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1 ADDITIONAL EXPERIMENTS
1.1 Comparison Results on MERBenchmark
Due to inconsistencies among various methods in feature extrac-
tors, evaluation manners, and experiments settings, Lian et al. [3]
propose a benchmark for Multimodal Emotion Recognition (MER).
For a fair comparison, we utilize their code1 to reproduce DQ-
Former base under identical settings. We employ DeBERTa-base as
the textual encoder and wav2vec2.0-base as the acoustic encoder.
Additionally, we exclude the incorporation of dialogue history ut-
terances.

Table 1 presents the comparison results of our models and base-
lines on the MELD and IEMOCAP datasets. Our model consistently
outperforms the baselines on both benchmarks, indicating a sig-
nificant improvement in WF1 scores. Compared to Attention, DQ-
Former exhibits a 3.15% improvement in the MELD dataset, a 3.23%
improvement in IEMOCAP 4-way, and a 6.22% improvement in
IEMOCAP 6-way. Notably, a significant performance decrease is
observed when the dialog history is disregarded, highlighting the
necessity of considering context in the textual modality.

In a nutshell, these findings underscore the efficacy of our mul-
timodal fusion framework, establishing DQ-Former as a superior
model in leveraging diverse modalities effectively.

1.2 Impact of Unimodal Feature Extractors
The transformer architecture efficiently handles various types of
sequence inputs uniformly, leading to the emergence of advanced
pre-trained models tailored to specific modalities [9]. Since the
choice of unimodal features significantly influences multimodal
results, a thorough evaluation is conduct to analyze the performance
of DQ-Former under different unimodal feature extractors. The
unimodal pre-trained models for the text modality include BERT
and Roberta. For the acoustic modality, we consider Wav2Vec2,
HuBERT, and WavLM. The comparison results are presented in
Table 2.

From the results, we observe that the performance of DQ-Former
varies when different feature extraction models are used. In gen-
eral, the large model tends to outperform the base model in the
unimodal results. For textual, RoBERTa often outperforms BERT.
Moreover, the performance of different unimodal features varies
across datasets. However, selecting the best-performing unimodal
model does not necessarily yield optimal results in multimodal fu-
sion. The quality of multimodal representation depends on various
factors, which have not yet been fully estimated.

1.3 Visualization of Fusion Representations
In figure 1, we visualize the final fusion representation 𝒉𝑓 in a 2D
feature space using t-SNE [8] on the IEMOCAP dataset. The results
demonstrate that the multimodal representation learned by our
model effectively distinguishes between different types of emotions

1The code is at https://github.com/zeroQiaoba/MERTools

Table 1: Performance comparison (WF1 %) with different
multimodal fusion strategies on MELD and IEMOCAP. The
best result is highlighted in bold; baseline results are from
Lian et al. [3]. Both baselines andDQ-Fromer are tested under
the same setting. The feature extractors are SENet-FER2013,
wav2vec2.0-base and DeBERTa-large for baselines.

Methods MELD
IEMOCAP
(4-way)

IEMOCAP
(6-way)

MCTN [5] 56.31 63.08 48.66
MFM [6] 54.55 70.84 54.12

GMFN [12] 56.73 71.22 55.14
MFN[11] 57.80 72.53 56.02
MulT[7] 57.63 71.13 55.07
MISA [2] 58.40 72.84 45.48
MMIM[1] 59.03 72.71 56.69
LMF [4] 58.24 72.14 56.52
TFN [10] 58.58 72.36 56.34
Attention 59.16 73.00 56.70
DQ-Former 62.31 (3.15 ↑) 76.23 (3.23 ↑) 62.92 (6.22 ↑)

Figure 1: Visualization of fusion representations in 2D space
by using t-SNE

in the space. Particularly notable is the almost complete separa-
tion achieved for emotion categories with significant differences,
such as sad, angry, and excited. This suggests that the multimodal
representations learned by our model contains effective emotional
information.

https://github.com/zeroQiaoba/MERTools
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Table 2: The performance of DQ-Former with various unimodal features. Legend: B (BERT), R (RoBERTa), W2 (Wav2Vec 2.0), W
(WavLM), H (HuBERT). Best result highlighted.

Feature Extraction Model IEMOCAP(4-way) IEMOCAP(6-way) MELD
WAA WAF1 WAA WAF1 WAA WAF1

Acoustic Only
WavLM-base 73.32 73.17 52.85 51.92 47.82 31.26
WavLM-large 78.21 78.08 56.78 56.48 44.21 32.62
wav2vec2-base 69.86 68.84 59.35 58.9 48.12 31.27
wav2vec2-large 74.13 73.18 56.37 56.48 48.05 34.06
HuBERT-base 75.15 75.18 52.17 51.32 44.6 36.07
HuBERT-large 70.88 70.28 55.28 54.6 53.22 48.06

Textual Only
BERT-base 81.67 81.72 67.48 66.98 61.65 60.94
BERT-large 82.69 82.46 67.89 67.72 63.07 62.26
Roberta-base 83.3 83.22 64.63 64.82 63.26 60.28
Roberta-large 84.32 84.38 71.14 70.85 65.02 62.07

Multimodal
B+W2 87.98 88.07 72.76 72.63 63.83 63.15
B+W 87.58 87.59 73.17 73.18 65.21 63.93
B+H 85.74 85.58 70.46 70.06 65.63 63.82
R+W2 85.54 85.36 71.82 71.8 64.14 63.83
R+W 87.17 87.17 69.92 69.43 64.25 62.8
R+H 85.34 85.18 73.31 73.19 65.4 64.45
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