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DQ-Former:Querying Transformer with Dynamic Modality
Priority for Cognitive-aligned Multimodal Emotion Recognition

in Conversation
Anonymous Authors

ABSTRACT
Multimodal Emotion Recognition in Conversations aims to under-
stand the human emotion of each utterance in a conversation from
different types of data, such as speech and text. Previous works
mainly focus on either complex unimodal feature extraction or so-
phisticated fusion techniques as general multimodal classification
tasks do. However, they ignore the process of human perception, ne-
glecting various levels of emotional features within each modality
and disregarding the unique contributions of different modalities
for emotion recognition. To address these issues, we propose a
more cognitive-aligned multimodal fusion framework, namely DQ-
Former. Specifically, DQ-Former utilizes a small set of learnable
query tokens to collate and condense various granularities of emo-
tion cues embedded at different layers of pre-trained unimodal
models. Subsequently, it integrates these emotional features from
different modalities with dynamic modality priorities at each in-
termediate fusion layer. This process enables explicit and effective
fusion of different levels of information from diverse modalities.
Extensive experiments on MELD and IEMOCAP datasets validate
the effectiveness of DQ-Former. Our results show that the proposed
method achieves a robust and interpretable multimodal representa-
tion for emotion recognition.

CCS CONCEPTS
• Information systems → Multimedia information systems;
Sentiment analysis; •Computingmethodologies→Discourse,
dialogue and pragmatics; • Computer systems organization
→ Neural networks.

KEYWORDS
multi-modal fusion; middle-fusion; multi-modal emotion recogni-
tion in conversation

1 INTRODUCTION
Multimodal Emotion Recognition in Conversations (MERC) plays a
crucial role in improving human-computer interaction by enabling
machines to accurately discern emotions and respond accordingly.
This task aims to understand human emotions conveyed in each
utterance by leveraging diverse modalities like acoustic and textual
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Figure 1: Two examples from IEMOCAP. Not all modalities
contribute equally to emotion recognition. In case (a), emo-
tions can be readily inferred from the text, whereas weak
pitch in the voice, conversely, tends to introduce disruptive
noise. In case (b), a strongly intense tone of voice can clearly
express the speaker’s anger, whereas the long context in tex-
tual modality can be challenging to understand the emotion.

cues [24]. The efficacy of MERC models heavily hinges on the
quality of multimodal representations.

Previous works mainly treat MERC as a general multimodal
classification task. The dominant framework involves unimodal
feature extraction, information interaction, and multimodal fusion.
Some investigations underscore the pivotal role of high-quality
unimodal features, emphasizing their direct impact on multimodal
representations [28, 41]. Certain works delve into modeling inter-
modal or intra-modal interactions [23, 38]. Additionally, researchers
develop sophisticated strategies for multimodal fusion [8, 31, 37].

However, such generalized frameworks tends to ignore the in-
tricacies of human emotion expression and perception. Humans
express emotions not only through semantics, but also through
nuanced modality-specific attributes, such as pitch, loudness, and
tempo in their voice [6, 13]. Existing late-fusion works, which rely
on the final representations of unimodal models for multimodal
fusion, fail to leverage the unique attributes of each modality [35].
Besides, the contribution of each modality vary under different cir-
cumstances for emotion recognition [7]. As illustrated in Figure 1,
while text emerges as the dominant modality for clearly conveying
anger in one instance (case a), the loud voice signal could serve as
the primary indicator of emotion in another (case b). Disregarding
the relative importance of different modalities and fine-grained
modality-specific attributes during multimodal fusion may result
in suboptimal performance of MERC systems [30].

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Recent studies indicate that pre-trained unimodal models contain
rich hierarchical information across various layers [12, 18]. For
example, interpretability studies in speech models [3, 18, 26] show
that paralinguistic and linguistic properties are encoded in different
layers. This phenomenon is mirrored in text models as well [12].
Generally, the final representations of unimodal models are mainly
associated with semantic-level information, while various levels of
modality-specific information are distributed across intermediate
layers [3, 12]. These findings indicate the potential for the mid-layer
fusion strategy to capture diverse levels of emotional cues within
advanced modality-specific pre-trained models [35].

Motivated by the above observations, we propose amore cognitive-
aligned middle-fusion multimodal framework, namely DQ-Former,
to enhance the modeling of emotional cues for a robust MERC
system. Specifically, we first encode each modality using modality-
specific pre-trained models. Then we employ a small set of learn-
able queries to collate and condense emotion cues embedded in
intermediate layers of each unimodal encoder through layer-wise
cross-modal attention. Finally, we aggregate various granularities
of emotion cues based on their confidence in emotion recognition.
In this sense, the cognitive-aligned relationships between multiple
modalities are explicitly reasoned, achieving a complementary and
robust multimodal representation for emotion recognition.

Our main contributions can be summarized as follows:

• We present DQ-Former, a cognitive-aligned middle-fusion
framework that leverages various granularities of emotion
cues from each modality, since human emotions are con-
veyed not only through semantics but also through specific
attributes.

