regret) or losses (positive instantaneous regret) from the matching process.
Instances arise where firms may strategically submit inaccurate rankings to exploit these matches, a
phenomenon termed machiavelli/strategic behaviors. Nevertheless, over the long term, such strategic
actions do not yield utility gains in accordance with our policy.

Furthermore, it is crucial to note that our matching solution remains a stable matching at each time
step. This means that the stable matching remains independent of the negative regret generated by
our policy, as stable matching is a short-term discrete metric, while regret serves as a long-term
evaluation continuous metric.

I.2 LEARNING

In this section, we present the learning parameters of (α,β) of Example 1. Besides, we analyze
which kind of pattern causes the non-optimal stable matching of Examples 1 and 2.

Findings from Example 1.

We show the posterior distribution of (α,β) in Figure 3. The first and second row represents the
posterior distributions of firm 1 and firm 2 over two types of workers after T rounds interaction. The
first and second columns in Figure 3 represent two firms’ posterior distributions over type I and type
II workers.

We find that the posterior distributions of the workers that firms most frequently match with exhibit a
relatively sharp shape, indicating that firms can easily construct uncertainty sets over these workers.
However, in some instances, the distributions are relatively flat, indicating a lack of exploration. This
can be attributed to two possible reasons: (1) the workers in question are not optimal stable matches
for the firms, and are thus abandoned early on in the matching process, such as firm 1’s DS 1 and DS
5, or (2) the workers are optimal, but are erroneously ranked by the firms and subsequently blocked,
such as firm 2’s SDE 3. To further illustrate this, we present the posterior mean and variance in
Table 2. The optimal stable matches for each firm are represented in bold, and the variance of the
distributions is denoted by small font. Additionally, we use the dagger symbol to indicate when the
difference between the posterior mean reward and true matching reward is less than 1% and 1.5%.
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Figure 3: Posterior distribution of learning parameters for two firms in Example 1.

Pattern Analysis. We find that firm 1’s type I matching in Figure 2(b), achieves a nega-
tive regret due to the high-frequency matching pattern of u1 = {[D4, D2, D5], [S1, S5]}, and
u2 = {[D3, D1], [S4, S2, S3]}. That means firm 1 and firm 2 have a correct (stable) matching
in the first match ũ1 = {[D4, D2], [S1, S5]}, ũ2 = {[D3, D1], [S4, S2]}. In the second match,
they both need to compare worker D5 and worker S3, because all other workers are matched with
firms or have been proposed in the first match. In Table 1, we find that two workers’ true mean
rewards for firm 1 are µ1

1,5 = 0.695, µ2
1,3 = 0.040 and two workers’ estimated rewards for firm

1 are µ̂1
1,5 = 0.682, µ̂2

1,3 = 0.041. These two workers are pretty different and can be easily de-
tected. So firm 1 has a high chance of ranking them correctly. However, two workers’ true rewards
for firm 2 are µ1

2,5 = 0.218, µ2
2,3 = 0.131, and two workers’ estimated rewards for firm 2 are

µ̂1
1,5 = 0.210, µ̂2

1,3 = 0.124. These workers are close to each other, where these two posteriors’
distributions overlap a lot and can be checked in Figure 3. So firm 2 has a non-negligible probability
to incorrectly rank S3 ahead of D5. Therefore, based on the true preference, firm 2 could match
with S3 and firm 1 matches with D5 with a non-negligible probability rather than the optimal stable
matching (p1, S3) and (p2, D5) by D5 preferring firm 2.

The above pattern links to Section 3.2, incapable exploration, and Section G, incentive compatibility.
Due to the insufficient exploration of S3 and D5, firm 2 may rank them incorrectly to get a match
with S3 rather than optimal D3 and the regret gap is µ1

2,3 − µ2
2,3 = 0.823− 0.131 = 0.692, which is

a positive instantaneous regret. Due to the incorrect ranking from firm 2, firm 1 gets a final match
with D5 rather than optimal S3, and suffers a regret gap µ2

1,3 − µ1
1,5 = 0.040 − 0.695 = −0.655,

which is a negative instantaneous regret. Thus firm 1 benefits from firm 2’s incorrect ranking and can
achieve a total negative regret, as shown in Figure 2(b).

Findings from Example 2. In our analysis of the non-optimal stable matching in Example 2, we
observed that both firms incurred positive total regret, shown in Figure 2(c). We find that the quota
setting resulted in all workers of type II being assigned to firms in the first match. As a result, in
the second match, the ranking submitted by firm 1 to the centralized platform did not affect firm 2’s
matching result for type II workers. This can be thought of as an analogy where firms are schools and
workers are students. In the second stage of the admission process, school 2 would not participate in
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Figure 4: Left: 10 out of 100 randomly selected firms’ total regret in Examples 3. Right: all firms’
total regret in Example 4.

the competition for type II students, and its matching outcome would not be affected by the strategic
behavior of other schools in the second stage, but rather by the strategic behavior of other schools in
the first stage.