• We devise a novel dynamic modality priority learning mod-
ule to aggregate multiple modalities, which explicitly man-
ages the contribution of each modality for every instance.

• DQ-Former achieves impressive performance on MELD and
IEMOCAP datasets. Our analysis reveals that the proposed
method establishes a robust and interpretable multimodal
representation for emotion recognition.

2 RELATEDWORK
2.1 Multimodal Fusion Works
The self-attention mechanism introduced in the transformer ar-
chitecture [32] offers a versatile approach for modeling signals
across diverse modalities. However, recent advanced models tend
to specialize in particular modalities and are tailored for unimodal
tasks [1, 3, 4, 20]. Hence, the dominant framework of previous
MERC systems adopts a two-phase late-fusion pipeline: first ex-
tracting feature representations of each modality separately simply
utilizing the final representations from pre-trained unimodal mod-
els [28, 41]; and then employing sophisticated fusion techniques
to integrate them [22, 29, 37, 38]. A typical late-fusion framework
is MulT [31], which uses directional pairwise cross-attention to
align different modalities. MISA [8] projects each modality into
a modality-specific subspace to capture their unique features and
into a modality-invariant subspace to capture their shared char-
acteristics. Sun et al. [29] employ unimodal transformer modules
to model the representations of each modality and a multimodal

transformer module to fuse all the modalities. These works fail to
consider fine-grained modality-specific attributes.

In addition to the two-phase late-fusion approach, there are ef-
forts towards developing end-to-end early-fusion or middle-fusion
MERC systems. One prevalent strategy involves directly combin-
ing different modalities into unified inputs for the transformer
model [17]. This operation often ignores the heterogeneity among
different modalities. On the other hand, Xu et al. [36] introduce
a bridge-layer between the top layers of uni-modal encoders and
each layer of the cross-modal encoder, so as to get a good vision-
language representation with diverse levels of information. In ad-
dition, Nagrani et al. [25] propose a middle-fusion strategy MBT,
which directs information exchange between modalities through
bottleneck latent spaces, and achieves impressive performance on
audio-visual benchmarks. Inspired by MBT,Wu et al. [35] introduce
the multimodal recurrent intermediate-layer aggregation model for
MERC task. Despite these advancements, all these works typically
treat MERC as general multimodal tasks do. They lack considera-
tion of different modality priorities for emotion recognition before
fusion.

2.2 Modalities Priority Learning
Recent studies have shown that different modalities contribute
uniquely to emotion recognition [7]. Existing works either rely
on manually selected dominant modalities based on prior knowl-
edge, or fail to fully exploit the dominant modalities and filter out
the misleading signal. For example, Zhang et al. [39] propose a
language-guided multimodal fusion strategy as they believe the
language modality usually stands out as the dominant one among
all modalities. Wang et al. [33] utilize modality-specific softmax
functions to compute the attentionweights in a single-stream Trans-
former. Hong et al. [9] propose a model-agnostic auxiliary network
to select the fusion modality. Wang et al. [34] propose a new archi-
tecture that uses dynamic modality gating to determine a primary
modality and hierarchically incorporates other auxiliary modali-
ties. Although these methods consider the varying contributions of
different modalities, they often treat multimodal inputs generically,
ignoring the distinctive properties of each modality.

Different from all these works, we propose a new middle-fusion
framework. It not only considers various levels of emotion cues
across multiple intermediate layers, but also fuses them with a
dynamic modality priority.

3 PROPOSED FRAMEWORK
In this section, we introduce a more cognitive-aligned multimodal
middle-fusion framework, namely DQ-Former. We first state the
problem. Following that, we provide details of the unimodal encoder,
the proposed multimodal fusion framework, and dynamic modality
priority learning. The overall architecture of DQ-Former is depicted
in Figure 2.

3.1 Problem Definition and Notation
Let 𝐶 = {𝐶𝑖 }𝑁𝑖=1 denote a conversational dataset, where 𝑁 is the to-
tal number of conversations. Each conversation 𝐶𝑖 consists of 𝑁 (𝑖 )

utterances. Let 𝑢𝑖 𝑗 represents the 𝑗-th utterance in the 𝑖-th conver-
sation 𝐶𝑖 , where 𝑗 ∈ [0, 𝑁 (𝑖 ) ). And 𝑦𝑖 𝑗 denotes the corresponding
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Audio Encoder Text Encoder 

Audio Encoder Multimodal
Fusion Encoder

[CLS] M: I'm just trying to think of another way. 
I'm just trying to...  F: Just, you know, kicking
myself. ... [SEP] the target utterance F: things
just aren't what they seem.

Text Encoder 

Text Encoder 

Text Encoder 

Audio Encoder 

Audio Encoder 

Multimodal
Fusion Encoder

 fusion
layers

 learnable queries

(a)

...

Multi-Head
Self Attention

Add & Norm

Dynamic Modality 
Aggregation

Cross-modal
Attention

...

Multi-Head
Self Attention

Feed Forward

Feed Forward

Add & Norm

Add & Norm

(b)

Add & Norm

Unimodal Encoder Multimodal
Fusion Encoder

😐     😠     😨     😞    😄    😲     🤢

...or

Figure 2: (a) Overall architecture of DQ-Former, (b) the details of a fusion layer. Raw inputs from various sources are firstly
encoded by unimodal encoders separately, which are initialized with pre-trained models. At each fusion layer, query tokens
collate and condense emotion cues from diverse modalities through cross-modal attention. These modality-specific information
are then aggregated based on their confidence in emotion recognition. Fusion starts at the (𝑀 +1)-th layer of unimodal encoders,
with the initial𝑀 layers serving as unimodal feature extractors.

emotion label of utterance 𝑢𝑖 𝑗 , which belongs to 𝑘 emotion cat-
egories. This task aims to identify the emotion label 𝑦𝑖 𝑗 of each
utterance 𝑢𝑖 𝑗 from multiple types of signals.

3.2 Unimodal Encoder
Regarding the multimodal input, each utterance consists of text
transcripts (𝑡 ) and audio (𝑎). As highlighted by Mao et al. [24],
textual modality performs much better in context-dependent set-
tings, while acoustic modality always achieve better performance
in context-free settings. Consequently, we structure our raw tran-
scripts by incorporating dialogue history, as in "<cls> 𝑛 preceding
(speaker: utterance) pairs <sep> the target (speaker: utterance)", while
maintaining audio inputs as context-free.

Formally, we adopt 𝑚 to represent a particular input modal-
ity, where 𝑚 ∈ {𝑡, 𝑎} can be either 𝑡 for textual modality or 𝑎
for acoustic modality. Let’s denote the input sequence as 𝑋𝑚 =

{𝑥1, 𝑥2, . . . , 𝑥𝑁𝑚
}, where 𝑁𝑚 signifies the length of the input se-

quence for modality𝑚.
To obtain modality-specific attributes and model intra-modal in-

teractions, we encode the raw inputs from different modalities with
separate unimodal transformer encoders. These unimodal encoders
are initialized with pre-trained models, allowing them to inherit
knowledge from pre-training stages. The textual encoder is initial-
ized by BERT model [4], while acoustic encoder is initialized using

WavLM model [3]. The unimodal intermediate representations can
be expressed as follows:

𝑯 𝑖𝑚 = E𝑖𝑚 (𝑯 𝑖−1𝑚 ), and 𝑯 0
𝑚 = M𝑚 (𝑋𝑚) (1)

Here, E is the vanilla Transformer encoder layer, comprising a
multi-head self-attention mechanism and a feed-forward network
[32], depicted as the left portion of Figure 2 (b). The operator M
signifies a linear projection that maps each token toR𝑑 .𝑯 0

𝑚 denotes
the initial token embedding representations, while 𝑯 𝑖𝑚 represents
the hidden representation at the 𝑖-th encoder layer for modality𝑚.

3.3 Multimodal Fusion Encoder
Cognitive-related studies indicate that emotional expressions are
better identified through specific attributes rather than broad se-
mantic aspects [13].Meanwhile, recent research onmodality-specific
models suggests that rich hierarchical information exists across
different layers, with semantic features in higher layers and more
modality-specific attributes in intermediate layers [3, 5]. Hence, we
opt for a middle-fusion approach instead of traditional late-fusion
methods to capture diverse levels of emotional information.

Inspired by Nagrani et al. [25] and Li et al. [15], we adopt a
set of learnable queries to gather and condense emotion-relevant
attributes from each modality within intermediate layers. Figure
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2 (b) provides a detailed illustration of the multimodal fusion en-
coder layer. Specifically, we randomly initialize the query tokens
𝑋𝑞 = {𝑞1, 𝑞2, . . . , 𝑞𝑙 }. And we intentionally set the length 𝑙 to be
much shorter than that of unimodal inputs, which aims to condense
information and mitigate computational complexity. These query
tokens serve as the input of the multimodal fusion encoder. They
firstly interact with each other through self-attention like unimodal
encoders do:

�̂� 𝑖𝑞 = E𝑖𝑞 (𝑯 𝑖−1𝑞 ), and 𝑯 0
𝑞 = M𝑞 (𝑋𝑞) (2)

Subsequently, we employ cross-modal attention [31] to project
information from various modalities into a unified query space,
resembling a shared multimodal space. This approach aims to max-
imize synergy and minimize heterogeneity gaps among diverse
modalities. Assume that the query representations �̂� 𝑖𝑞 is the 𝑄 ,
and the unimodal hidden representations 𝑯 𝑖𝑚 is the 𝐾 and 𝑉 . The
equation defining this process is:

𝑯 𝑖𝑞𝑚 = C𝑖𝑚→𝑞 (�̂� 𝑖𝑞,𝑯 𝑖𝑚,𝑯 𝑖𝑚) (3)

Here, C𝑖𝑚→𝑞 represents the cross-modal attention. The detailed
calculation of C𝑚→𝑞 is as follows:

C𝑚→𝑞 = LN(𝑄 + F(LN(𝑄 + softmax(𝑄𝐾
𝑇

√
𝑑

)𝑉 ) ) ) (4)

where LN denotes LayerNorm, and F is a FFN network.
Finally, we aggregate𝑯 𝑖𝑞𝑡 and𝑯

𝑖
𝑞𝑎 to obtain𝑯 𝑖𝑞 through dynamic

modality priority learning, which will be detailed in Session 3.4.
After multiple layers of inter-modal interaction and fusion, the final
representation of query tokens can be regarded as the multimodal
representation for emotion recognition.