I.3 LARGE MARKETS

In this part, we provide two large market examples to demonstrate the robustness of our algorithm.
All preferences are randomly generated and all results are over 50 trials to take the average.

Example 3. We consider a large market composed of many firms (N = 100) and many workers
(K1 = K2 = 300). Besides, we have Q1 = Q2 = 3, q11 = q12 = q12 = q22 = 1.

Example 4. We also consider a large market consisting of many workers, and each firm has a
large, specified quota and an unspecified type quota. In this setting, N = 10,M = 2,K1 = K2 =
500, Q1 = Q2 = 30, q11 = q12 = q12 = q22 = 10.

Results. In Figure 4(a), we randomly select 10 out of 100 to present firms’ total regret, and all
those firms suffer sublinear regret. In Figure 4(b), we also show all 10 firms’ total regret. Comparing
Examples 3 and 4, we find that firms’ regret in Example 3 is less than firms’ regret from Example 4
because in Example 4, each firm has more quotas (30 versus 3), which demonstrates our findings from
Theorem 4.2. In addition, we find there is a sudden exchange in Figure 4(a) nearby time t = 1500.
We speculate this phenomenon is due to the small gap between different workers and the shifting of
the explored workers.

J ADDITIONAL RELATED WORKS

Multi-Agent Systems and Game theory. There are some papers considering the multi-agent in
the sequential decision-making systems including the cooperative setting (Littman, 2001; González-
Sánchez and Hernández-Lerma, 2013; Zhang et al., 2018; Perolat et al., 2018; Shi et al., 2022) and
competing setting (Littman, 1994; Auer and Ortner, 2006; Zinkevich et al., 2007; Wei et al., 2017;
Fiez et al., 2019; Jin et al., 2020). Zhong et al. (2021) study the multi-player general-sum Markov
games with one of the players designated as the leader and the other players regarded as followers
and establish the efficient RL algorithms to achieve the Stackelberg-Nash equilibrium.

Assortment Optimization. To maximize the number of matches between the two sides (customers
and suppliers), the platform must balance the inherent tension between recommending customers
more potential suppliers to match with and avoiding potential collisions. Ashlagi et al. (2022)
introduce a stylized model to study the above trade-off. Motivated by online labor markets (Aouad
and Saban, 2022) consider the online assortment optimization problem faced by a two-sided matching
platform that hosts a set of suppliers waiting to match with a customer. Immorlica et al. (2021)
consider a two-sided matching assortment optimization under the continuum model and achieve the
optimized meeting rates and maximize the equilibrium social welfare. Rios et al. (2022) discuss
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the application of assortment optimization in dating markets. Shi (2022) studies the minimum
communication needed for a two-sided marketplace to reach an approximately stable outcome with
the transaction price.

Matching Markets. One strand of related literature is two-sided matching, which is a stream of
papers that started in (Gale and Shapley, 1962). They propose the deferred acceptance (DA) algorithm
(also known as the GS algorithm) with its application in the marriage problem and college admission
problem. A series work (Knuth, 1976; Roth, 1982; Roth and Sotomayor, 1992; Roth, 2008) discuss
the history of the DA algorithm and summarize theories about stability, optimality, and incentive
compatibility, and finally provide its practical use and further open questions. In particular, Roth
(1985); Sönmez (1997) propose that the college admissions problem is not equivalent to the marriage
problem, especially when a college can manipulate its capacity and preference. Notably, in the
hospital doctor matching example, since hospitals want diversity of specializations, or demographic
diversity, or whatever, they care about the combination (group of doctors) they get. Roth (1986)
state that when all preferences are strict, and hospitals (firms) have responsive preferences, the set of
doctors (workers) employed and positions filled is the same at every stable match. However, when
there exist couples in the preference list (not responsive preference (Klaus and Klijn, 2005)), which
might make the set of stable matchings empty. Even when stable matchings exist, there need not be
an optimal stable matching for either side. Later, Ashlagi et al. (2011) revisit this couple matching
problem and provide the sorted deferred acceptance algorithm that can find a stable matching with
high probability in large random markets. Biró et al. (2014) provide an integer programming model
for hospital/resident problems with couples (HRC) and ties (HRCT). Manlove et al. (2017) release
the HRC with minimal blocking pairs and show that if the preference list of every single resident
and hospital is of length at most 2, their method can find a polynomial-time algorithm. Nguyen and
Vohra (2018; 2022) find the stable matching in the nearby NRC problem, which is that the quota
constraints are soft. Azevedo and Hatfield (2018); Che et al. (2019); Greinecker and Kah (2021)
discuss the existence and uniqueness of stable matching with complementaries and its relationship
with substitutable preferences in large economies. Besides, there are also papers considering stability
and optimality of the refugee allocation matching (Aziz et al., 2018; Hadad and Teytelboym, 2022).
Tomoeda (2018); Boehmer and Heeger (2022) consider a case that firms have hard constraints both on
the minimum and maximum type-specific quotas and other type-specific quota consideration works.
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