3.4 Dynamic Modality Priority Learning
Intuitively, not all modalities play an equal role in emotion recog-
nition. The goal of the instance-level dynamic modality priority
learning is to mask unnecessary modalities before fusion and dy-
namically control the fusion degree of each modality.

To enable dynamic modality fusion, we add a confidence esti-
mation network (ConNet). The ConNet takes hidden states of the
unimodal encoder at the 𝑖-th layer as inputs and predicts a single
scalar between 0 and 1. The confidence calculation is as follows.

𝒉𝑖𝑚 = AvgPool(𝑯 𝑖𝑚) (5)

𝑐𝑖𝑚 = 𝜎 (𝑾𝒉𝑖𝑚 + 𝒃) (6)

𝑐𝑖𝑚 =
𝑐𝑖𝑚∑

𝑗∈{𝑎,𝑡 } 𝑐
𝑖
𝑗

(7)

where𝑾 and 𝒃 are trainable parameters, 𝜎 (·) is the sigmoid func-
tion.

For each instance, the ConNet outputs a high confidence score
if the attribute of modality 𝑚 at 𝑖-th layer is a crucial emotion
cue. Conversely, if this attribute is unimportant, it outputs a low
confidence score. When the confidence score 𝑐𝑖𝑚 is close to 0, we
can assume that the modality is unnecessary or even a noisy signal
that may mislead the final emotion recognition result. Therefore,
we set a mask threshold 𝜏 (i.e., 𝜏 = 0.1) to filter out unnecessary
modalities. After applying the masking operation of misleading

Table 1: Statistics of IEMOCAP and MELD datasets.

Statistics IEMOCAP MELD
# dialogues # utterances # dialogues # utterances

Train 121 5,929 1,039 9,989
Dev 14 600 114 1,109
Test 16 851 280 2,610
Total 151 7,380 1,433 13,708

modalities, 𝑐𝑖𝑚 is updated as follows:

𝑐𝑖𝑚 =

{
𝑐𝑖𝑚, if 𝑐𝑖𝑚 ≥ 𝜏
0, otherwise

(8)

This ConNet is inserted in every fusion layer. Finally, the aggrega-
tion function of 𝑯 𝑖𝑞 is as follows:

𝑯 𝑖𝑞 =
∑︁

𝑐𝑖𝑚 · 𝑯 𝑖𝑞𝑚 (9)

3.5 Optimization Object
Our DQ-Former framework comprises two key components: uni-
modal encoders facilitating intra-modal interaction, and a multi-
modal fusion encoder enabling inter-modal interaction. We denote
the representations of the final layer as unimodal representations
and multimodal representations:

𝒉𝑎 = AvgPool(𝑯𝑁
𝑎 ) (10)

𝒉𝑡 = AvgPool(𝑯𝑁
𝑡 ) (11)

𝒉𝑓 = AvgPool(𝑯𝑁
𝑞 ) (12)

Here, 𝑎, 𝑡 , and 𝑓 correspond to fusion, textual and acoustic, re-
spectively. These representations are utilized to obtain the final
unimodal and fusion predictions:

𝑦𝛼 =𝑊𝛼𝒉𝛼 + 𝒃𝛼 (13)

where𝑊𝛼 ∈ R𝑘×𝑑 , 𝒃𝛼 ∈ R𝑘 , 𝛼 ∈ {𝑎, 𝑡, 𝑓 } and 𝑘 represents the
number of emotion labels.

Our training object involves two parts: cross-entropy loss for
unimodal predictions and multimodal predictions. The training
optimization objective is expressed as:

L = 𝜆𝑓 L𝑓 + 𝜆𝑡L𝑡 + 𝜆𝑎L𝑎, (14)

where 𝜆𝑓 , 𝜆𝑡 and 𝜆𝑎 are the weighting factors. During inference,
the fusion prediction 𝑦𝑓 is chosen.

4 EXPERIMENTAL SETTING
4.1 Experimental Dataset
To evaluate the efficacy of our model, we conduct experiments on
two widely recognized MERC benchmark datasets: IEMOCAP [2]
and MELD [27]. The IEMOCAP dataset is a multimodal emotion
recognition dataset, which contains 151 conversations and 10,039
utterances. Each utterance is annotated with predefined emotion
labels such as anger, happiness, sadness, neutral, excitement, frus-
tration, fear, surprise, and others. Due to the data imbalance issue,
we only focus on the first six main emotion categories, excluding the
remaining labels. The MELD dataset is a multi-party conversational
dataset collected from the Friends TV shows. This dataset contains
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13,708 utterances and 1,433 conversations. Each utterance is anno-
tated with one of the following seven labels: neutral, surprise, fear,
sad, joy, disgust, and angry.

Since the IEMOCAP dataset does not provide an official data split,
we split all the conversations into training, testing, and validation
sets according to a ratio of 8:1:1, ensuring that each dialogue appears
in only one of the data divisions to avoid contextual content leakage.
For MELD datasets, we follow the default data splitting. A concise
summary of statistical values for all datasets is provided in Table 1.

4.2 Implementation Details
We train two variants of DQ-Former, including base and large ver-
sion. The DQ-Former base comprises 12 unimodal encoder layers,
4 multimodal fusion layers (fusion starts at the 9-th layer of the
unimodal encoder), 8 attention heads, and hidden dimensions of
768. In the case of DQ-Former large, there are 24 unimodal encoder
layers, and a hidden dimension of 1024. The textual and acoustic
modality encoders are initialized using BERT [4] and WavLM [3]
pretrained models, respectively. As for input of the multimodal
fusion transformer, we set 16 learnable query tokens, which are
randomly initialized. For the textual modality, we adapt a dialogue
history window size of 5 utterances, restricting the input length to
512 tokens. For the acoustic modality, we set a limit of 10 seconds
for the duration of audio input. Due to the imbalance across vari-
ous emotions, we also perform up-sampling on minority class data
while training. Besides, we set the loss weights 𝜆𝑓 , 𝜆𝑡 , and 𝜆𝑎 to 1.

All experiments are conducted using a single Tesla V100 GPU.
To optimize trainable parameters, we use the AdamW optimization
scheme [21]. The learning rate is set to 1e-5, and it follows a linear
warm-up of 1% of total steps. We set a batch size of 8. The training
process spans 20 epochs. To mitigate overfitting, we incorporate
an early stopping mechanism with a patience of 7 evaluation steps.
Subsequently, we employ the checkpoints that performed best on
the validation set for testing. We run each experiment three times
and report the average result.

Consistent with previous studies, we utilize the Weighted Aver-
age F1 score (WAF1) as the main metric, considering the natural
imbalance across various emotions. Weighted Average Accuracy
(WAA) serves as the secondary evaluation metric.

4.3 Baseline Models
To validate the performance of DQ-Former, we conduct a com-
prehensive comparison with several state-of-the-art models. The
comparative models are as follows: MMGCN [11], DialogTRM
[24], MM-DFN [10], EmoCaps [19], FacialMMT[41], GA2MIF
[16], Joyful [14]. All these models leverage textual, acoustic, and
visual modalities as inputs. Additionally, we include CMCF-SRNet
[40] in our baselines, as it is the advanced two-modality model
incorporating textual and acoustic inputs.

Since the choice of unimodal features seriously affects multi-
modal results, we also reproduce the following models under the
same experimental settings as ours: MulT [31] (a conventional
late-fusion framework for unaligned inputs), MBT [25] (a novel
middle-fusion framework), and SA (it combines different modal-
ities into unified inputs for the single-stream transformer). The
unimodal encoders in these three models are also tuned.

5 RESULTS AND DISCUSSION
To validate the efficacy of our approach, we first conduct com-
parative experiments with currently advanced systems. Following
this, we perform ablation experiments. Finally, we discuss the in-
terpretability of our model, examining how DQ-Former can ex-
tract necessary emotional cues across various layers within each
modality and explicitly discern the relative importance of different
modalities.

5.1 Comparison Results with Existing Works
We compare our proposed method with state-of-the-art approaches
on the MELD and IEMOCAP datasets, and present the results in
Table 2. The results show that DQ-Former demonstrates compet-
itive performance on both two datasets, particularly in the sce-
nario involving only textual and acoustic modalities. Specifically,
on the IEMOCAP dataset, DQ-Former (base) demonstrates the most
promising performance, achieving a significant relative improve-
ment of 1.43% WF1 compared to the second-best result obtained
by EmoCaps. Similarly, on the MELD dataset, DQ-Former (large)
outperforms FacialMMT, while DQ-Former (base) also achieves
competitive results.

Additionally, DQ-Former showcases outstanding performance in
recognizing certain minority emotion categories. For example, both
DQ-Former (base) and DQ-Former (large) demonstrate excellent
emotion recognition capabilities in the fear and disgust categories
on the MELD dataset. This highlights the effectiveness of masking
misleading modalities to achieve more robust performance.

It’s worth noting that, under identical experimental conditions,
the new middle-fusion framework DQ-Former consistently outper-
forms MulT and MBT. Compared to the typical late-fusion MERC
systemMulT, DQ-Former (base) achieves substantial improvements
by 2.91% and 6.51% WF1 on the MELD and IEMOCAP datasets, re-
spectively. Furthermore, integrating DMP results in significant per-
formance enhancement compared to MBT, another middle-fusion
method. This underscores the critical role of leveraging a dynamic
modality priority fusion strategy to integrate diverse granularities
of emotion cues from different modalities across various intermedi-
ate layers.

Moreover, it’s observed that DQ-Former (large) does not always
outperform DQ-Former (base). This phenomenon may be attributed
to the limited existing data combined with the high parameter count
of the model, potentially leading to overfitting issues.

5.2 Ablation Studies
We conduct experiments to shed light on the following reasonable
doubts:

• Does middle-fusion strategy outperform other fusion strate-
gies?

• Can dynamic modality priority learning (DMP) decide the
relative importance between textual and acoustic modalities
and can mask threshold effectively filter noising modalities?

• How does DQ-Former perform under modality missing cir-
cumstance?

In addition to validating on the IEMOCAP 6-way condition,
we introduce the IEMOCAP 4-way condition, which concentrates



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

MM’24, 28 October - 1 November 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Overall comparison results on IEMOCAP and MELD datasets. The best result is highlighted in bold. ♮ indicates our
reproduce results under the same setting as ours, while other results are from the original paper. “*” indicates scenarios with
only textual and acoustic modalities, while others takes account of three modalities.

Method MELD IEMOCAP 6-way
Neu. Joy. Sad. Ang. Fear Dis. Sur. WAA WAF1 Neu. Hap. Sad Ang. Exc Fru. WAA WAF1

MMGCN 76.33 53.02 26.74 46.09 — — 48.15 59.31 58.31 64.36 45.14 77.16 68.82 74.71 61.40 66.36 66.26
MM-DFN 77.76 54.78 22.94 47.82 — — 50.69 62.49 59.46 66.42 44.22 78.98 69.77 75.56 66.33 68.21 68.18
DialogueTRM — — — — — — — 65.70 63.50 — — — — — — 69.50 69.70
EmoCaps 77.12 57.50 42.50 57.54 3.03 7.69 63.19 — 64.00 64.48 71.91 85.06 68.99 78.41 66.76 — 71.11
GA2MIF 76.92 51.87 27.18 48.52 — — 49.08 61.65 58.94 68.38 46.15 84.50 70.29 75.99 66.49 69.75 70.00
Joyful 76.80 56.89 41.78 50.71 — — 51.91 63.53 61.77 68.24 60.94 84.42 69.95 73.54 67.55 70.55 71.03
FacialMMT 78.55 61.10 38.51 53.66 13.04 30.30 58.17 — 64.69 — — — — — — — —
CMCF-SRNet* — — — — — — — — 62.30 68.80 52.20 80.90 70.30 76.70 61.60 70.50 69.60
SA*♮ 72.61 48.99 17.73 46.61 — — 42.14 57.65 54.60 46.84 43.51 60.40 73.61 62.85 56.49 57.86 57.24
MulT*♮ 78.76 57.41 34.52 47.67 — — 55.55 63.94 61.77 60.41 59.82 66.30 77.50 76.29 60.53 66.40 66.03
MBT*♮ 78.39 56.44 34.24 48.56 3.85 9.41 56.61 63.76 61.98 54.51 57.39 68.78 74.33 76.72 59.57 64.84 64.26
DQ-Former(base)* 78.86 59.86 35.71 51.16 19.38 22.36 57.89 64.95 63.96 69.18 64.09 69.92 79.74 83.39 69.48 72.63 72.54
DQ-Former(large)* 78.31 60.84 39.93 52.82 21.90 26.54 59.13 64.88 64.70 71.87 61.67 69.61 77.39 80.95 67.71 71.68 71.76

Table 3: Comprehensive ablation results on IEMOCAP and
MELD. 𝜏 is the mask threshold. w/o 𝜏 indicates the absence
of this threshold, while w/o DMP signifies the exclusion of
dynamic modality priority learning. late and early denote
fusion starting from the last layer and from the first layer,
respectively.

Models MELD IEMOCAP 6-way IEMOCAP 4-way
WAA WAF1 WAA WAF1 WAA WAF1

𝜏 = 0.1 64.95 63.96 72.63 72.54 87.58 87.59
𝜏 = 0.2 64.60 62.64 72.09 71.81 85.95 85.87
w/o 𝜏 64.17 62.75 71.95 72.00 86.76 86.72
w/o DMP 63.91 62.26 69.88 69.47 86.15 86.22
late 64.08 62.57 70.19 70.09 83.50 83.07
early 63.57 63.09 71.73 70.90 87.17 87.17

solely on the four primary emotions: anger, happiness, sadness, and
neutral. Ablation results are presented in Table 3.

5.2.1 Role ofMiddle-fusion Strategy. DQ-Former employs amiddle-
fusion strategy to effectively leverage various levels of modality-
specific emotional features embedded in intermediate layers of
pre-trained unimodal encoders. To delve deeper into the impact of
these fusion strategies, we introduce two variants of DQ-Former:
DQ-Former (late) which uses the final representation to fuse, and
DQ-Former (early) which starts fusion at the first layer.

Results in Table 3 consistently demonstrate the superiority of
middle-fusion over both late-fusion and early-fusion approaches.
Notably, the late-fusion strategy exhibits a clear performance de-
cline. Specifically, DQ-Former (late) shows a decrease of 1.39%,
2.45% and 4.52% WF1 on MELD, IEMOCAP 6-way and IEMOCAP 4-
way, respectively. In contrast, DQ-Former (early) exhibits relatively
less performance degradation. This emphasizes the importance of
adaptively considering the various levels of emotional information
across different layers within each modality. Moreover, it aligns
with the findings of cognitive-related research, indicating that hu-
man emotions are more easily recognized throughmodality-specific
attributes.

5.2.2 Role of Dynamic Modality Priority Learning. To further in-
vestigate the impact of the DMP module in DQ-Former, we conduct

a comprehensive ablation analysis. Specifically, we vary the mask
threshold to 0.2 (𝜏=0.2) and 0 (w/o 𝜏), and also remove the DMP
module entirely (w/o DMP). From the results, we observe:

Firstly, the removal of DMP resultes in a significant performance
decrease, with a drop of 1.7%, 3.07% and 1.37%WF1 onMELD, IEMO-
CAP 6-way and IEMOCAP 4-way, respectively. This underscores
the critical role of DMP in enhancing effective multimodal fusion.
Secondly, masking misleading modalities effectively enhances the
robustness of multimodal emotion recognition. DQ-Former (w/o 𝜏)
experiences a performance decrease of 0.54% WF1 on IEMOCAP
6-way, 0.87% WF1 on IEMOCAP 4-way and 1.21% WF1 on MELD.
Moreover, it is essential to carefully select the mask threshold. Set-
ting 𝜏 to 0.2 leads to a performance decline on both two datasets.
This decline may be attributed to the high mask threshold, which
could potentially filter out useful signals, treating them as noise.

5.2.3 Role of Each Modality and Robustness Analysis. To further
investigate the role of each modality in MERC, we fine-tune the uni-
modal encoders on respective modality data, referred to as WavLM-
FT and BERT-FT. Additionally, we assess the robustness of DQ-
Former (base) under modality-missing scenarios. Specifically, we
simulate the absence of a modality by masking it (i.e., setting the
missing modality inputs to 0). From the results in Table 4 we find:

Firstly, the multimodal fusion results of DQ-Former consistently
outperform the unimodal setups across both the MELD and IEMO-
CAP datasets, demonstrating its capability in leveraging comple-
mentary information from diverse modalities.

Moreover, under modality-missing circumstances, all three mod-
els experience notable performance degradation, particularly evi-
dent when the textual modality is missing. For example, SA suffers a
performance drop of over 50% when text inputs are masked, indicat-
ing a phenomenon of modality collapse during training. In contrast,
DQ-Former demonstrates superior robustness to modality-missing,
which maintains comparable performance to fine-tuned unimodal
encoders. It is worth noting that if a multimodal system overly
depends on the dominant modality, it will become less robust in
scenarios where one modality is missing.

In addition, not all datasets are suitable for MERC. On the MELD
dataset, BERT-FT achieves 60.94% WF1, while WavLM-FT reaches
31.26%. Interestingly, all three models exhibit a slight performance
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Table 4: Robust ablation results on MELD and IEMOCAP
datasets. ‡ indicates masking audio inputs, while † denotes
masking text inputs. The red results indicate the percentage
decrease inmodel performance relative to the original model
when one modality is missing, while the green ones indicate
an increase.

MELD IEMOCAP 6-wayMethod WAA WF1 WAA WF1
BERT-FT 61.65 60.94 67.48 66.98
WavLM-FT 47.82 31.26 52.85 51.92
MulT 63.94 61.77 66.40 66.03

63.92 62.31 61.72 60.52MulT‡ -0.04 +0.87 -7.04 -8.34
48.12 31.27 36.96 30.54MulT† -24.75 -49.38 -44.34 -53.74

SA 57.65 54.60 57.86 57.24
57.87 54.23 47.38 45.58SA‡
+0.38 -0.68 -18.10 -20.38
22.24 19.29 26.78 21.47SA†
-61.43 -64.68 -53.71 -62.50

DQ-Former 64.95 63.96 72.63 72.54
65.58 64.06 68.50 68.23DQ-Former‡ +0.96 +0.16 -6.04 -6.41
49.16 39.05 51.29 50.81DQ-Former† -24.32 -38.96 -29.65 -30.31

Figure 3: Modality confidence distribution across different
layers on the IEMOCAP dataset. The mask threshold is set
to 0.1, as indicated by the dashed line. Middle layers serve as
feature selectors, while top layers predominantly encapsu-
late semantic and content-level information and there is a
priority trade-off between these two modalities.

improvement trend when audio inputs are masked. This means the
text inputs dominate in the MELD dataset. Since the MELD dataset
is collected from the Friends TV show, the presence of background
noise in the audio may hinder emotion recognition performance.

Figure 4: Acoustic confidence distribution in the penulti-
mate layer for two categories of samples in the IEMOCAP
dataset: Text-Dominated and Audio-Dominated. The x-axis
shows acoustic confidence scores, and the y-axis indicates
the amount of samples for each category. Density estimation
is conducted using Gaussian Kernel Density Estimation. The
mask threshold is depicted by the dashed line.

5.3 Interpretability Discussions
5.3.1 The Modalities Priority across Different Intermediate Layers.
DQ-Former fuses at intermediate layers through DMP to integrate
various levels of emotional features of the unimodal pre-trained
model. To further investigate the priority of modalities across the
layers, we examine the distribution of confidence scores across
fusion layers of the DQ-Former (early). The result is depicted in
Figure 3.

The result reveals several discernible patterns: 1) The textual
modality predominantly asserts its influence in the lower layers,
with confidence scores peaking between 0.8 and 0.9. 2) In contrast,
the acoustic modality takes precedence in the middle layers, with
confidence scores close to 1. 3) As we ascend to the higher layers,
the confidence score distribution for both modalities becomes more
widespread, indicating a delicate balance with a slight inclination
towards the textual modality. This underscores that our model adap-
tively selects key acoustic attributes and textual semantic features
for emotion recognition, which is aligned with human perception
processes.

5.3.2 The Modalities Priority of Different Instances. As introduced
in section 3.4, the goal of DMP is to selectively mask misleading
modalities before fusion, while dynamically managing modality
fusion priorities for every certain instance. To further study the
effectiveness of DMP, we examine the distribution of acoustic con-
fidence scores across diverse instances.

We select two distinct categories of samples from IEMOCAP,
focusing on instances correctly classified by DQ-Former: 1) Text-
Dominated: These samples are correctly classified by the textual
modality but are misclassified by the acoustic modality. 2) Audio-
Dominated: These samples are correctly classified by the acoustic
modality but are misclassified by the textual modality. We ana-
lyze the confidence distribution in the penultimate layer of the
multimodal encoder, considering that top layers primarily contain
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Figure 5: Case study illustrating the performance of DQ-Former. Four cases are sampled from the IEMOCAP dataset, with the
first two representing Audio-Dominated samples and the last two representing Text-Dominated samples.

semantic and content-level information, with a trade-off between
different modalities.

Figure 4 presents the acoustic confidence distribution for both
categories. Remarkably, for Audio-Dominated samples, confidence
mainly exceeds 0.1, whereas for Text-Dominated ones, it peaks be-
tween 0 and 0.1, gradually decreasing with higher confidence. This
trend mirrors human cognitive tendencies, indicating higher acous-
tic confidence in Audio-Dominated instances and lower acoustic
confidence in Text-Dominated ones. Refer to Session 5.4 for addi-
tional practical examples.

Additionally, we observe that when the acoustic confidence
score is below the mask threshold (𝜏 = 0.1), the number of Text-
Dominated samples significantly exceeds other confidence intervals,
while the count of Audio-Dominated samples is notably lower in
this interval compared to others. This observation underscores the
necessity of filtering out misleading modalities.

5.4 Case Study
To better understand themain contributions of ourwork, we present
four examples in Figure 5. These examples are drawn from Audio-
Dominated and Text-Dominated categories in the IEMOCAP dataset.
The results delineate distinctive characteristics between Audio-
Dominated and Text-Dominated samples. In the former, overt vocal
cues are prominently apparent. For instance, in case 1, a waveform
graph is characterized by heightened amplitude, indicative of palpa-
ble anger expressed by the speaker. Conversely, case 2 showcases

subdued amplitude and specific inflection, reflective of frustrated
emotions. In contrast, Text-Dominated samples usually contain
emotional vocabulary that clearly conveys the speaker’s emotions.
These observations underscore the efficacy of the DMP module in
DQ-Former, which adaptively captures and integrates necessary
emotional cues from diverse modalities.

6 CONCLUSION
In this paper, we introduce DQ-Former, a novel middle-fusion mul-
timodal framework designed to enhance the modeling of diverse
emotion cues for a robust MERC system. DQ-Former leverages
various granularities of emotional information embedded in inter-
mediate layers within each modality, and gathers them by learning
the confidence levels associated with emotion recognition for com-
plementary insights. Experiments on the IEMOCAP and MELD
datasets demonstrate the effectiveness of DQ-Former in improving
emotion recognition performance. Furthermore, our in-depth analy-
sis demonstrates the ability of DQ-Former to extract key emotional
cues within each modality and autonomously adjust the priority of
each modality under different scenarios. This closely aligns with
human cognitive processes and achieves robust and interpretable
emotion recognition results. These findings offer valuable insights
for leveraging advanced modality-specific pre-trained models from
a cognitive perspective, thereby informing and potentially improv-
ing future research endeavors in multimodal emotion recognition.
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